@unpublished{KrebsMuellerSchmidt2019, author = {Krebs, Vanessa and M{\"u}ller, Michael and Schmidt, Martin}, title = {Γ-Robust Linear Complementarity Problems with Ellipsoidal Uncertainty Sets}, series = {International Transactions in Operational Research}, journal = {International Transactions in Operational Research}, number = {29(1)}, pages = {417 -- 441}, year = {2019}, abstract = {We study uncertain linear complementarity problems (LCPs), i.e., problems in which the LCP vector q or the LCP matrix M may contain uncertain parameters. To this end, we use the concept of Γ-robust optimization applied to the gap function formulation of the LCP. Thus, this work builds upon [16]. There, we studied Γ-robustified LCPs for l1- and box-uncertainty sets, whereas we now focus on ellipsoidal uncertainty set. For uncertainty in q or M, we derive conditions for the tractability of the robust counterparts. For these counterparts, we also give conditions for the existence and uniqueness of their solutions. Finally, a case study for the uncertain traffic equilibrium problem is considered, which illustrates the effects of the values of Γ on the feasibility and quality of the respective robustified solutions.}, language = {en} } @article{KrebsSchmidt2019, author = {Krebs, Vanessa and Schmidt, Martin}, title = {Γ-Robust Linear Complementarity Problems}, series = {Optimization Methods and Software}, journal = {Optimization Methods and Software}, year = {2019}, abstract = {Complementarity problems are often used to compute equilibria made up of specifically coordinated solutions of different optimization problems. Specific examples are game-theoretic settings like the bimatrix game or energy market models like for electricity or natural gas. While optimization under uncertainties is rather well-developed, the field of equilibrium models represented by complementarity problems under uncertainty - especially using the concepts of robust optimization - is still in its infancy. In this paper, we extend the theory of strictly robust linear complementarity problems (LCPs) to Γ-robust settings, where existence of worst-case-hedged equilibria cannot be guaranteed. Thus, we study the minimization of the worst-case gap function of Γ-robust counterparts of LCPs. For box and l1-norm uncertainty sets we derive tractable convex counterparts for monotone LCPs and study their feasibility as well as the existence and uniqueness of solutions. To this end, we consider uncertainties in the vector and in the matrix defining the LCP. We additionally study so-called ρ-robust solutions, i.e., solutions of relaxed uncertain LCPs. Finally, we illustrate the Γ-robust concept applied to LCPs in the light of the above mentioned classical examples of bimatrix games and market equilibrium modeling.}, language = {en} } @article{CelebiKrebsSchmidt0202, author = {{\c{C}}elebi, Emre and Krebs, Vanessa and Schmidt, Martin}, title = {Γ-Robust Electricity Market Equilibrium Models with Transmission and Generation Investments}, series = {Energy Systems}, journal = {Energy Systems}, pages = {20}, year = {0202}, abstract = {We consider uncertain robust electricity market equilibrium problems including transmission and generation investments. Electricity market equilibrium modeling has a long tradition but is, in most of the cases, applied in a deterministic setting in which all data of the model are known. Whereas there exist some literature on stochastic equilibrium problems, the field of robust equilibrium models is still in its infancy. We contribute to this new field of research by considering Γ-robust electricity market equilibrium models on lossless DC networks with transmission and generation investments. We state the nominal market equilibrium problem as a mixed complementarity problem as well as its variational inequality and welfare optimization counterparts. For the latter, we then derive a Γ-robust formulation and show that it is indeed the counterpart of a market equilibrium problem with robustified player problems. Finally, we present two case studies to gain insights into the general effects of robustification on electricity market models. In particular, our case studies reveal that the transmission system operator tends to act more risk-neutral in the robust setting, whereas generating firms clearly behave more risk-averse.}, language = {en} } @unpublished{KleinertSchmidt2020, author = {Kleinert, Thomas and Schmidt, Martin}, title = {Why there is no need to use a big-M in linear bilevel optimization: A computational study of two ready-to-use approaches}, pages = {8}, year = {2020}, abstract = {Linear bilevel optimization problems have gained increasing attention both in theory as well as in practical applications of Operations Research (OR) during the last years and decades. The latter is mainly due to the ability of this class of problems to model hierarchical decision processes. However, this ability makes bilevel problems also very hard to solve. Since no general-purpose solvers are available, a "best-practice" has developed in the applied OR community, in which not all people want to develop tailored algorithms but "just use" bilevel optimization as a modeling tool for practice. This best-practice is the big-M reformulation of the Karush-Kuhn-Tucker (KKT) conditions of the lower-level problem - an approach that has been shown to be highly problematic by Pineda and Morales (2019). Choosing invalid values for M yields solutions that may be arbitrarily bad. Checking the validity of the big-Ms is however shown to be as hard as solving the original bilevel problem in Kleinert et al. (2019). Nevertheless, due to its appealing simplicity, especially w.r.t. the required implementation effort, this ready-to-use approach still is the most popular method. Until now, there has been a lack of approaches that are competitive both in terms of implementation effort and computational cost. In this note we demonstrate that there is indeed another competitive ready-to-use approach: If the SOS-1 technique is applied to the KKT complementarity conditions, adding the simple additional root-node inequality developed by Kleinert et al. (2020) leads to a competitive performance - without having all the possible theoretical disadvantages of the big-M approach.}, language = {en} } @phdthesis{Plein2021, author = {Plein, Fr{\"a}nk}, title = {When Bilevel Optimization Meets Gas Networks: Feasibility of Bookings in the European Entry-Exit Gas Market. Computational Complexity Results and Bilevel Optimization Approaches}, year = {2021}, abstract = {Transport and trade of gas are decoupled after the liberalization of the European gas markets, which are now organized as so-called entry-exit systems. At the core of this market system are bookings and nominations, two special capacity-right contracts that grant traders access to the gas network. The latter is operated by a separate entity, known as the transmission system operator (TSO), who is in charge of the transport of gas from entry to exit nodes. In the mid to long term, traders sign a booking contract with the TSO to obtain injection and withdrawal capacities at entry and exit nodes, respectively. On a day-ahead basis, they then nominate within these booked capacities a balanced load flow of the planned amounts of gas to be injected into and withdrawn from the network the next day. The key property is that by signing a booking contract, the TSO is obliged to guarantee transportability for all balanced load flows in compliance with the booked capacities. To assess the feasibility of a booking, it is therefore necessary to check the feasibility of infinitely many nominations. As a result, deciding if a booking is feasible is a challenging mathematical problem, which we investigate in this dissertation. Our results range from passive networks, consisting of pipes only, to active networks, containing controllable elements to influence gas flows. Since the study of the latter naturally leads to a bilevel framework, we first consider some more general properties of bilevel optimization. For the case of linear bilevel optimization, we consider the hardness of validating the correctness of big-Ms often used in solving these problems via a single-level reformulation. We also derive a family of valid inequalities to be used in a bilevel-tailored branch-and-cut algorithm as a big-M-free alternative. We then turn to the study of feasible bookings. First, we present our results on passive networks, for which bilevel approaches are not required. A characterization of feasible bookings on passive networks is derived in terms of a finite set of nominations. While computing these nominations is a difficult task in general, we present polynomial complexity results for the special cases of tree-shaped or single-cycle passive networks. Finally, we consider networks with linearly modeled active elements. After obtaining a bilevel optimization model that allows us to determine the feasibility of a booking in this case, we derive various single-level reformulations to solve the problem. In addition, we obtain novel characterizations of feasible bookings on active networks, which generalize our characterization in the passive case. The performance of these various approaches is compared in a case study on two networks from the literature, one of which is a simplified version of the Greek gas network.}, language = {en} } @unpublished{BrandaHenrionPištěk2021, author = {Branda, Martin and Henrion, Ren{\´e} and Pištěk, Miroslav}, title = {Value at risk approach to producer's best response in electricity market with uncertain demand}, year = {2021}, abstract = {We deal with several sources of uncertainty in electricity markets. The independent system operator (ISO) maximizes the social welfare using chance constraints to hedge against discrepancies between the estimated and real electricity demand. We find an explicit solution of the ISO problem, and use it to tackle the problem of a producer. In our model, production as well as income of a producer are determined based on the estimated electricity demand predicted by the ISO, that is unknown to producers. Thus, each producer is hedging against the uncertainty of prediction of the demand using the value-at-risk approach. To illustrate our results, a numerical study of a producer's best response given a historical distribution of both estimated and real electricity demand is provided.}, language = {en} } @unpublished{MolanSchmidt2022, author = {Molan, Ioana and Schmidt, Martin}, title = {Using Neural Networks to Solve Linear Bilevel Problems with Unknown Lower Level}, pages = {16}, year = {2022}, abstract = {Bilevel problems are used to model the interaction between two decision makers in which the lower-level problem, the so-called follower's problem, appears as a constraint in the upper-level problem of the so-called leader. One issue in many practical situations is that the follower's problem is not explicitly known by the leader. For such bilevel problems with unknown lower-level model we propose the use of neural networks to learn the follower's optimal response for given decisions of the leader based on available historical data of pairs of leader and follower decisions. Integrating the resulting neural network in a single-level reformulation of the bilevel problem leads to a challenging model with a black-box constraint. We exploit Lipschitz optimization techniques from the literature to solve this reformulation and illustrate the applicability of the proposed method with some preliminary case studies using academic and linear bilevel instances.}, language = {en} } @article{SchultzWollenberg2017, author = {Schultz, R{\"u}diger and Wollenberg, Tobias}, title = {Unit commitment under uncertainty in AC transmission systems via risk averse semidefinite stochastic programs}, series = {RAIRO-Operations Research}, volume = {51}, journal = {RAIRO-Operations Research}, number = {2}, doi = {https://doi.org/10.1051/ro/2016031}, pages = {391 -- 416}, year = {2017}, abstract = {This paper addresses unit commitment under uncertainty of load and power infeed from renewables in alternating current (AC) power systems. Beside traditional unit-commitment constraints, the physics of power flow are included. To gain globally optimal solutions a recent semidefinite programming approach is used, which leads us to risk averse two-stage stochastic mixed integer semidefinite programs for which a decomposition algorithm is presented.}, language = {en} } @article{GrimmScheweSchmidtetal.2017, author = {Grimm, Veronika and Schewe, Lars and Schmidt, Martin and Z{\"o}ttl, Gregor}, title = {Uniqueness of Market Equilibrium on a Network: A Peak-Load Pricing Approach}, series = {European Journal of Operational Research}, volume = {261}, journal = {European Journal of Operational Research}, number = {3}, doi = {10.1016/j.ejor.2017.03.036}, pages = {971 -- 983}, year = {2017}, abstract = {In this paper we analyze peak-load pricing in the presence of network constraints. In our setup, firms facing fluctuating demand decide on the size and location of production facilities. They make production decisions constrained by the invested capacities, taking into account that market prices reflect scarce transmission capacities. We state general conditions for existence and uniqueness of the market equilibrium and provide a characterization of equilibrium investment and production. The presented analysis covers the cases of perfect competition and monopoly - the case of strategic firms is approximated by a conjectural variations approach. Our result is a prerequisite for analyzing regulatory policy options with computational multilevel equilibrium models, since uniqueness of the equilibrium at lower levels is of key importance when solving these models. Thus, our paper contributes to an evolving strand of literature that analyzes regulatory policy based on computational multilevel equilibrium models and aims at taking into account individual objectives of various agents, among them not only generators and customers but also, e.g., the regulator deciding on network expansion.}, language = {en} } @article{KrebsSchmidt2017, author = {Krebs, Vanessa and Schmidt, Martin}, title = {Uniqueness of Market Equilibria on Networks with Transport Costs}, series = {Operations Research Perspectives}, journal = {Operations Research Perspectives}, number = {5}, pages = {169 -- 173}, year = {2017}, abstract = {We study the existence and uniqueness of equilibria for perfectly competitive markets in capacitated transport networks. The model under consideration is rather general so that it captures basic aspects of related models in, e.g., gas or electricity networks. We formulate the market equilibrium model as a mixed complementarity problem and show the equivalence to a welfare maximization problem. Using the latter we prove uniqueness of the resulting equilibrium for piecewise linear and symmetric transport costs under additional mild assumptions. Moreover, we show the necessity of these assumptions by illustrating examples that possess multiple solutions if our assumptions are violated.}, language = {en} }