TY - JOUR
A1 - Kuchlbauer, Martina
A1 - Liers, Frauke
A1 - Stingl, Michael
T1 - Outer approximation for mixed-integer nonlinear robust optimization
N2 - Currently, few approaches are available for mixed-integer nonlinear robust optimization. Those that do exist typically either require restrictive assumptions on the problem structure or do not guarantee robust protection. In this work, we develop an algorithm for convex mixed-integer nonlinear robust optimization problems where a key feature is that the method does not rely on a specific structure of the inner worst-case (adversarial) problem and allows the latter to be non-convex. A major challenge of such a general nonlinear setting is ensuring robust protection, as this calls for a global solution of the non-convex adversarial problem. Our method is able to achieve this up to a tolerance, by requiring worst-case evaluations only up to a certain precision. For example, the necessary assumptions can be met by approximating a non-convex adversarial via piecewise relaxations and solving the resulting problem up to any requested error as a mixed-integer linear problem.
In our approach, we model a robust optimization problem as a nonsmooth mixed-integer nonlinear problem and tackle it by an outer approximation method that requires only inexact function values and subgradients. To deal with the arising nonlinear subproblems, we render an adaptive bundle method applicable to this setting and extend it to generate cutting planes, which are valid up to a known precision. Relying on its convergence to approximate critical points, we prove, as a consequence, finite convergence of the outer approximation algorithm.
As an application, we study the gas transport problem under uncertainties in demand and physical parameters on realistic instances and provide computational results demonstrating the efficiency of our method.
Y1 - 2021
UR - https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/414
ER -