
Published online 28 January 2017 Nucleic Acids Research, 2017, Vol. 45, No. 9 e72
doi: 10.1093/nar/gkx010

digit––a tool for detection and identification of
genomic interchromosomal translocations
Richard Meier1,2, Stefan Graw1,2, Peter Beyerlein1, Devin Koestler3, Julian R. Molina4 and
Jeremy Chien2,*

1Technical University of Applied Sciences Wildau, 15745 Wildau, Germany, 2Department of Cancer Biology,
University of Kansas Medical Center, Kansas City, KS 66160, USA, 3Department of Biostatistics, University of
Kansas Medical Center, Kansas City, KS 66160, USA and 4Department of Medical Oncology, Mayo Clinic, Rochester,
MN 55905, USA

Received September 28, 2016; Revised December 16, 2016; Editorial Decision December 30, 2016; Accepted January 25, 2017

ABSTRACT

Structural variations (SVs) in genomic DNA can have
profound effects on the evolution of living organ-
isms, on phenotypic variations and on disease pro-
cesses. A critical step in discovering the full ex-
tent of structural variations is the development of
tools to characterize these variations accurately in
next generation sequencing data. Toward this goal,
we developed a software pipeline named digit that
implements a novel measure of mapping ambigu-
ity to discover interchromosomal SVs from mate-
pair and pair-end sequencing data. The workflow ro-
bustly handles the high numbers of artifacts present
in mate-pair sequencing and reduces the false pos-
itive rate while maintaining sensitivity. In the simu-
lated data set, our workflow recovered 96% of sim-
ulated SVs. It generates a self-updating library of
common translocations and allows for the investi-
gation of patient- or group-specific events, making
it suitable for discovering and cataloging chromoso-
mal translocations associated with specific groups,
traits, diseases or population structures.

INTRODUCTION

Structural variations (SVs) are deletions and insertions of
>50 bp, inversions, translocations and copy number varia-
tions in the genome. SVs in human genomes introduce more
sequence variations than single nucleotide variations (1).
Modification of a gene’s structure can lead to the loss of
function or gain of new functions, while modifications to
regulatory elements can lead to up- or downregulation of
genes and establish new gene regulatory networks (2). On
top of the genic implications, breakings and reattachments
of chromosomal fragments may change the copy number
variation of genomic regions and reduce their overall stabil-

ity, both of which can perpetuate the creation of subsequent
SVs (3).

Interchromosomal translocations are SVs that have been
linked to a variety of different diseases. For example,
Robertsonian translocations have famously been shown to
increase the risk for Down syndrome (4). Diseases such as
Ewing’s sarcoma (5), Papillary thyroid (6) and several types
of leukemia and lymphoma (7) underscore the dominant
role that translocations play in cancer. Discovery and char-
acterization of some of the SVs from cancer have led to the
identification of SVs that drive cancer and the development
of effective targeted anti-cancer therapies (8,9).

Over the last two decades, a variety of techniques and
methods for SV detection have been established (1). Next
generation sequencing is the most promising technique in
terms of discovering novel SVs, even for small scale events.
Split-read methods such as CREST (10), which try to find
reads overlapping with chromosomal breakpoints by re-
assembling and remapping partially mapping reads back
to the reference genome, are available to discover SVs from
next generation sequencing. These methods have a high ac-
curacy in breakpoint resolution but require high coverage
and long read lengths in order to pick up SVs.

Gap-spanning methods utilize paired-end (PE) sequenc-
ing reads that originate from two ends of the same DNA
molecule. Breakpoints are detected by analysing read pairs
that map discordantly in terms of their separation distance
or mapping to different chromosomes (11). The analysis of
mate-pair sequencing data is particularly useful for the de-
tection of SVs. Mate-pair sequencing data allow for long
separation distances between read pairs (12), which signifi-
cantly reduces the required read depth necessary to span the
entire genome. Over the last several years, numerous soft-
ware tools have been developed for detecting SVs in PE data
(13). Unfortunately, many of the algorithms designed for PE
data fail to address the high number of artifacts generated
by mate-pair sequencing due to library preparation. In ad-
dition, since larger genomes contain numerous regions of
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local similarity, these methods have the tendency to result
in false-positives, undermining the integrity of called SVs.
Some studies also suggest that sequence similarity drives
translocation events (13), leading to the question of when
to discard or accept reads targeting these regions.

Here, we present ‘digit’: a software tool for analysing
translocations in mate-pair sequencing data that robustly
removes artifacts and reduces the false positive rate while
maintaining sensitivity. This software addresses the limita-
tions of existing methods by implementing a novel measure
of mapping ambiguity, called mapping validity measure
(MVM). MVM filters out low confidence, discordant pairs
and in doing so, it improves specificity, recovery and discov-
ery. The MVM distribution for concordant pairs in a sample
is used as an internal standard to obtain an MVM thresh-
old for discordant read pairs. The proposed software is also
capable of separating chromosomal translocations between
different groups, i.e. cancer and non-cancer, by comparing
translocation events to a control population. This feature
enables users to reveal translocations associated with spe-
cific traits or disease groups and to improve the analysis of
tumour samples that lack paired normal controls.

MATERIALS AND METHODS

Sample preparation and sequencing of lung cancer samples

Nextera Mate Pair libraries were prepared following the
manufacturer’s protocol (Illumina). A total of 1 �g of ge-
nomic DNA in 76 �l EB buffer is simultaneously frag-
mented and tagged with a biotinylated mate pair junction
adaptor. The resulting construct contains a short single
stranded sequence gap which is repaired enzymatically ac-
cording to manufacturer’s protocol (Illumina). The repaired
DNA is purified and smaller DNA fragments (<1500 bp)
are removed using AMPure Beads.

The size selected fragments are circularization by blunt
end ligation for 16 h at 30◦C using circularization ligase
(Illumina). Non-circularized fragments are eliminated by
DNA exonuclease treatment. The remaining circularized
DNA is again fragmented, this time using the Covaris E210,
generating double-stranded DNA fragments with fragment
sizes in the 200–2000 bp range.

The biotinylated DNA fragments are purified using Dy-
nalbeads M-280 streptavidin beads (Invitrogen) as out-
lined in the Illumina Mate-Pair protocol. Illumina indexed
adapters are added to the DNA on the M-280 beads us-
ing the TruSeq Library Sample Preparation kit (Illumina)
as follows.

The ends of the biotinylated fragments immobilized on
the beads are repaired and phosphorylated using Klenow,
T4 DNA polymerase and T4 polynucleotide kinase; after
which an ‘A’ base is added to the 3′ ends of double-stranded
DNA using Klenow exo- (3′ to 5′ exo minus). Paired end
DNA adaptors (Illumina) with a single ‘T’ base overhang at
the 3′ end are ligated and the immobilized adapter-modified
DNA fragments are enriched by 10 cycles of polymerase
chain reaction (PCR). The PCR supernatant is recovered
from the beads using a magnetic rack. The PCR enriched
constructs are cleaned up with AMPure xp beads recover-
ing DNA fragments of ∼300–2000 bp. Concentration and

size distribution of the libraries are determined on an Agi-
lent Bioanalyzer DNA 1000 chip and Qubit dsDNA assay
(Invitrogen).

Libraries are sequenced at two samples/lane to generate
∼150 million reads/sample following Illumina’s standard
protocol using the Illumina cBot and cBot Paired end clus-
ter kit version 3. The flow cells are sequenced as 101 × 2
paired end reads on an Illumina HiSeq 2000 using TruSeq
SBS sequencing kit version 3 and HCS v2.0.12data col-
lection software. Base-calling is performed using Illumina’s
RTA version 1.17.21.3

Program modules and external tools in the workflow

The software tool consists of multiple modules that are exe-
cuted in succession and can optionally be removed or re-
placed by the user in order to customize analysis for in-
dividual experimental setups (Supplementary Figures S1
and 2). Since reads generated by mate-pair sequencing have
an inverted orientation compared to other PE methods,
they are first transformed back into forward-reverse ori-
entation by building their reverse-complements using the
digit ‘revcomp’ module. Next, adapter sequences that pol-
lute a fraction of the reads are removed. For this task,
the cutadapt software (14) is used. Mapping to the refer-
ence genome is performed using Bowtie2 (version 2.1.0)
with standard configuration as the recommended alignment
software (15). For all alignments performed in this study,
hg38 served as the reference genome. Once all reads are suc-
cessfully aligned, the SortSam and MarkDuplicates func-
tions from Picard tools (version 1.117) from the Broad In-
stitute of MIT and Harvard, as well as the sort and view
functions from samtools (version 0.1.19) (16), are used to
tag and ultimately remove PCR duplicates.

Next, digit’s ‘analyse’ module is used to divide read pairs
into different categories. In this step, reads mapping to low
complexity sites and low-quality reads (MAPQ < 23 in real
data) are removed and read pairs with different discordant
mapping properties are separated from well-behaved con-
cordant read pairs. First, the median of the separation dis-
tance of all remaining reads (that are not translocations or
inversions) is calculated. This value is used next instead of
the actual mean to calculate a standard deviation estimate
because the mean is heavily influenced by very highly distant
outliers in the separation distance distribution. These out-
liers mostly consist of deletions. Since all types of deletions
can be spanned by mate-pairs but only sufficiently short in-
sertions can be spanned, this creates a bias which is compen-
sated for by using the median. Concordant reads are then
defined as all read pairs with a MAPQ ≥ 10 and a separa-
tion distance in the range of:

median − k · stdev < concordants < median + k · stdev

The parameter k can be chosen according to the user’s
preferred confidence interval. In this study, we used 2.33,
which corresponds to ∼99% of all observed reads.

If two reads in a pair map to different chromosomes, they
are put into the translocation category and the pair is called
discordant. Read pairs representing potential transloca-
tions are then passed to the ‘proxval’ (proximity validation)
module that searches for clusters of reads, calculates the



PAGE 3 OF 12 Nucleic Acids Research, 2017, Vol. 45, No. 9 e72

MVM of read pairs and finally applies a filter to identify
high confident discordant pairs. Finally, clusters that re-
main intact after the MVM filter has been applied are con-
sidered real events and can be processed by the ‘ficore’ (find
common regions) module (Supplementary Figure S2). In
this last step, candidate translocation clusters from differ-
ent samples are compared with normal controls, and com-
monly captured events associated with the general pop-
ulation or mapping artifacts are separated from disease-
relevant events.

Mapping validity measure

The MVM is a score that is used to judge a read pair’s map-
ping ambiguity to its target regions. The measure reevalu-
ates the assignment the mapping software has made of two
reads in any given pair by performing a local realignment
of both reads. The idea is that if either one of the two reads
can be remapped equally well to both assigned target re-
gions (a read’s own and its mate’s), it is impossible to resolve
the pairs exact origin based solely on the original assign-
ment. The remapping was performed using the local Smith|
Waterman alignment algorithm (17). An assigned target re-
gion is defined as the sequence the read was mapped to, ex-
tended by the read pair separation distance threshold τ in
both upstream and downstream direction.

τ = 2.33 · stdev (separation) + median (separation)

First, we introduce a mappability score ξ that defines how
well a read can be remapped. The raw alignment score A of
a read r and a sequence s is defined as the rate of perfect
matches contained in the local alignment.

A(r, s) = matches
gaps + mismatches + matches

This raw score does not take into account how much of
the target read is covered by the alignment. Thus, we nor-
malize this score according to read length by multiplying
with the number of base positions N of the read that are
included in the alignment and dividing by the read’s length.

A′ (r, s) = A(r, s) · N (r, s)
length (r )

To obtain a score that is also independent of the DNA
strand, we remap both the read’s original sequence and its
reverse complement C to the target regions. The read’s final
score is then defined as the maximum of the two A’ scores.

ξ (r, s) = arg max
[
A′ (r, s) , A′ (C (r ) , s)

]

The mappability score ξ can assume values between 1.0
(perfect match) and 0.0 (no partial match) and is used to cal-
culate the mapping validity ratio VR,S. S is a vector contain-
ing the sequences of the two assigned target regions while Rx
denotes the read assigned to the sequence Sx.

V(R,S) (x, y) = ξ (Rx, Sx)

ξ
(
Rx, Sy

)

The ratio V quantifies how much better the target read Rx
maps to the sequence Sx than to the other sequence Sy. A
mapping validity ratio of 2.0, for example, would mean that

a read maps twice as well to its assigned target region than to
its mate’s assigned target region while a ratio of 0.5 depicts
the opposite case. A value close to 1.0 indicates ambigu-
ity. Values below 1.0 represent errors the mapping software
makes in the original assignment. Since these assignments
are not trustworthy, they are also deemed ambiguous.

The last step of the calculation is concerned with com-
paring the mapping validity ratios of both reads in a read
pair. If either of the two reads maps ambiguously, the pair’s
origin is ambiguous as well. We thus define the MVM M of
a read pair as the minimum of both of its read’s mapping
validity ratios.

M = arg min
[
VR,S (1, 2) , VR,S (2, 1)

]

Read pairs with MVM values below a certain threshold
are rejected. The threshold is calculated by analysing the
concordant read pair’s MVM distribution. First, the con-
cordant cumulative distribution function (cdf) is estimated
by processing 100 000 concordant read pairs. The threshold
is then defined as the MVM corresponding to a significantly
low percentile (0.005) of the concordant cdf. This threshold
ensures that only pairs that significantly deviate from the
genomic, normal MVM profile are rejected.

The ‘ficore’ module

Translocation clusters passing the MVM filter are still not
guaranteed to be significantly associated with the target
group or disease. Thus, all clusters are compared to a library
of common translocations that are not exclusively associ-
ated with the target group. In this study, the library consists
of translocations called by processing samples of 20 indi-
viduals without a prior diagnosis of cancer and a simulated
sample set covering the reference genome hg38. A translo-
cation is considered relevant for the disease if the same event
either is absent in the normal samples or appears in a much
lower frequency than in the disease samples. We refer to the
former as disease or group specific translocations and the
latter as potential predispositions for the disease or group.

The module is designed in a way that any group can be
compared to any other group, normal group or library. This
approach makes it equally suitable for separating germ-line
events from disease events and for characterizing differences
between sample groups. The software also allows for merg-
ing of multiple samples (e.g. multiple sequencing runs of the
same patient) into one entry or sub-group. The user also has
the option to generate a library of common events after each
run that can be shared and used again as a normal control
in future runs.

Simulated data

We generated simulated PE data by grabbing random subse-
quences from the hg38 reference sequence, which were sepa-
rated by a distance that was itself defined by a normal distri-
bution with a mean of 2300 and a standard deviation of 700.
These values were chosen after observing distributions of
lung cancer mate-pair data that approximately resemble the
conditions in these real samples. Artificial translocations
are predefined before generating data. Targets of translo-
cations are chosen randomly, but the chance of targeting a
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chromosome is proportionate to its length. If a read pair
spans a predefined breakpoint of an artificial translocation,
there is a 50% chance that a discordant pair is created in-
stead that utilizes the random separation and a random off-
set from the breakpoints. To all generated reads, we applied
a high base mutation rate of 0.001. The dataset consists of
80 million reads and 1000 translocations.

Run time

Run time was monitored for processing a real sample (42
Gb in fastq format) utilizing the primary alignments created
with Bowtie2. Since Hydra requires exclusively discordant
read pairs as input inter-chromosomal pairs parsed out by
digit’s ‘analyse’ module were used as input. Digit’s workflow
involved pre-processing steps with Picard tools and sam-
tools, as well as executing the ‘analyse’ and ‘proxval’ module
in succession. Hydra’s workflow involved secondary align-
ment with the free version of Novoalign, as well as pro-
cessing with bedtools and the hydra scripts. For processing
times with a server containing 7-cores and 60 Gb memory
were determined for both workflows.

A significant advantage in performance of digit over Hy-
dra was observed when evaluating run time. The digit work-
flow took 14 h, 22 min and 50 s (total of 51 770 s) to com-
plete, whereas the Hydra workflow took 5 days, 17 h, 43
min and 7 s (total of 495 787 s) to complete. This slow
performance was mainly due to the fact that the free ver-
sion of Novoalign does not allow for multi-threading which
could have significantly sped up the process. However, even
when accounting for multithreading and generously assum-
ing the Hydra workflow would have been seven times faster,
it would have still taken 70 827 s to complete, which is ∼1.37
times slower than digit.

GASVPRO

The software GASVPRO was tested with both of the scripts
provided by the authors: GASVPRO and GASVPRO-HQ.
For GASVPRO-HQ the Bowtie2 SAM output file was first
processed with samtools’ view function in order to gener-
ate a BAM file. In the next step, Picard tools’ AddOrRe-
placeReadGroups function was used to transform the file
into the required format. The entire file was then passed to
GASVPRO-HQ. For GASVPRO a custom script separated
multiple matching SAM entry pairs with the XS:i tag from
uniquely matching pairs. Both of these files were processed
as described before and were given to the GASVPRO script
as high quality and low-quality files. We changed three pa-
rameters in the workflow scripts in order to make the results
comparable to digit:

–minClusterSize 3
Translocations: true
TransOnly: true

Data access

The normal samples used in this paper originate from
various sources. They include three trio samples from
the Illumina Platinum genome project (EBI accession:
ERP002490), four samples from the personal whole genome

sequencing project of Masaru Tomita (SRA accessions:
DRR002191-DRR002194), and patients 1–9 and 22–25 re-
ported in the paper by Vergult et al. (12).

Lung cancer datasets were obtained from Julian R.
Molina at Mayo Clinic and will be available accompanying
a separate manuscript.

RESULTS

Workflow

The tool’s capability is demonstrated by analysing simu-
lated data and mate-pair DNA sequencing of tumour DNA
from 33 patients with lung cancer and germline DNA from
20 individuals without a prior diagnosis of cancer. Our
developed pipeline first pre-processes the data, removing
generic artifacts before the screening process for chromoso-
mal translocations. During pre-processing, read orientation
is corrected, adapter sequences are trimmed off and reads
are mapped to the reference genome. Next, PCR duplicates
and read pairs with a low mapping quality (MAPQ) are re-
moved.

In the first step of the screening process, discordant read
pairs that map to different chromosomes are separated from
concordant read pairs that meet the expectation in terms
of read separation (Figure 1). A potential translocation is
reported if multiple, discordant pairs can be found that tar-
get sites in close proximity. Unfortunately, these clusters can
originate from genomic regions that have a high, local simi-
larity (e.g. paralogues and pseudogenes) and might not con-
stitute a real translocation. To identify and remove these
candidates, we introduce the MVM, which scores read pairs
based on the ability of both reads to be mapped back to
their opposite regions. If a read can be mapped similarly
well to both mate regions, its origin is ambiguous and can-
not be resolved by using the current reference: a score of 1.0
represents maximum ambiguity, while values higher than
1.0 represent the less ambiguous mapping of mate pairs.
Density plots of MVM scores produce two distinct peaks
separating mate pairs with ambiguous mapping from those
with unique, unambiguous mapping. The distribution of
MVM scores from concordant pairs is used as the internal
standard distribution for the selection of a cut-off value that
is used to classify discordant pairs with unambiguous map-
ping. A translocation event is called if a cluster can be recre-
ated after the MVM filter has been applied. Finally, pro-
cessed samples from a general, normal population are used
to identify translocation events associated with the cancer
group.

Simulated data

To investigate the classifier’s performance, we generated
and processed simulated data with the pipeline using dif-
ferent parameter configurations (Table 1). Utilizing the
Burrows-Wheeler Aligner’s Maximal Exact Matches algo-
rithm (BWA-MEM) followed by cluster (“clustered-only”)
filtering retained 99.9% of true discordant read pairs (Ta-
ble 1). Similarly, Bowtie2 alignment followed by cluster only
filtering also retained 99.7% of true discordant read pairs.
Interestingly, BWA mem produces a higher rate of accu-
rately mapped discordant pairs compared to Bowtie2, as
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Figure 1. Translocation screening workflow. Pre-processed, discordant read pairs are used to build clusters and MVMs are calculated from clustered pairs.
The MVM distribution of concordant pairs is used to identify high-quality discordant pairs. Candidate translocations are then identified from clusters
built with high-quality discordant pairs. If a set of samples from the same patient group/disease group shares a common translocation that the normal
population does not, a group specific cluster is called.

evident by fewer discordant read pairs around true negative
(TN) events (Table 1). In contrast, the Bowtie2 aligner pro-
duces a higher rate of incorrectly mapped discordant pairs,
as evidenced by the higher amount discordant read pairs
around TN events (Table 1). Despite a high amount of in-
correctly mapped discordant pairs in Bowtie2 alignment,
filtering steps implemented in the digit workflow were able
to remove these erroneous discordant pairs.

Performing the MVM filter on its own without any re-
strictions to cluster size manages to reject most of the false
events, while still maintaining a sensitivity of 93.5%. Even
though this filter on its own is not as effective as the clus-
ter size threshold, it can become very valuable when small
sample sizes and low coverage prohibit the assembling of
breakpoint clusters.

Filtering out read pairs during pre-processing according
to MAPQ had two effects: first, removing all simulated read
pairs with an MAPQ less than 30 simultaneously removed
all false positives for any configuration. However, this result
came at the expense of reduced sensitivity. Filtering accord-
ing to this MAPQ threshold also removed almost all dis-
cordant read pairs with MVM scores proximal to 1.0. After
evaluating how many total reads were removed in both sim-
ulated and real samples, an arbitrary threshold of 23 was
chosen for conservative workflows with Bowtie2 that aim
to enrich true positive events.

Not applying the MAPQ filter and solely using the MVM
filter increased the sensitivity for all other parameter con-
figurations. Receiver operating characteristic (ROC) curve
analysis with varying thresholds for cluster size (number of
pairs supporting the cluster), revealed excellent classifier be-
havior with area under the curve (AUC) values being larger

than 0.9 (Figure 2). As expected, increasing the number of
read pairs required to call a cluster (c-values) raised speci-
ficity but lowered sensitivity. The cluster size of ≥2 (c = 2)
produced the best AUC value for the simulated data. Values
above or below 2 resulted in reduced AUCs.

Independent of the clustering and filtering, ∼15% of dis-
cordant read pairs originating from a true translocation
were lost upfront during the mapping process with Bowtie2
(Table 2). These reads were either mismapped to wrong sites
in the genome, thus becoming false positive calls, or could
not be mapped and were lost entirely. Adding the MAPQ
threshold filter (≥23) further reduced the recovery rate to
∼40%. The MVM filtering with a 0.005 concordant CDF
threshold and clustering lowered the number of recovered
true positives by another 5% in both configurations. The to-
tal loss in recovery was thus 44.4 and 20.3% with or without
MAPQ filtering, respectively. However, recovery in terms
of actual translocation calls fared far better, with 96.63%
of translocations being recovered without the MAPQ fil-
ter and 76.66% of translocations being recovered with the
MAPQ filter. This greater level of recovery was due to high
read coverage, which allows assembly of clusters flanking
the simulated breakpoints although 44% of read pairs were
removed by the MAPQ filter. It should be noted that the
coverage in the simulated data set was chosen to be repre-
sentative of the read count in the processed cancer samples.

Using the BWA mem algorithm instead of Bowtie2 for
the primary alignment resulted in a performance increase
in the simulated data. The total number of reported discor-
dantly mapping reads decreased dramatically while at the
same time more true events were accurately retained when
using BWA-MEM (Table 1). After performing clustering
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Table 1. Comparison of BWA mem and Bowtie2 as primary alignment software

Aligner Sensitivity FP TN TP FN

BWA: clustered only (c = 3) 0.99906 1721 1998 21 242 20
BWA: full workflow (c = 3) 0.95151 1651 2068 20 231 1031
Bowtie2: clustered only (c = 3) 0.99722 2318 2 983 307 21 194 59
Bowtie2: MVM filter only (c = 1) 0.93526 12 434 2 973 191 19 877 1376
Bowtie2: full workflow (c = 3) 0.93389 1897 2 983 728 19 848 1405

Number of discordant read pairs remaining at the end of specific workflows. The digit workflow was utilized to analyse the simulated data aligned with
either the BWA mem algorithm or the Bowtie2 alignment algorithm. The clustered only workflow does not make use of MVM downstream filtering,
whereas the MVM filter-only workflow does not employ a cluster size threshold. The MVM threshold is 0.005, and the cluster size threshold is at least
three pairs per cluster. Sensitivity quantifies the rate of true read pairs accurately carried forward (TP/(TP+FN)). FP, TN, TP and FN refer to false
positives, true negatives, true positives and false negatives, respectively. The total number of true read pairs, which splits into TP and FN counts, refers
to those discordant read pairs that are mapped accurately by the primary alignment software. Similarly, the total number of false read pairs, which splits
into FP and TN counts, refers to those discordant read pairs that do not map accurately. The small numbers in TN for BWA are due to the fact that many
false positives were already eliminated by the alignment and not carried forward. These results suggest that BWA mem alignment followed by cluster size
filtering is sufficient to remove most of the false-positive read pairs while recovering 99.9% of true discordant read pairs.

Table 2. Recovery of simulated translocations

Analyse module Proxval module

Event type Total
Digit
(q0)

Digit
(q23)

Digit
(q0)

Digit
(q23)

GASV
(B2G)

GASV
(HQ) Hydra

Discordant read pairs from true breaks 24 916 21 253 14 849 19 848 13 845 13 329 275
Clusters from true breaks 861 832 660 19 841
False clusters 327 201 0 344

Breakdown of the recovery of true-positive and false-positive events in the simulated dataset. Only 861 of the 1000 randomly generated translocations could
be possibly mapped, since the reference genome’s sequence information in the breakpoint region of the remaining 139 was incomplete. After mapping with
Bowtie2.0, (q0) refers to the output of digit with no MAPQ filter while (q23) refers to the same configuration using a MAPQ filter with a threshold of 23.
For GASV, (B2G) refers to the BAMToGASV output, while (HQ) refers to GASVPRO-HQ. Recovery of true positive events is higher for all steps in digit’s
workflow, even with a strict MAPQ filter. Hydra used discordantly mapped reads parsed out by the ‘analyse’ module in order to provide comparability
between digit and Hydra.
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Figure 2. Receiver Operating Characteristic curve analysis of the MVM
filter combined with clustering. Simulated data were processed using dif-
ferent c-values and MVM thresholds. The c-value specifies how many read
pairs are required to call a cluster. The MVM thresholds for discordant
read pairs are drawn from the empirical cumulative distribution function
of concordant read pairs at various percentiles (0.5, 0.1, 0.07, 0.05, 0.03,
0.01, 0.005 and 0.0005). Each ROC curve is plotted using various MVM
thresholds and separated by c-value. The area under the curve (AUC) is
estimated by connecting the first data point to the origin and assuming
constant sensitivity of the last data point when moving into lower speci-
ficities (since after the last listed data point, specificities does not decrease
anymore). The rough integral estimate is calculated with the trapezoidal
rule. Inset is provided at specific scale level to show the separation of ROC
curves.

with a cluster size threshold of 3 read pairs (c = 3) with-
out employing the downstream MVM threshold, the BWA-
MEM workflow retained 48 more true positive read pairs,
yet 597 less false positive pairs were carried forward com-
pared to Bowtie2 (Table 1). The huge discrepancy in TN
values displayed is because Bowtie2 called far more false
pairs that were then removed by clustering.

Processing the simulated data with the SV detection tool
GASVPRO and default parameters led to worse perfor-
mance than did processing these data with our method. The
tool made no false positive predictions, but even though
861 translocation clusters were simulated, only 19 of these
were called (Table 2). Further investigation revealed that ap-
plying just the BAMToGASV module of the tool, which
is meant to separate and categorize read pairs, removed a
higher number of true-positive pairs than applying our en-
tire workflow with strict parameters (Table 2). Processing
discordantly mapping read pairs with the SV detection tool
Hydra in combination with the Novoalign alignment soft-
ware produced a performance similar to digit. Hydra picked
up 8 more true clusters than digit, yet called 17 more false
clusters. Nonetheless, both tools were in high agreement, a
total of 1036 merged clusters were called by both digit and
Hydra at the same time, 149 clusters were solely called by
hydra and 123 clusters were solely called by digit.

Data from real samples

Three patients (TCGA-AA-A00U, TCGA-AG-A01N,
TCGA-AG-A011) from the Cancer Genome Atlas colorec-
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tal cancer genome sequencing project were selected (18).
These samples were selected because they contain validated
shared translocation between chr2 and chr11 which created
NAV2-TCF7L1. Three tumour and three normal samples
were processed each with the standard workflow for digit.
From these patients, a total of eight translocations in
tumour samples were validated and reported in the original
paper. Out of these eight independent events, digit recovers
three events (a common translocation between NAV2
and TCF7L1) (Table 3). Interestingly, this translocation
was also detected in two normal samples (AG-A011 and
AG-A01N). Moreover, utilizing the ‘ficore’ module this
translocation was also found to be present in two additional
samples (patient 4 and 23) from the intellectual disability
dataset.

In addition to the validated TCGA dataset, we applied
our approach to a mate pair sequencing dataset from lung
cancer samples. To achieve a high enrichment in true pos-
itive events, we processed real data with a MAPQ filter
threshold of 23. Applying this filter still left a high number
of ambiguously mapping read pairs (according to MVM)
in the set of discordant read pairs. Clustering of discordant
pairs removed more than 85% of the read pairs in all real
data samples (Supplementary Figure S3A). Over 99.5% of
read pairs were removed in the majority of samples. Apply-
ing the MVM filter to the remaining pairs further removed
20 to 60% of candidate discordant pairs for most of the sam-
ples (Supplementary Figure S3B). Notably, MVM distribu-
tions consistently produce two main peaks, one 1.0 proxi-
mal and one 1.0 distal. The generated threshold for reject-
ing discordant read pairs always fell between the two peaks
and thus allowed the separation of high-confident discor-
dant pairs from potential artifacts (Supplementary Figure
S4).

A total of 328 translocation calls were shared between
two or more samples and were not exclusive to cancer.
While most of the detected events were present in only a
few samples, a small subset of 11 events were picked up
in more than 50% of all samples, the most frequent ones
being found in 51 out of 53 samples. These exceptionally
high frequencies suggest a common structural variant and
potentially point towards incompleteness in the reference
genome. Thirteen candidate translocations may potentially
be disease-relevant because they occurred more frequently
(1.6× higher or more) in cancer samples (Table 4). Out of
these, a putative translocation involving RBMS2 and FSIP1
has the highest number of supporting samples. A translo-
cation between these two genes has also been detected in
bladder cancer in a previous study (19).

When comparing translocations that exclusively occurred
in cancer samples (Figure 3B) with all other detected
translocations (Figure 3A) two different profiles emerged,
separating potential cancer-specific events from common
germline events. Out of the set of cancer-specific translo-
cations, 158 events were found only in one sample. With
a range from 0 to 6, most samples exhibited only a few
translocations that were unique to them. Three cancer sam-
ples, however, exhibited a high frequency of unique translo-
cations (12, 19 and 74) and accounted for 66% of the cancer
specific, unique translocations.

Sixteen translocations were detected in two or more can-
cer samples but were not found in any normal sample (Ta-
ble 5). Particularly striking was a translocation involving
ENOX1 that was detected in 17 individual cancer samples,
corresponding to 50% of cancer samples included in this
study. The second most frequent event was detected in only
seven cancer samples. Other specific events were found in
only a small number of lung cancer samples.

We identified ENOX1 as a target of two different
translocations (TYRO3 and ETFA) in cancer samples
and non-cancer germline samples. A Blat search revealed
that the breakpoint cluster in normal and cancer sam-
ples (chr15:41559194–41579030) mapped to TYRO3 ex-
ons, whereas the breakpoint cluster in cancer samples
(chr15:76259498–76261344) also mapped to the TYRO3P
gene within the intron of the ETFA gene. TYRO3P is a
retrotransposed pseudogene of TYRO3, and the sequence
identity between them is 95%. These results indicate that the
ENOX1-TYRO3 and ENOX1-ETFA/TYRO3P transloca-
tions in normal and cancer samples are most likely a
retrotransposition of TYRO3P to the intronic sequence of
ENOX1 (Figure 4A and B). These results support prior
studies indicating a potential retrotransposition of TYRO3
mRNA to ENOX1 (20,21).

The site chr12:55388434–55390509 was targeted by two
different, proximal translocations. We found that two parts
of the same region chr2:177970354–177989400 were sepa-
rated by a long transposon element in the reference, which
was not present in the samples, thus leading to two different
translocation clusters. This finding suggests that a transpo-
son jump might have occurred in the cancer samples at this
position. Most reported sites involved in multiple translo-
cations were linked to multiple other sites of the same chro-
mosome exclusively in one cancer sample. The biggest of
these, chr14:66080971–66102231, was linked to seven dif-
ferent regions on chromosome 11 that are anywhere from
several kilobases to several megabases apart and do not pos-
sess a uniform sub-region of high similarity (Figure 4C).

The non-cancer samples, subjects 22–25 from Vergult
et al. (12), contained at least four previously validated
translocations. All of these were picked up by the pipeline
with the exception of one in patient 25 that was also not de-
tected through mate-pair sequencing in the previous study.
Upon further investigation, we confirmed that no read pair
in the entire dataset was mapped to the breakpoint proxi-
mal regions, suggesting that this false negative result is due
to coverage and thus cannot be detected.

DISCUSSION

Interchromosomal translocations play an important role in
the evolution of species and the origin and perpetuation of
diseases. One of the most successful strategies for detect-
ing translocations is the analysis of PE sequencing data. At
present, most of the available software methods for detect-
ing translocations struggle with high false-positive ratios
and are unable to separate disease-associated events from
frequent germline events.

The results from the simulated data set indicate high sen-
sitivity and specificity in detecting simulated structural al-
terations using our pipeline. It is important to note that the
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Table 3. Recovery of validated translocations

Sample Validated (hg19) Validated LO (hg38) Reported with digit (hg38) Genes

AG-A011 normal chr11:19861136–19861284 NAV2
chr2:85190897–85191005 TCF7L1

AG-A011 tumour chr11:19839258 chr11:19817712 chr11:19861226–19861273 NAV2
chr2:85271685 chr2:85044562 chr2:85190825–85190919 TCF7L1

AG-A01N normal chr11:19861223–19861284 NAV2
chr2:85190947–85191002 TCF7L1

AG-A01N tumour chr11:19839345 chr11:19817799 <not detected> NAV2
chr2:85271681 chr2:85044558 TCF7L1

AA-A00U normal <not detected> NAV2
TCF7L1

AA-A00U tumour chr11:19839255 chr11:19817709 chr11:19861142–19861261 NAV2
chr2:85271695 chr2:85044572 chr2:85190864–85191004 TCF7L1

TCGA-validated translocation recovered by digit. Note that the chromosomal coordinates differ between publications due to different reference genomes
being utilized. Validated LO coordinates refer to coordinates obtained via the LiftOver tool of the UCSC Genome Browser website. Discrepancies in
detection are hypothesized to be due to split read methods that were used in the original paper and a read pair strategy that was used in this study.

Table 4. Candidate germline translocations enriched in lung cancer patients

Cluster region associated with the discordant pairs
# of
samples Read pair orientation

Genes associated with the
discordant pairs EFTO

Mate A Mate B + + - - + - - + Mate A Mate B

chr12:107278274–107285305 chr13:31753921–31754755 6 5 14 3 1 RXFP2 NA
chr12:107803248–107815383 chr7:111413075–111413610 16 2 0 41 54 IMP2 NA
chr12:56595913–56596233 chr15:39694170–39710585 31 3 4 151 124 RBMS2 FSIP1 Opposite strand
chr13:63058399–63067726 chrUn KI270750v1:263–11376 15 0 0 84 0 NA
chr13:60886945–60888114 chr5:21895992–21907889 5 2 49 3 0 CDH12 NA
chr17:51892842–51904703 chr4:128043829–128044201 5 2 1 10 6 CA10 NA
chr3:188007898–188019724 chr6:92386951–92387267 5 6 20 0 0 NA
chr11:82153583–82169326 chr9:35883770–35884048 24 1 0 4 152 MIR4300HG NA
chr1:234211420–234218167 chr1 KI270764v1 alt:44068–46168 14 0 0 0 90 SLC35F3 NA
chr11:108704670–108724452 chr13:21153592–21176428 14 16 18 244 150 DDX10 SKA3 Opposite strand
chr10:59142644–59143107 chr7:82150071–82167472 18 123 112 4 3 CACNA2D1 NA
chr11:56382572–56388050 chr11 JH159136v1 alt:187006–194283 9 0 0 0 42 OR8U8 NA
chr13:43489400–43501681 chr15:41559194–41579030 17 173 118 0 0 ENOX1 TYRO3 Same strand

Translocations classified as potential predispositions. Entries are presented in the order of relevance. The first entry was 2.5 times more prevalent in cancer samples than in normal samples, while the last entry
was 1.6 times more prevalent in cancer samples than in normal samples. Translocations printed in bold contained a site that was also targeted by other translocations. Expected Fusion Transcript Orientation
(EFTO) is inferred from (i) read pair orientation and (ii) coding strand of the genes involved in a potential fusion. It specifies whether we would expect transcripts of these genes to originate from the same
or opposite strand after the fusion. NA means not applicable.
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Figure 3. Circos diagram of different translocations picked up in the analysed samples. Called events were separated into two groups. (A) Events either
exclusively picked up in the control population or in both cancer and controls population. (B) Events exclusively picked up in cancer samples. Both groups
depict clearly distinguishable patterns. The high amount of structural variations (SVs) not specific to cancer characterizes frequent germline SVs.
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Table 5. Candidate translocations that occur in multiple samples but exclusively in the cancer population

Cluster region associated with . . . # of Read pair orientation Cluster overlapping with . . . EFTO

Mate A Mate B Samples + + - - + - - + Mate A Mate B

chr13:43489399-43506156 chr15:76259498-76261344 17 0 0 29 68 ENOX1 ETFA, (TYRO3P) Same strand (Opposite
strand)

chr12:55388434-55390509 chr2:177983324-177989400 7 0 0 96 0 PDE11A NA
chr1:71894209-71895396 chr2:102295043-102303870 5 0 0 42 2 NEGR1 NA
chr5:116108335-116112650 chr7:111592193-111592727 5 0 0 27 0 COMMD10 NA
chr12:2744110-2754341 chr9:78316976-78317473 4 0 0 3 15 PSAT1 NA
chr18:71946509-71952177 chr2:143253210-143253556 4 10 8 0 0 ARHGAP15 NA
chr19:46832197-46841666 chr2:201281686-201281914 4 3 13 0 0 AP2S1 CASP8 Same strand
chr1:113503314-113503663 chr9:113242647-113255579 3 0 0 3 10 MAGI3 SLC31A1 Same strand
chr10:100094493-100095051 chrX:91074736-91082921 3 11 2 0 0 NA
chr16:22075484-22081398 chr4:7943250-7953028 3 0 0 9 13 C16orf52 NA
chr1:57128756-57137730 chr16:59177791-59178005 2 4 3 0 0 DAB1 NA
chr1:66986787-66987441 chr16:77752613-77757959 2 2 3 4 4 MIER1 NA
chr1:218710003-218711094 chr3:25050709-25063963 2 0 0 38 28 MIR548F3 NA
chr12:55388594-55390012 chr2:177970354-177972635 2 0 0 0 6 PDE11A NA
chr12:16814983-16819147 chr4:2939789-2939995 2 0 0 6 1 NOP14 NA

Translocations classified as specific. Clusters in this category were solely observed in cancer samples but not in normal samples. Translocations printed in bold contained a site that was also targeted by other
translocations. Expected Fusion Transcript Orientation (EFTO) is defined the same way as in Table 4.

Figure 4. Sites targeted by multiple translocations. (A) TYRO3 is located on the q-arm of chromosome 15 at 41 Mb position whereas the pseudogene
TYRO3P is located on the same arm at 76 Mb position within an intron of ETFA gene. Intronless TYRO3P shares two regions of homology with TYRO3
coding sequence (1–719 bp of TYRO3P align to 1791–2518 bp of TYRO3 and share 91% identity; and 776–860 bp of TYRO3P align to 2516–2602 bp
of TYRO3 and share 99% identity), indicating that TYRO3P likely arises from the retrotransposition of a TYRO3 transcript. (B) The high frequency of
read pairs supporting ENOX1-TYRO3 or ENOX1-TYRO3P/ETFA translocations observed in normal and lung cancer samples in this study suggests the
misclassification of variant due to incompleteness of the reference genome. The discordant reads likely come from the undocumented retrotransposition of
TYRO3 (TYRO3 ps2) to the ENOX1 locus in the reference genome. Since this new putative retrotransposition is not documented in the reference genome,
read pairs coming from this region of interest will not have proper mapping of one of the mates. This conclusion is consistent with recently reported
retroCNV insertion of TYRO3 mRNA at ENOX1 loci (Accession number: nssv1607697) (20,21). (C) The biggest site involved in multiple translocations
exclusively in one cancer sample. The colours represent cluster regions of the same translocation. The regions on chromosome 11 are within genic regions
and do not possess significant similarities between each other whereas the regions on chromosome 14 contain MER52D (ERV1 family) retrotransposon
sequence.
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MVM score distributions of discordant pairs in the simu-
lated data set are less complex than in real data because the
current reference genome (GRCh38) was used to generate
the simulated data set. Thus, we expect that the classifier
behavior under real conditions might be slightly lower than
suggested by the simulated data.

In our simulated dataset, we simulated read depth com-
parable to the real world dataset obtained from cancer
mate-pair sequencing. Using this read coverage level, we re-
covered 96% of simulated breakpoints. Unrecovered break-
points are due to the lack of simulated read pairs flanking
the breakpoints. We expect that increased coverage will im-
prove the recovery rate. In addition, from the fairly small
intellectual disability libraries to the high coverage Illu-
mina Platinum Genome trio, digit managed to detect inter-
chromosomal variation events in various samples from dif-
ferent backgrounds with vastly different library sizes. This
suggests that the software capable of recovering relevant
translocations from a wide range of samples with different
read coverages. Even though low read coverages can make
cluster size as a selection criterion unviable, the MVM filter
still provides an opportunity to remove a large amount of
false positives and make more accurate predictions.

Our method outperformed GASVPRO and recovered
simulated SVs with excellent sensitivity and specificity. In
addition, digit successfully recovered validated, true posi-
tive events in real data. These results indicate that the MVM
we implemented in digit is capable of discovering SVs from
next generation sequencing data. The high degree of read-
pairs removed by the filters of our pipeline in real data sug-
gests that many artifacts are indeed present in all the sam-
ples and that there is a need to remove false positive events.
Our analysis indicates that MAPQ filtering is not sufficient
to remove most of the false positive events. Considering that
many true positive pairs were also removed by MAPQ filter,
it should be used with caution in translocation detection.

We also found that BWA mem performed better than
Bowtie2 as the primary aligner. BWA mem alignment pro-
duced far fewer erroneous discordant pairs compared to
Bowtie2. Despite the high rate of erroneous discordant
pairs with Bowtie2 alignment, the digit workflow correctly
filtered them out by MAPQ, cluster size and MVM score
filtering steps. The subsequent MVM step (after the cluster
size threshold) correctly rejected additional 421 out of 2318
(18.2%) read pairs as false events, yet wrongly rejected ad-
ditional 1346 out of 21 194 (6.4%) read pairs of true events.
This demonstrates that both filters are synergistic and can
be used to enrich read pairs from true events. In scenarios
where this approach is too conservative, the digit workflow
can be modified to either lower the MVM threshold or re-
move the MVM filtering step but keep the rest of the work-
flow intact, since the upstream pre-processing and down-
stream ‘ficore’ analysis are independent of the filters em-
ployed.

With the BWA mem alignment, after the cluster size fil-
tering, the subsequent MVM step with the MVM threshold
of 0.005 correctly rejected additional 70 out of 1721 (4.1%)
read pairs from false events, yet wrongly rejected 1011 out
of 21 242 (4.8%) read pairs from true events for the BWA
workflow. These results suggest that using the BWA mem
algorithm does indeed improve the analysis and also reduce

the utility of the MVM filter. The MVM filter might still be
useful in this modified workflow when a less stringent, lower
MVM threshold (≤0.0005) is employed or, as discussed in
the next paragraphs, when low coverage makes the use of
cluster size as a filtering technique not suitable.

The results also highlight the fact that the digit workflow
still performs well regardless of the choice of primary align-
ment software and optional filtering steps. These results
provide strong evidence that the upstream and downstream
processing steps implemented in the digit tool are valid and
useful when trying to identify inter-chromosomal variation
events. It should also be noted that the BWA mem algo-
rithm was designed for read lengths bigger than or equal
to 70 bp. Therefore, the MVM strategy implemented in the
digit workflow is relevant for shorter read lengths such as
50 bp where BWA mem algorithm may not be suitable.

It is important to note that our current studies are limited
to DNA sequencing from fresh frozen tissue samples. Since
MVM score filtering is based on mismatches in the aligned
reads, low sequencing quality or sequencing artifacts from
formalin-fixed tissue samples may affect the MVM score
and the discovery performance. However, we observed that
the use of BWA-MEM as the primary aligner alleviated the
need to use MVM score filtering. Therefore, if MVM score
filtering severely affects the recovery of translocation events
from low quality/degraded input DNA, it may be possible
to skip MVM score filtering by using BWA-MEM as the
primary aligner.

The ‘ficore’ module finds common regions of puta-
tive translocation events from all samples and provides a
mean to document whether these events are also found
in germline samples (if they are included in the analy-
sis). Therefore, this module can be used to discover not
just cancer-specific events but also germline events and
this module will aid in better characterization of germline
SVs in human population. It should be noted that pu-
tative translocation events discovered through digit could
be complemented with fusion detection approaches from
RNA-seq (such as Fusion Hunter (22), DeFuse (23), etc.)
to fully characterize the effect of translocations in the can-
cer genomes. The fact that even with a limited number of
samples, 328 common translocation calls could be identified
and separated from cancer-specific events is a testament to
the pipeline’s ability to successfully classify trait-associated
events and reveal translocation diversity in different groups
in the study. Although common structural alterations are
not reflected in the current reference genomes, these events
may be separated from disease-associated events in the long
run by using the pipeline’s group comparison feature. Due
to the limited sample size and coverage-associated effects,
the documented library of common events in this study
cannot be considered complete. Thus, it is still question-
able whether all cancer-specific translocation calls are clas-
sified correctly. Provided that more samples could be pro-
cessed and incorporated into a database over time, we ex-
pect that calls will become increasingly reliable as more
common events are identified and documented.

Shared sites involving multiple translocations in lung
cancer samples seem to be associated with more complex
events such as retrotranspositions or potential chromoth-
ripsis. Recent studies by Helman et al. (24) and Tubio
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et al. (25) documented somatic retrotransposition in can-
cer genomes. Massive genomic rearrangement due to a
single catastrophic event, known as chromothripsis, has
also been described in cancer genomes (26). In addition,
several cancer-specific translocations, such as BCR-ABL,
TMPRSS2-ERG and others are well documented for their
roles in pathogenesis of various cancers (7,27–29). The digit
pipeline might prove to be a valuable platform to investigate
these types of events in cancer genomes.

Our analysis also revealed that some of the com-
mon translocation events, such as ENOX1-TYRO3 and
ENOX1-ETFA/TYRO3P, are likely to be undocumented
retrotransposition events and unlikely to be cancer spe-
cific. This conclusion is supported by evidence provided in
the Supplementary Table S2 by Schrider et al. which re-
ported TYRO3 retrotranslocation to the intron of ENOX1
in several individuals (21). Therefore, putative translocation
events discovered through mate-pair and pair-end sequenc-
ing of genomic DNA should be checked against known
retro-transposition sites to minimize false discovery.

In conclusion, the provided tool successfully identifies
and categorizes translocations present in pair-end and
mate-pair sequencing datasets. Cluster properties such as
orientation, localization, read count, associated samples or
groups and shared target sites help to characterize the na-
ture of detected translocations. Since the MVM filter is also
included as a standalone module, it can even be easily inte-
grated into other established workflows of research groups
who prefer to keep using their own custom pipelines. With
the added benefit of self-improvement through the dynamic
generation and update of a common event library, our tool
will be helpful for genomic studies focusing on the char-
acterization of translocations associated with various traits
and diseases.
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