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Abstract

Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in
the western world. In the present study, we compared the individual protein expression patterns from histologically
characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-
dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118
protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were
analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could
clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a
systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as
well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected
shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for
further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with
altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in
PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.
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Introduction

Prostate cancer (PCa) is currently the leading cancer among

men in western countries [1]. Autopsy studies have revealed that

approximately 30% of men over the age of 50 years and 80% of

men in their 70s have microscopic evidence of prostate cancer

[2,3]. In the year 2007 in the United States, an estimated 218,890

new cases diagnosed and 27,050 men died of PCa [4]. The (early)

detection rate and thus the incidence of PCa has risen dramatically

due to the introduction of PSA screening. Nonetheless, determi-

nation of serum PSA exhibit some major limitations, as elevated

levels closely correlate with both hyperplasia and cancer.

Two-dimensional gel electrophoresis (2DE), a powerful tool

used for protein separation and expression profiling is one of the

core technologies in proteomics [5,6]. Protein expression analysis

of patient materials are informative led to the identifying cancer

specific markers for diagnosis, therapeutic targets and is the basis

for revealing various cellular events associated with cancer

progression [7]. To date, several research groups have already

performed protein and gene expression profiling studies on

surgical and biopsy PCa specimens [8–12] but most of the

potential reported markers are not in clinical application for

definitive diagnosis of PCa. However, previous studies focussed on

interindividual comparisons of proteomic analysis of radical

prostatectomies from cancer patients to those of non cancer

patients with conventional 2DE. Intraindividual analysis of tumor

and benign tissue samples (adjacent to tumor) from the same

cancer patients may reduce technical variability and thus provide a

means to increase specificity of the results and to increase chances

to identify specific disease-associated protein alterations.

In the present study, we investigated the comparative proteome

of prostate cancer and its adjacent histological benign tissue from
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cancer patients with definitive pathological characterization in our

2-D differential in-gel electrophoresis (DIGE) system for protein 2-

D electrophoresis [13] and MALDI-TOF-MS/MS for protein

identification. The differentially expressed proteins were analysed

by MetaCoreTM (Gene GO) and Ingenuity Pathway Analysis

program (Ingenuity Systems). The major hubs of significant sub

networks were validated by real-time PCR analysis. Systems

biology network analysis might provide the potential role of

proteins in different regulatory pathways that control PCa

progression and predict new biomarkers, which can be further

validated using Western blotting and immunohistochemical (IHC)

approaches.

Materials and Methods

Clinical Samples and Ethics Statement
Tissue samples and patient data were obtained with informed

written consent. The study was approved by the Ethics

Committee of the University Hospital Hamburg Eppendorf

and carried out in accordance with the declaration of Helsinki.

For protein expression analysis whole prostates were collected

after radical prostatectomy from patients with elevated PSA

values and preoperative pathological examination at Martini

Clinics, Hamburg, Germany. Patients received no preoperative

therapy. 24 patients were selected and the corresponding

clinical and pathological data is provided are in Table 1. The

serum PSA levels of these patients were determined and all

patients had a range between 3.9 and 30.4 ng/ml (mean PSA

value = 10.93 ng/ml) and a Gleason score between 3+3 and 4+5

[14,15].

After radical prostatectomy samples were frozen in liquid

nitrogen until use. Tumor and benign areas were marked on the

sections. We employed manual micro dissection method to obtain

pathologically characterized materials for our proteomics ap-

proach. The corresponding areas on the remaining blocks were

sliced out with sharp knife, embedded in Tissue-tekH and stored at

280uC until use.

Protein isolation and labelling with CyDyes
Tissue was rinsed with physiological saline (0.9% NaCl) to

remove residual mounting materials, marking dye and blood. The

sliced tissues were directly homogenized in DIGE lysis buffer

(30 mM Tris, 2 M Thio urea, 7 M Urea, 4% CHAPS; about

0.5 mL/200 mg tissues). The resulting homogenate was cleared to

remove all debris by centrifugation at 12,000g for 15 min at 4uC,

the protein supernatant was collected and its protein concentration

was determined by a modified Bradford assay [16]. The quality of

the samples for DIGE was evaluated by mini 2DE (7 cm IPG

strips, pH 4–7). The protein lysates were labelled with Cy Dyes

according to the manufacturer’s protocol for minimal labeling

(CyDye DIGE Fluor minimal dyes, GE Healthcare). In order to

minimize dye-specific labeling artifacts, Cy3 and Cy5-labeling

patterns were swapped among the same group of samples. An

internal standard pool with equal amounts of each protein sample

(25 mg) was used to reduce inter-gel variation. The pooled internal

standards were labelled with Cy2. 50 mg protein of each sample

Table 1. List of patients included in the proteomic study together with their PSA levels, histology grading and tumor stage.

S. No Patient No. Tumor satge Gleason Score Pre operative hormone therapy Pre operative PSA

1 T 4850 pT2c 3+4 NA NA

2 T 4484 pT2c 3+4 No 8.6

3 T 2443 pT2c 3+3 No 7.9

4 T 2258 pT2a 3+3 No 3.9

5 T 3969 pT3b 4+3 No 30.4

6 T 3972 pT2c 3+4 No 13.77

7 T 2621 pT2c 3+4 No 7.53

8 T 2266 pT2a 3+4 No 5.53

9 T 3455 pT2c 3+3 No 5.5

10 T 2620 pT2c 4+3 No 9.51

11 T 4486 pT2c 3+4 No 29.41

12 T 2267 pT3a 3+4 No NA

13 T 3974 pT3a 4+5 No 6.3

14 T 2437 pT2c 4+3 No 11.2

15 T 4167 pT3a 3+4 No 5.33

16 T 3132 pT2c 3+4 No 13.56

17 T 2442 pT2c 3+4 No 18.8

18 T 2933 pT2c 4+3 No 7.09

19 T 2259 pT2c 3+4 No 8.9

20 T 2936 pT2c 3+4 No 4.19

21 T 2434 pT2c 3+4 No 10.3

22 T 4766 NA NA NA NA

23 T 3982 NA NA NA NA

24 T 36126 NA NA NA NA

doi:10.1371/journal.pone.0016833.t001
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was labelled with 400 pmol of corresponding dye on ice in the dark

for 30 min. Reaction was quenched/stopped with 10 mM L-lysine

for 10 min under the same conditions.

DIGE-Two-dimensional gel electrophoresis (DIGE-2-DE)
The first dimension isoelectric focussing was carried out by

using 24 cm immobilized pH gradient dry strips (IPG) with a

linear pH 4–7 gradient. For analytical gels, a pair of Cy3 and Cy5

labelled samples (each 50 mg of protein) and 50 mg of Cy2 labelled

internal standard were pooled and filled up to 150 ml with 26
sample buffer (7 M urea, 2 M thiourea, 4% CHAPS, 2% DTT)

supplemented with 2% (v/v) IPG buffer pH 4–7). For rehydration,

dilute samples with 26rehydration buffer (8 M urea, 4% CHAPS,

13 mM DTT) supplemented with 1% (v/v) IPG buffer pH 4–7

and few grains of Bromophenol blue) to final volume of 450 ml.

IPG strips (24 cm, pH 4–7, GE Health Care) were passively

rehydrated overnight at 20uC in IPGPhor cassettes. For

preparative gels, 750 mg of unlabelled protein pooled from equal

amounts of samples was used. Proteins were separated by the

PROTEAN IEF system (Bio-Rad) using a programmed voltage

gradient at 20uC with a current limit of 50 mA per strip in the dark

under the following conditions: 4 h at 250 V, 8000 V linear

gradient to 15000 V hrs, rapid 8000 V to 75000 V hrs, for a total

of 90 kVh. After IEF, the IPG strips were equilibrated in buffer 1

(50 mM Tris-HCl pH 8.8, 8 M urea, 30% glycerol, 2% SDS and

0.5% DTT) and buffer 2 containing 4.5% iodoacetamide instead

of DTT in each case for 15 minutes.

Second dimension was performed in PROTEANH Plus

DodecaTM Cell system. The equilibrated strips were applied to

the top of 12.5% SDS-PAGE gels and sealed with 1% agarose

prepared in SDS-Tris-glycine buffer with traces of bromophenol

blue as a tracking dye to monitor electrophoresis. Polyacrylamide

gels (12.5%) were cast in low fluorescence glass plates. Electro-

phoresis was performed with constant voltage (80V) at 20uC until

the dye front reached the bottom of the gel. The complete

apparatus is protected from light. Following electrophoresis,

analytical gel cassettes were washed with ddH2O and wiped with

dust free tissue paper. The Cy2 (internal standard), Cy3 and Cy5

labelled proteins in each gel were visualized by using a Typhoon

9400TM laser scanner (GE Healthcare) at 100 microns density by

using different excitation and emission wavelengths directly from

gels between glass plates. Optimal excitation/emission wave-

lengths for fluorescence detection are 488/520 nm for Cy2, 532/

580 nm for Cy3, and 633/680 nm for Cy5. Preparative gels were

stained with RotiH-Blue, a colloidal coomassie brilliant blue G250

stain. Briefly, gels were fixed in 40% methanol, 15% acetic acid for

at least 4 hrs and then immersed in colloidal staining solution

overnight. To remove background staining gels were washed in

20% methanol.

Image analysis
Delta 2D differential analysis software version 4.0 (Decodon

GmbH, Germany) was used in this study. For individual gel

analysis, spots were detected, quantified and normalized according

to the volume ratio of corresponding spots detected in the Cy2

image of the pooled-sample internal standard using the internal

standard module. All normalized spot quantities from the gels

were collectively analyzed as two independent groups ‘‘Tumor’’

and ‘‘Benign’’, which enables matching of multiple gel images

from different patients to provide statistical data on average

abundance for each protein spot among the DIGE gels included in

analysis. Three gels from benign group were excluded from

analysis due to the problem in DIGE labelling. Student’s t-test was

performed to assess the statistical significance of differentially

expressed proteins. Based on average spot volume ratio, spots

whose relative expression is changed at least 1.5 fold (increase or

decrease) between benign and tumors at 95% confidence level (t-

test; p,0.05) were considered to be significant. For subsequent

mass spectrometry analysis significant spot coordinates were

transferred to coomassie stained preparative gel for spot picking.

Mass spectrometry
Preparation of peptide mixtures for MALDI-TOF-MS/

MS. Protein identification was performed as described recently

[11]. Briefly, proteins were excised from Colloidal Coomassie

Brilliant Blue stained 2-DE gels using a spot cutter. Digestion with

trypsin and subsequent spotting of peptide solutions onto the

MALDI-targets were performed automatically in the Ettan Spot

Handling Workstation. Gel pieces were washed 50 mM

ammoniumbicarbonate/50% (v/v) methanol and with 75% (v/v)

ACN. After drying trypsin solution containing 20 ng/ml trypsin in

20 mM ammoniumbicarbonate was added and incubated at 37uC
for 120 min. For peptide extraction, gel pieces were covered with

50% (v/v) ACN/0.1% (w/v) TFA and incubated for 30 min at

37uC. The peptide containing supernatant was transferred into a

new micro plate and the extraction was repeated. The

supernatants were pooled and dried completely at 40uC for

220 min. Peptides were dissolved in 0.5% (w/v) TFA/50% (v/v)

ACN and spotted on the MALDI-target. Then, matrix solution

(50% (v/v) ACN/0.5% (w/v) TFA) saturated with CHCA was

added and mixed with the sample solution by aspirating the

mixture five times. Prior to the measurement in the MALDI-TOF

instrument, the samples were allowed to dry on the target 10 to

15 min.

MALDI-TOF-MS. The MALDI-TOF measurement of spotted

peptide solutions was carried out on a 4800 MALDI TOF/

TOFTM Analyzer. The spectra were recorded in reflector mode

in a mass range from 800 to 4000 Da with an internal one-point-

calibration on the autolytic fragment of trypsin (mono-isotopic

(M+H)+ m/z at 2211.104, signal/noise $10). Additionally

MALDI-TOF-MS/MS analysis was performed for the 5

strongest peaks of the TOF-spectrum after subtraction of peaks

corresponding to background or trypsin fragments. The internal

calibration was automatically performed as one-point-calibration

if the mono-isotopic arginine (M+H)+ m/z at 175.119 or lysine

(M+H)+ m/z at 147.107 reached a signal to noise ratio (S/N) of

at least 5. After calibration a combined database search of MS

and MS/MS measurements was performed using the GPS

Explorer software v3.6 (Applied Biosystems, Foster City, USA).

Peak lists were compared with the SwissProt rel.49 restricted to

human taxonomy or IPI human v3.12 database using the Mascot

search engine 1.9 (Matrix Science Ltd, London, UK). Peptide

mixtures that yielded at least twice a mowse score of at least 56

for SwissProt or at least 59 for IPI database results were regarded

as positive identifications.

Bioinformatics analysis of the proteomic data
The significant differentially expressed proteins and their

respective biological functions or relationships were determined

using the KEGG database (http://www.genome.jp/kegg/) and

Entrez protein database (http://www.ncbi.nlm.nih.gov/sites/

entrez?db = protein) from NCBI. Protein networks for analyzing

shortest pathways between the identified proteins were built by

MetaCoreTM (Gene GO) software and Ingenuity Pathways

Analysis (IPA) program (Ingenuity Systems) for identifying

molecular partners involved in particular disease. A master global

network of all differentially expressed proteins (input objects) was

created according to published literature-based annotations, and
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then the further sub networks were built from the master network

to focus on activated experiments and/or pathways. Major hubs

were identified based on the connections and edges with in the

network. The protein expression data was analysed by hierarchical

clustering and partition analysis with R-language to find potential

markers which can classify all samples as tumor and benign with

high certainty. The unsupervised clustering was performed using

Euclidean distance measure and the agglomeration method

‘average’ of the log transformed values of all significant

differentially expressed proteins of 45 samples included in the

analysis set.

Lukk et al. showed that genome-wide differential expression

between tumors and control tissue can be characterized using

principal component analysis (PCA) by means of a malignancy

parameter which characterizes coherent differential expression

patters which are associated with tumor formation. In order to

analyze the impact of co-regulation of protein expression on

biomarker identification, unsupervised PCA has been applied on

the protein expression data (normalized on logarithmic scale), both

from tumor and normal tissue samples. The PCA was performed

in Matlab [The Mathworks Inc, Version 14]. The resulting

principal components of PCA are weighted means of the single

protein expressions, where the weights are automatically identified

such that the main variation of protein expression in the data set

can be explained by the first few principal components.

In order to avoid spurious results from outliers, a two step

approach was applied, where in a first step PCA was applied on

the original data. The outlier detection was applied on the

expressions of the principal components. In the second step the

PCA was performed without the outliers. The resulting expression

values for the stabilized principal components where used for

further analysis. In order to analyze the ratio of information with

respect to differential expression which is represented by the first

three principal components and the residual space, for each

protein the expression values for all tissues, quantified by the

vector xi, where split into two components:

xi~xp,izxr,i

where xp,i is the component of xi which is represented by the first

three principal components of the PCA (S3) and xr,i quantifies the

residual protein expressions in the complementary space CS3

which cannot be represented by the first three principal

components of PCA. In order to check the distribution of

differential expression between both components, for the original

data given by xi, the PCA-based components xp,i, and the residual

Figure 1. Representative 2-DE proteome map of prostate tissue from tumor vs. benign samples. Proteins were resolved by IEF over the
pI range 4–7, followed by 12.5% SDS-PAGE and overlaid by Delta2D. After extraction from tissues, proteins were labeled with Cy3 and Cy5. An internal
standard comprised of equal amount of proteins from all samples (benign and PCa groups) was labeled with Cy2 and included in all gels. The green
spots indicate downregulated proteins, while the red spots indicate upregulated proteins in PCa relative to the corresponding benign tissue. The
identified proteins that showed significantly altered expression in the PCa are indicated with arrows and labeled with the respectives protein IDs.
doi:10.1371/journal.pone.0016833.g001
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components xr,i a two-sided t-test for differential expression

between normal and tumor samples has been performed.

RNA isolation and measurements of gene transcripts of
interests by quantitative real time PCR

Quantitative real time PCR for analysis of transcriptional levels

of proteins of interests was performed using SYBR Green as

described previously. Briefly RNA was isolated from the same

biopsies used for proteome analysis using TRIzolH reagent

(Invitrogen, Karlsruhe, Germany) according to the manufacturers’

protocol. The cDNA was prepared by reverse transcription of 1 mg

total RNA using oligo dTprimer (15mer) and M-MLV reverse

transcriptase (Fermentas Life Sciences GmbH, Germany). Quanti

Tect primers for genes of interest GAPDH (housekeeping gene)

were purchased directly from Qiagen, Germany. Primer sets were

shown to generate a single amplicon of the desired size evaluated

by RT PCR followed by agarose gel electrophoresis. Quantitative

real time PCR was performed in thermal cycler (Stratagene,

Germany) using Dynamo Flash SYBR Green qPCR kit (Finn-

zymes, Finland). PCRs for the target and housekeeping genes were

performed in triplicates and mean relative expression levels were

reported. Conditions for real time PCR reaction were as follows: 1

cycle of 94uC for 3 min and 40 cycles of 94uC for 20 s, 60uC for

30 s and 68uC for 30 s. At the end of the PCR, samples were

subjected to a melting analysis to confirm specificity of the

amplicon. To obtain statistical significance data obtained were

analysed by unpaired student t-test performed and p value,0.05

was considered as significant.

Western blotting
Protein extracts were separated by 12% SDS-PAGE and

electrophoretically transferred onto PVDF membrane. Blocking

was carried out in 16Rotiblock solution (Roth Chemicals)

followed by incubating the membrane with primary antibody

overnight at 4uC. Excess antibodies were removed by washing

with NaCl–Tris–Tween 20. Incubation with secondary antibody

conjugated to horseradish peroxidase [anti-(mouse IgG) or anti-

(rabbit IgG), diluted 1:5000 in 16Rotiblock] was performed for

1 h at room temperature. After three washes, the reaction was

developed by the addition of LumiGLO substrate (Thermo). The

emitted light was captured on X-ray film (GE Healthcare).

Results

2D-DIGE Analysis and mass spectrometry
In this study, we were able to establish a standard procedure for

manual micro dissection of radical prostatectomy samples to

obtain pathologically evaluated tumor and benign tissues for

proteome analysis. Furthermore, we analyzed the proteome of

prostates from 24 cancer patients and their corresponding benign

tissue in 21 cases (Table 1) by 2D-DIGE with the pI range of 4.0–

7.0 and molecular weight range between 10 kDa and 120 kDa.

Under these conditions, a total of 1324 spots were clearly detected

and subsequently analysed using Delta2D software for differential

protein expression. 118 spots were significantly altered in their

abundance among all the samples included in the analysis set and

were selected for further identification. The average abundances of

spots were quantified and those with relative changes in

abundance greater than 1.5 times between benign and tumor

(up or down) at 95% confidence level (p,0.05) were considered as

significant. Interesting spots were excised from preparative gels for

protein identification (ID) by tryptic in-gel digestion and MALDI-

TOF MS/MS analysis. Following a Mascot database search using

the acquired MS data 96 spots of 79 proteins were identified as

differentially expressed in cancer compared to benign tissue. The

spots with protein ID are depicted in Figure 1. Individual proteins

were reflected by multiple spots most likely due to posttranslational

modification leading to shifts in the 2-DE. The proteins identified

were grouped into different classes based on functional informa-

tion available. Most of the identified proteins were either

cytoskeletal proteins, enzymes of intermediary metabolisms, signal

transduction, heat shock proteins, tumor-related proteins, oxida-

tive stress related proteins or proteins of unknown function

(Figure 2B). Details of the protein identifications, protein score,

sequence coverage, theoretical pI value and molecular weight as

well as average relative change are shown in Table S1.

Hierarchical clustering and partition analysis of samples
The Figure 2A displays the clustering result. Higher expressions

are coloured red, the lower ones in green. The samples are shown

in columns and the rows indicate proteins. The dendrograms

represent the distances between the clusters. The tumor and

benign samples do not form two distinct separate clusters.

However, hierarchical clustering revealed one group of very

similar tumor samples (10 samples) form a cluster. These samples

were considered as a tumor subgroup in further analysis. Partition

analysis of the expression values resulted in the finding that a single

protein, PPA2 can classify samples with significance (Fisher test

with p-value 6.682e-09). The tumor subgroup was correctly

classified, one (out of 14) of the remaining tumors was misclassified

as benign and three (out of 21) of the benign samples were

misclassified as tumors (data not shown). Partition analysis results

have also shown many proteins can classify all samples correctly

(Data not shown). In an attempt to assign a PSA specific protein

signature, no direct correlation between PSA and differentially

expressed proteins was observed (Data not shown). Taken

together, more than one protein can distinguish all samples as

they were assigned in the groups.

Principal component analysis (PCA)
A 3-dimensional scatterplot of the first three principal

components of the tissue samples shows a good separation

between tumors and normal tissues (Figure 3A). Moreover,

figure 3B, depicting the logarithmic p-values of the original data

xi for each protein on the x-axis and the components xp,i and xr,i

on the y-axis, shows that almost all differential expression can be

reflected by the PCA-based component (red stars).

Apparently the differential protein expression between tumors

and normal tissues cannot be assigned to one individual protein,

but appears to depend on overall protein expression patterns

which are represented by only three components of the PCA, in

accordance to the results described by Lukk et al. [17]. Hence all

(generic, non-redundant) combinations of at least three proteins

which can be measured with high accuracy should be sufficient to

Figure 2. Cluster analysis and Gene Ontology of differential expressed proteins. (A) Unsupervised clustering (euclidean distance measure
and the ‘average’ agglomeration method) was performed using the log transformed expression protein values of 45 samples. The samples are shown
horizontally, the proteins vertically. The dendrograms represent the distances between the clusters. In the upper color bar, the tumor samples are
marked in red, the normal tissues are shown in green. (B) Biological processes regulated by the all significant differentially expressed proteins
assessed by Gene Ontology search and summarized according to their functions.
doi:10.1371/journal.pone.0016833.g002
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Figure 3. Principal component analysis can separate normal and tumor tissue. (A) Scatterplot of the first three principal components of
PCA from the protein expression data. The blue stars represent the normal tissues, whereas the red stars show tumors. (B) Distribution of information
with respect to differential expression between tumor and normal tissues. Each cross represents a protein. The p-values in two-sided t-test are
represented by the x-axis, whereas the projections (red: projection onto S3, blue: projection onto complementary space) are represented by the
values on the y-axis. Apparently for all proteins with significant differential expression in the original data (log10(p),22) the differential expression of
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establish biomarkers with similar predictive performance, if the

proteins show a significant contribution to the first three principal

components of the PCA. The respective protein set can be selected

according to experimental criteria, non-redundancy and signifi-

cance of correlation to the respective PCA components. Because of

the construction of the principal components of PCA as weighted

means of the expressions of almost all proteins, the principal

components can fill the role of an ‘‘intrinsic noise filter’’. Hence it

is appropriate to express each principal component by the average

expression of a (small) group of proteins in order to benefit from

the intrinsic noise suppression of averaging as well. Figures 3C–D

shows the effect of averaging. The expression of each principal

component has been represented by the average expression of 1–

25 proteins, which have been randomly selected from the set of 38

proteins with highest correlation to each principal component.

Apparently the accuracy and odds ratio depends on the sample

size of the proteins used for representation of the principal

components. The median of the model qualities is in the same size

of the qualities of markers which are based on a biological

rationale, indicating that the differential expression may be

dominated by large scale, strongly co-regulated protein expression

shifts due to tumor formation.

In order to check the expected predictive performance, a logit-

model has been identified using only the first three principal

components of PCA. In cross-validation (leave-one out) the

accuracy of prediction of tumor and normal tissues in the test-

set was 86%. Three (of 21) normal tissues and 3 (of 24) tumor

tissues have been misclassified. The model shows that the tumors

can be split into two groups differing significantly with respect to

their separability from normal tissues (Figure 3E and Table 2).

Statistical tests showed no direct relation of the tumor groups to

the annotated tumor characterizations (Gleason score, PSA

marker etc.). Hence either impact factors aside from protein

expression may contribute to prostate tumor characteristics, or

highly complex, non-monotonic cooperative processes between

the proteins have an impact on tumor status which is not covered

by the principal components of PCA used in the logit regression

model. Functional classification of the 26 identified proteins

the residual component (blue stars) is not significant (log10(p),21), whereas the p-values of the PCA-based components (red stars) are similar to the
original p-values (x-axis). (C–D) Median accuracy and odds ratio of predictive tumor/normal classification. The blue curves show the increase of model
quality by increased sample size used for biomarker model. The red stars show the qualities of the logit model based on the first three principal
components. (E) The output of the regression model (y-axis) indicates the existence of two tumor classes differing significantly according to their
separability. Normal tissues (blue and green boxes) using protein expression.
doi:10.1371/journal.pone.0016833.g003

Table 2. Proteins with significant differential expression between tumor group 1 and tumor group 2 based on PCA.

S.No Gene name Protein name log10(p), 2-sided t-test

1 EIF4A3 Eukaryotic initiation factor 4A-III 29,7068

2 RPSA 40S ribosomal protein SA 28,2847

3 ACTG1 Actin, cytoplasmic 2 28,2063

4 PPP1CA Serine/threonine-protein phosphatase PP1-alpha catalytic subunit 27,9832

5 HSPA5 78 kDa glucose-regulated protein 27,8941

6 HSP90B1 Endoplasmin 27,836

7 EEF1G Elongation factor 1-gamma 27,7305

8 Albu Serum albumin 27,4314

9 TALDO Transaldolase 26,9937

10 CRYL1 Lambda-crystallin homolog 26,917

11 GSTP1 Glutathione S-transferase P 26,7989

12 HSP90AB1 Endoplasmin 26,5476

13 NDRG1 Protein NDRG1 26,1405

14 ACPP Prostatic acid phosphatase 26,0939

15 PDIA3 Protein disulfide-isomerase A3 25,9345

16 PDIA3 Protein disulfide-isomerase A3 25,8639

17 DPYSL2 Dihydropyrimidinase-related protein 2 25,7179

18 PDIA3 Protein disulfide-isomerase A3 25,6059

19 PSMD 26S proteasome non-ATPase regulatory subunit 14 25,5825

20 PPA2 Inorganic pyrophosphatase 2, mitochondrial 25,5641

21 Albu Serum albumin 25,5566

22 NDUFS1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 25,4327

23 C7orf24 Uncharacterized protein C7orf24 25,2732

24 DDAH1 N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 25,2715

25 P4HB Protein disulfide-isomerase 25,1191

26 PGLS 6-phosphogluconolactonase 25,0895

doi:10.1371/journal.pone.0016833.t002
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differentially expressed between both tumor groups are summa-

rized in Figure 4A–C. A total of 70% of the proteins from this

dataset were classified to metabolic processes and more than 60%

were classified to catalytic or binding functions.

Networks analysis of identified proteins in cancer vs.
benign samples

Pathways and networks that involved proteins derived from 2-D

DIGE experimentations differentially expressed in PCa were

analysed using MetaCoreTM, web-based integrative software. The

network architecture represents connections between the individ-

ual proteins (nodes).

In this analysis hubs (key proteins) of protein networks are

proposed to be the key regulatory proteins involved in multicel-

lular processes. The built shortest network (Figure 5A) reveals that

c-Myc, p53, androgen receptor, 14-3-3-epsilon, vimentin, PSA

and estrogen receptor 1 as network hubs. To validate the network,

the highly interconnected hub protein c-Myc mRNA levels

measured from independent set of prostate tissues by real-time

PCR. Results have confirmed overexpression of c-Myc at mRNA

level (Figure 5B) which in turn supports the hypthesis that c-myc

protein levels impact on PCa progression as predicted in network.

However some of the protein objects were not connected to any of

the hubs and shown as unconnected in the network. The

proteomic data is analysed for GeneGo biomarker assessment

and allows matching the input protein list with known disease

profiles consisting of maps, networks and lists of biomarkers known

for a disease. Results revealed that the most of the proteins

predicted markers for prostate cancer (p = 9.421E-09) as depicted

in Figure 5C which supports the current data and provide means

to proceed further with validation of unconnected proteins to

identify clinically relevant targets for diagnosis and/or prognosis.

The nodes with high degrees of connectivity are considered to

be the most important components of a network [18] and due to

the high complexity of the network, we analyzed the shortest

directed paths using the shortest pathways algorithm and we

examined hubs with highest significance.

The functional sub networks were built using MetaCoreTM and

Ingenuity Pathway Analysis tool from the input proteins as root

nodes (Network statistics and Gene Ontology processes are

summarized in Table S2. Sub network figures from MetaCoreTM

analysis were not shown). The most significant sub networks

derived from 50 nodes with AR, SRF and TMPRSS2 as network

hubs involving tumor suppressor proteins UCHL1, NDRG1 and

Par-4. This network may be associated with androgen receptor

signalling pathway and cell differentiation. Especially TMPRSS2

fuses with ERG and Ets family genes such as ETV1, ETV4 and

ETV5 in prostate cancers.

The next significant sub network involves many known proteins

to be associated with PCa which may also provide new target

proteins which need to be characterized further. This network is

probably involved in apoptosis, protein metabolic processes and

Ca2+ signalling pathways. The sub networks derived from the

proteomic data using Ingenuity Pathway Analysis have many

common proteins connected with the important hubs such as AR,

c-Myc, ERS1, Akt/PKB and their role in PCa progression or

potential as disease markers is not known yet (Figure 6A–D).

Protein network analysis and clustering of differentially expressed

proteins revealed new targets such as DDAH1, ARG2, EIF4A3,

Par4, PPA2, Prdx3 and Prdx4, which need further validation to

define their potential application in clinical relevance in prostate

cancer.

Confirmation of differentially expressed proteins in PCa
In order, to further validate highlighted proteins as described in

the previous sections may be useful diagnostic markers and to

confirm the 2D-DIGE results and their transcriptional regulation,

Western Blot and real-time PCR analysis was performed. The 2-

DE protein profile of DDAH1, ARG2, eIF4A3, PPA2, Par-4,

Prdx3 and 4 reveals increase in their abundance in PCa patients.

Validation of these proteins by Western blotting confirmed

significant dysregulation of eIF4A3, ARG2, DDAH1, Par4, Prdx3

and 4 in 79%, 70.1%, 75%, 50.5%, 79%, 70% respectively of

tumors compared to corresponding benign tissues included in

proteomic study; only one representative blot was shown in

Figure 7. The real time PCR results showed significant increase of

amount of mRNA for PPA2, Prdx4 and FKBP4 (Figure 8A–C).

For DDAH1, ARGI2, eIF4A3, PRDX3 and Par4 results have not

Figure 4. Functional classification of differential expressed proteins in different tumor groups. (A) The biological processes, (B)
molecular functions and (C) cellular compartments regulated by the differentially expressed proteins between both tumor groups assessed by Gene
Ontology search.
doi:10.1371/journal.pone.0016833.g004
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shown significant changes in their respective mRNA levels in

tumor compared to benign tissues (Data not shown). Taken

together, this study confirmed the differential regulation of some of

the novel proteins at transcription and/or translational levels in

PCa.

Discussion

The low sensitivity and specificity of current diagnostic methods

for prostate cancer underscores the need for improvement in this

area. Histological investigation is usually performed on multiple

biopsies to distinguish between benign prostate hyperplasia and

prostate cancer. In this study, we focused on proteomic analysis of

pathological characterized tissue specimens to identify new

biomarkers which distinguish PCa from benign prostate tissue.

Previously, conventional 2D gel based proteomic studies on PCa

identified a large number of differentially expressed proteins and

some were reported as potential markers for diagnosis of localized

PCa [11,19–22] but none of these markers have yet been

introduced into clinical practice. As a limitation, many of the

previous studies have been carried to investigate protein

expression patterns between tumor and benign tissue from healthy

controls. Here, we collected cancer and benign tissues from the

same individual prostate gland by manual dissection of frozen

tissue for proteome profiling to avoid inter individual differential

expression of proteins. Moreover, compared to conventional 2DE,

Figure 5. Protein network of differentially expressed proteins in PCa. (A) GeneGO MetaCoreTM was used to generate a network of direct
connections between all identified proteins with altered expression. Red, green, and gray arrows indicate negative, positive, and unspecified effects,
respectively. Many of the identified proteins mapped to AR, p53 and c-Myc pathways involved in PCa progression where as some proteins were not
connected in network. (B) To validate major hubs of the network c-Myc expression at transcriptional level assed by real time PCR from an
independent set of samples. Results showed significant increase in the amount of c-Myc mRNA suggests it may have direct/indirect regulation of its
connected proteins of shortest network. (C) Enrichment of GeneGo diseases by topologically significant proteins identified using all differentially
expressed proteins. Data represents differentially expressed proteins mapped to prostatic neoplasms with highest significance followed by male
genital neoplasms.
doi:10.1371/journal.pone.0016833.g005
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DIGE-based proteomics with fluorescence labelling has many

advantages such as higher sensitivity, reproducibility with linear

dynamic range for better quantitation, and less technical variations

because of a pooled control as internal standard. In the current

study, with the ascendancy of manual micro dissection of the

prostatectomy specimens and 2D-DIGE gel-based proteomics we

focussed to identify novel clinically relevant proteins in PCa.

Our proteomic data on prostate material showed differential

expression of 79 proteins in cancer compared to benign tissue.

Gene Ontology (GO) search for biological processes classified

these proteins to HSP family proteins, signal transmitting proteins,

metabolic enzymes, tumor associated proteins, cytoskeletal and

oxidative stress controlling proteins involved in tumor progression

and dissemination. The list includes many proteins known to be

differentially expressed in PCa. As a proof of principle, we found

PAPP, a known marker protein for prostate cancer [23] to be up

regulated in all PCa samples included in this study. The clustering

of samples based on protein expression data did not lead to clusters

separating benign from tumor specimen but rather identified a

subpopulation of samples that formed a unique cluster. Further

data analysis with partition algorithms to find a protein signature

which can classify all samples with high certainty revealed more

than one protein required in order to define sample identity.

Among them, PPA2 is in line with a recent report on its potential

as a marker for metastasis of PCa [24]. In order to analyze the

impact of co-regulation of protein expression on biomarker

identification, unsupervised principal component analysis (PCA)

has been applied on the protein expression data (normalized on

logarithmic scale), both from tumor and normal tissue samples.

Here, in contrast to the cluster analysis we could detect a clear

separation of tumor from normal tissue and a separation of two

distinct tumor groups based on the individual protein expression

patterns found.

In contrast to the cluster analysis, which aims to identify protein

groups which show high co-regulation inside a group, but no co-

regulation between different groups, PCA is focussed on the

representation of the overall variations in the data without any

grouping of proteins. Hence, PCA gives good performance in

classification of phenotypes with high degree of co-regulated

differential expression including various functionalities, in contrast

to cluster analysis which is superior if only a few pathways or

functionalities are differentially regulated between two phenotypes.

Figure 6. Protein subnetworks of differentially expressed proteins in PCa. (A–D) Protein-protein physical/functional interaction sub
networks generated by Ingenuity Pathway Analysis tool. Grey filled boxes are the differentially expressed proteins. Only significant sub networks were
shown in the figure.
doi:10.1371/journal.pone.0016833.g006
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Because of these complementary features, a combined appro-

ach as presented here can optimize the information retrieval from

the data.

In order to put our proteomics data in a biological context, we used

a systems biology approach (the platform of specific disease related

proteins networks based on the available data bases) as a rational

strategy for the identification of novel specific markers and new

therapeutic targets. The applicability of the systems biology platform

as an approach to biomarker discovery is supported by several

observations [25]. The data obtained with 2D-DIGE from prostate

tissues was uploaded into MetaCoreTM pathways analysis software.

MetaCoreTM generates an interaction network among the identified

proteins and the rest of the protein objects showing physical or

functional interactions (e.g., inhibition, activation, modification). The

complex network data demonstrates a high number of interactions

between differentially expressed proteins and various signalling

proteins. Interestingly, there are 4 central hubs including c-Myc,

p53, AR and PSA in the network with multiple connections to the rest

of the network. These hubs are known to be involved in key cellular

processes or have been identified as potential targets in PCa [26–30].

To validate the resulting network, our real time PCR results

confirmed c-Myc over expression in all samples of this study

(Figure 4B). Therefore, c-Myc may be involved in dysregulation of

the identified proteins in 2D-DIGE coupled mass spectrometry.

Further assessment of the network for biomarker discovery and its

assignment to disease entities in MetaCoreTM platform significantly

scored for prostate cancer. These prediction results together

confirmed that the established differentially expressed proteome

profile matches with the available database.

When complete proteomic data is analysed for pathway mining

the resulting network is highly complex. This led to difficulties in

Figure 7. Western blot analysis of DDAH1, ARG2, eIF4A3,
Prdx3, Prdx4 and PAWR in benign and PCa tissues. Protein
expression identified by western blotting and only representative blots
were shown here. The protein expression levels of the analysed target
proteins have shown their over expression in PCa compared to normal
tissue. GAPDH was used as an internal loading control.
doi:10.1371/journal.pone.0016833.g007

Figure 8. Expression of several protein candidates is regulated
at transcriptional level. Quantitative reverse transcription-PCR of
transcripts (A) FKBP4, (B) Prdx4 and (C) PPA2 shown from benign
prostate tissue (black bars) and localized prostate cancer (grey bars). For
statistical significance unpaired student t-test performed at 95% CI and
p value,0.05 was considered as significant.
doi:10.1371/journal.pone.0016833.g008
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choosing candidate proteins for further validation experiments.

Therefore, we built functional sub networks from the significant

hubs of main network using IPA software. These sub networks

revealed new proteins of unknown function in PCa to be validated

as potential biomarkers. However, their precise role in tumor

genesis needs to be investigated.

In our study the pathway analysis performed with proteomic

data has been interpreted by a theoretical approach that is based

on a predetermined database. However, despite its limitations, we

strongly believe that this rational strategy will help us to identify

candidate biomarkers and proteins that will eventually be

validated further as a potential drug targets for prostate cancer.

From pathway analysis, we selected potential candidate proteins

for further confirmation of their differential expression. Consistent

with our 2D-DIGE proteomic data, the validation by western

results demonstrated overexpression of eIF4A3, DDAH1, ARG2,

Prdx3, and Prdx4 in significantly high percentage of PCa tissues

compared to corresponding benign samples (% of tumors showing

differential expression of each protein described in results section).

Eukaryotic initiation factor 4A-III (eIF4A3) is a member of the

DEAD box protein family implicated to be involved in various cellular

processes such as translation initiation, splicing, ribosome assembly and

mRNA export [31]. Based on cDNA microarrays differential

expression of eIF4A3 in gastric cancer tissues has been reported [32].

As our data showed over expression of ARG2 in PCa, it is

important to note that the protein is also altered in other cancer

tissues such as small cell lung cancer where its expression is

correlated with the dissemination of cancer cells [33]. ARG2 is

known to be involved in polyamine metabolism and polyamines

such as ornithine, spermine and spermidine play a critical role in

prostate cancer development [34]. ARG2 catalyses the conversion

of arginine to ornithine, which is a precursor for the synthesis of

polyamines that control growth of benign and tumor cells of the

prostate [35]. Previous studies have shown the expression of

ARG2 in prostate cancer cell lines and its functional role in

prostate cancer development [36,37].

Two peroxiredoxins such as Prdx3 and Prdx4 are upregulated in

PCa determined by expression analysis. Peroxiredoxins are a family

of multifunctional antioxidant thioredoxin-dependent peroxidases

which have been identified as being differentially expressed in a

variety of neoplasms [38]. Oxidative stress by excess production of

ROS is involved in activation of signal transduction pathways that

are associated with cancer progression [39,40] [41]. In addition to

their role as antioxidative agents, peroxiredoxins are also involved in

multi cellular processes such as cell proliferation, apoptosis and gene

expression [42]. A previous report described that both Prdx3 and 4

have been associated with the presence of hormone receptors in

breast cancer patients [43]. Since prostate tumors are also hormone

dependent, we speculate on a role of Prdx3 and 4 controlling tumor

proliferation, apoptosis and dissemination of tumor cells during

prostate cancer progression. FKBP4 is a peptidyl-prolyl cis-trans-

isomerase significantly overexpressed in PCa. Earlier reports

described its precise role in tumor initiation and progression via

translocation of p53 to the nucleus, leads to p53 inactivation [44]. It

is also known as partner involved in AR signalling described as

therapeutic target for PCa treatment [45].

Dimethylarginine Dimethyl AminoHydrolase 1 (DDAH1) is

known to be involved in NO signalling in cardiovascular disease

and pulmonary hypertension. DDAH1 metabolizes dimethyl

arginines which act as endogenous inhibitors of nitric oxide

synthase (NOS). A recent report suggesting that the intracellular

NO promotes androgen independent growth of prostate cancer

cells highlights its potential contribution for cancer progression

[46]. Moreover, our functional sub network showed connectivity

between p53 and the NOS pathway involving DDAH1. However,

non-enzymatic activities of DDAH1 are not yet known.

In conclusion, the current study identified potential novel

biomarkers for prostate cancer development and/or progression

such as eIF4A3, DDAH1, ARG2, Prdx3, and Prdx4 from

proteomic data using systems biology approach. Functional

validation of these targets will further substantiate their role in

the pathophysiology of prostate carcinogenesis and/or as thera-

peutic targets. Prospective clinical studies will have to confirm

their contribution to clinical prostate cancer management as

potential prognostic and or predictive biomarkers.
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