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Robust gene expression and 
mutation analyses of RNA-
sequencing of formalin-fixed 
diagnostic tumor samples
Stefan Graw1,6, Richard Meier1,6, Kay Minn1, Clark Bloomer2, Andrew K Godwin3, 
Brooke Fridley4, Anda Vlad5, Peter Beyerlein6 & Jeremy Chien1

Current genomic studies are limited by the availability of fresh tissue samples. Here, we show that 
Illumina RNA sequencing of formalin-fixed diagnostic tumor samples produces gene expression that 
is strongly correlated with matched frozen tumor samples (r > 0.89). In addition, sequence variations 
identified from FFPE RNA show 99.67% concordance with that from exome sequencing of matched 
frozen tumor samples. Because FFPE is a routine diagnostic sample preparation, the feasibility 
results reported here will facilitate the setup of large-scale research and clinical studies in medical 
genomics that are currently limited by the availability of fresh frozen samples.

Cancer is a generic term for a large group of malignant diseases that can affect any part of the body. It 
is characterized by invasive, abnormal growth which grows beyond the usual boundaries and spreads to 
adjoining or distant organs (metastasis). It is important to analyze and characterize genomic structural, 
sequence and expression variations that cause cancer or are associated with cancer in order to advance 
our knowledge of the disease and to develop new treatments for cancer1. The rapid development in 
high-throughput sequencing technologies is enabling the characterization of genome-wide alteration in 
cancer at single base resolution. It is now feasible to sequence entire cancer genomes from a large number 
of samples in a timely and cost-efficient manner2. Characterizing genomic changes in cancer is the key 
to the discovery of novel therapeutic targets. It is imperative to have a large number of samples from 
cancer patients to comprehensively and accurately characterize the genomic changes to distinguish true 
driver mutations from background passenger mutations3,4.

To identify somatic mutations associated with various cancer subtypes and clinical behavior, it is 
necessary to have the clinical information on the disease progression and patient outcome5. Large-scale 
efforts are underway to characterize somatic mutations across a number of different cancers so that 
comprehensive knowledge can be constructed to advance personalized medicine. However, at present 
these efforts rely on samples stored as fresh frozen (FF) tissues6–11. A major challenge in these studies is 
obtaining large numbers of fresh tissue samples that also have long-term follow up clinical information 
on disease progression and outcome5.
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Formalin-Fixed Paraffin-Embedding (FFPE) has been the standard diagnostic sample preparation for 
pathologists for decades. This resource offers a potentially large volume of biospecimens to match disease 
and normal tissues for large-scale correlative studies12. Large FFPE archives represent an opportunity to 
sequence samples for retrospective studies to investigate the complex genetic changes underlying tumor 
progression, treatment response, therapy resistance and disease outcome. It is technically challenging to 
perform sequencing analyses on DNA isolated from FFPE samples because of damage induced by the 
fixation process13. RNA-sequencing from FFPE sample represents an even greater challenge because RNA 
is more labile than DNA.

Previous studies have successfully used DNA from FFPE samples for copy number analysis and 
mutation detection using targeted sequencing of single genes14,15, as well as the whole exome16–19 and 
whole genome20,21. However, limited studies are available for RNA sequencing from FFPE tissue samples 
because of the concern that RNA in FFPE samples may not be suitable for sequencing. In addition, these 
studies are limited by the lack of verification using orthogonal platforms, effect of transcript length and 
gene expression levels on RNA-sequencing results and analysis of sequence variations22.

In this study, we performed a comprehensive analysis of RNA-sequencing data from six pairs of FF/
FFPE tumor samples. We used NanoString technology as an orthogonal verification platform to compare 
gene expression between FF and FFPE. Finally, we used SNPiR bioinformatics tool and customer filters 
to analyze sequence variations from RNA-sequencing and used DNA-sequencing data for verification 
purpose. These analyses indicate the feasibility of performing comprehensive genomic characterization 
of tumor samples from archived FFPE samples.

Materials and Methods
Materials. Six matched pairs of FF and FFPE ovarian tumor samples have been processed for RNA 
sequencing and DNA whole exome sequencing. RNA from these six pairs were also subjected to the 
NanoString gene expression analysis. Fresh tumor samples served as references to validate mutations and 
gene expression in FFPE samples (listed in Table S1). Additionally seven normal fallopian tube samples 
from GTEx have been used to identify differentially expressed genes in FF and FFPE tumor samples. 
These data sets will be available through dbGaP.

Methods. Nucleic Acids Extraction. RNA and DNA from FFPE tumor samples were extracted using 
Qiagen FFPE All-Prep kit. Five micron slices of FFPE specimens were dewaxed using Deparaffinization 
Solution (Qiagen, Valencia, CA). DNA extractions were done using Qiagen All Prep DNA/RNA FFPE 
Kit (Qiagen, Valencia CA), according to Qiagen’s supplementary protocol for FFPE tissue (QIAamp 
DNA FFPE Tissue Handbook). We implemented the following protocol changes: All FFPE samples were 
digested with 20 μ L Proteinase K shaking overnight at 56 °C and then supplemented with an additional 
15 μ L for an additional hour for complete protein digestion. Samples were eluted in 50 μ L elution buffer. 
RNA and DNA from FF tumor samples were extracted using Trizol (Invitrogen) and Qiagen DNAeasy 
kit, respectively. RNA quality was determined by Agilent Bioanalyzer.

RNA library preparation. Stranded Total RNA library preparations were prepared using the Illumina 
TruSeq Stranded Total RNA LT kit (with Ribo-Zero Human/Mouse/Rat). 500 ng of FFPE RNA was used 
to initiate the ribosomal RNA reduction. To avoid over fragmentation of FFPE RNA, the standard 8 sec-
ond fragmentation time for ribosomal reduced RNA was varied from 0 to 4 seconds to accommodate the 
average size distribution of each degraded FFPE RNA sample as determined from the Agilent Bioanlayzer 
quality control run. Fragmentation time was based on Agilent Bioanalyzer size range examples provided 
in the Alternate Fragmentation Protocols—Appendix A of the Illumina TruSeq Stranded Total RNA 
Sample Preparation Guide (part#15031048 Rev. D April 2013). The remaining stranded library prepara-
tion were performed according to the kit instructions. 500 ng of total RNA from FF samples was used 
with Illumina TruSeq Stranded mRNA Sample Preparation Kit. Validation of the library preparations was 
performed on an Agilent Bioanalyzer using the DNA1000 kit. Libraries were quantified using a Roche 
LightCycler96 with FastStart Essential DNA Green Master mix. Library concentrations were adjusted to 
4 nM and pooled for multiplex sequencing. Pooled libraries were denatured and diluted to 15 pM then 
clonally clustered onto the sequencing flow cell using the Illumina cBOT Cluster Generation Station 
and TruSeq Paired-End Cluster Kit v3-cBot-HS. The clustered flow cell was sequenced on the Illumina 
HiSeq2500 Sequencing System using the TruSeq SBS Kit v3-HS.

DNA library preparation. All libraries were prepared from 50 ng of genomic DNA using the Nextera 
DNA Sample Prep Kit (Illumina, San Diego, CA) following the manufacturer’s protocol. Sample specific 
indexes were added during 10 cycles of PCR amplification. Excess primers and primer dimers were 
removed using Agencourt AMPureX beads (Beckman Coulter, Danvers, MA) at a 0.8X bead ratio. 
Libraries were quantified by qPCR using primers specific to Illumina adaptor sequences and library size 
was assessed on a high sensitivity chip run on the Agilent 2100 Bioanalyer (Agilent, Santa Clara, CA). 
All sample libraries underwent targeted enrichment for the whole exome per the Nextera Enrichment 
Sample Prep Protocol (Illumina, San Diego, CA). Illumina’s TruSeq Exome pool consisting of 90-mer 
biotinlyated oligos was used to enrich for the whole exome, covering known protein-coding genes, 5′  
and 3′  UTRs, microRNA, and other non-coding RNA (62 Mbases total).



www.nature.com/scientificreports/

3Scientific RepoRts | 5:12335 | DOi: 10.1038/srep12335

Bioinformatic analyses. To check the general quality of reads generated from Illumina sequencing, 
FastQC and FASTX-Toolkit have been used to detect abnormalities in a number of quality metrics. 
Next, reads were aligned to NCBI reference genome GRCh37 utilizing Tophat223. The alignment quality 
was checked using SAMStat24, Picard-tools , RNA-SeQC25, SeqMonk, IGV26 and QualiMap27. The gene 
count was generated by HTSeq28, the results were used as input for DEseq229 to analyze differential gene 
expression. Genes overexpressed in FF or FFPE tumor samples, relative to FF normal fallopian tube sam-
ples, were used for pathway analysis by the DAVID bioinformatics tool30. R and SeqMonk were used to 
calculate the gene expression correlation. Finally, a modified version of the pipeline SNPiR31 was used to 
analyze sequence variations in RNA sequencing data sets. Plots in Fig. 1 are generated using QualiMap, 
and plots in Figs 2–6 are generated with R scripts.

SNV calling from whole exome sequencing (WXS). We used bwa (v0.6.2) aligned with seed length of 25 
and default parameters, piping into samtools (v0.1.8) to sort. Additional sorting and adding read groups 
were processed with Picard-tools (v1.77). All bam files were then merged with samtools. The resulting 
merged file was processed with Picard-tools for PCR duplicate removal and with GATK (v2.4-7) for 
realignment, base recalibration, reducing of reads for faster variant calling. The comparison of SNV calls 
from DNA sequencing of corresponding FF and FFPE samples are reported elsewhere (Munchel and 
Hoang et al., 2015)32.

GATKs UnifiedGenotyper was used to call SNVs.

Results and Discussion
Potential Artifacts in FFPE RNA Sequencing Data. In this study, we developed an analysis pipeline 
that incorporates various open-source tools, such as TopHat, RSEM, SNPiR, ANNOVAR, and custom 
filters to produce gene expression and single nucleotide variant calls from FFPE RNA sequencing data 
that are highly correlated and concordant with RNA sequencing data from patient-matched fresh frozen 
tumor samples (Figure S1). Quality control analyses of RNA sequencing data from FFPE tumor samples 
indicate results that are comparable with results from patient-matched FF tumor samples (Figure S2), with 
the exception of GC-content analysis. An abnormal peak around 53% GC content is conspicuous in all six 
FFPE samples (Fig. 1A), but not in FF samples (Fig. 1B). Visualization of reads from FFPE samples indi-
cates that a large fraction of reads mapped to the intronic regions (Fig. 1C). Such an artifact is not observed 
in FF samples. These results suggest that reads mapping to the intronic regions may have contributed to 
the abnormal GC-content peak in FFPE samples. To confirm that, we applied a filter that removes reads 
outside of mRNA regions (mRNA regions downloaded from UCSC Table Browser), and the abnormal GC 
peak is no longer conspicuous in FFPE samples (Fig. 1D). This filter has no effect on FF samples (Fig. 1E). 
Although the total number of reads obtained from FFPE RNA libraries are higher, the total number of 
reads mapping to exons are lower in FFPE RNA libraries compared to FF RNA libraries (Fig. 2).

Capturing of intronic regions specifically in FFPE samples is most likely caused by the differences 
in sequencing library preparation between FF and FFPE RNA samples. Oligo-dT bound to magnetic 
beads was used to enrich mRNA species for FF samples, whereas total RNA and Ribo-Zero kit was used 
to deplete ribosomal RNA from FFPE RNA-sequencing libraries. Since RNA from FFPE samples are 
highly fragmented (Table S1) and thus not suitable for the enrichment of poly-A mRNAs with oligo-dT, 
total RNA library preparation followed by ribosomal depletion represents a suitable approach for FFPE 
RNA. Although it would be ideal to compare the results of RNA sequencing that utilizes the same 
ribosomal-depleted RNA library preparation method for both FF and FFPE samples, the objective of 
current study is to compare the results from most commonly used library preparation for FF samples 
with that for FFPE samples.

Transcript Coverage. Coverage-over-transcripts plots are used to identify problems that may have 
occurred during the RNA library preparation or sequencing process. For example, a 3′ -end bias in tran-
script coverage may indicate the degradation of RNA, because the reverse transcriptase would not be 
able to extend the reaction to the degraded 5′  end. A 5′ -bias does not necessarily indicate a problem, 
but it may be viewed as a drop in 3′ -coverage due to alternative poly-adenylation sites. Alternative 
poly-adenylation sites would result in missing coverage on the longer 3′ -end of the reference transcripts.

The coverage plot over normalized transcript length for all six FF/FFPE pairs indicates a smaller, 
but discernible increase in 3′  coverage of all transcripts (Fig. 3A). To test if longer transcripts are more 
susceptible to 3′  coverage bias, transcripts were divided into the following three groups (Fig. 3B–D):

•	 short transcripts length (0.5–4 kbp); 27619 transcripts met this criterion (Fig. 3B)
•	 medium transcripts length (4–8 kbp); 8530 transcripts met this criterion (Fig. 3C)
•	 long transcripts length (> 8 kbp); 1521 transcripts met this criterion (Fig. 3D)

Results in Fig.  3A indicate that coverage along the normalized transcript length is more consistent 
in FFPE samples than in FF samples. All FFPE samples have uniform coverage distributions, independ-
ent of the transcript length. In addition, we did not observe any influence of the expression levels on 
coverage bias along the transcript length in FFPE samples (Figure S4). In contrast to FFPE samples, 
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Figure 1. GC content distribution before and after applying filter on FF and FFPE samples. The GC-
content distribution indicates abnormal GC peak (blue line) in FFPE (A) but not in FF (B) samples. The 
GC content of the human reference genome is plotted in red line. To understand why GC content in FFPE 
sample show an abnormal peak, mapped reads were visualized by SeqMonk. The representative chromosome 
view shows three rows of data tracks for each sample: (1) mRNA.only contains only reads in mRNA regions, 
(2) not.mRNA contains all reads that did not align to exons, (3) total contains all reads. Strand information 
is shown in red and blue. FFPE RNA sequencing produces reads that also map to intronic regions. When 
reads mapping to intronic regions in both FF and FFPE were filtered out, abnormal GC peak in FFPE 
samples were removed (D) without affecting the GC-content distribution of FF samples (E).
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Figure 2. Fraction of reads mapping to various parts of the genome. Ribosomal RNA-depleted total RNA 
library preparation for FFPE RNA resulted in larger fraction of reads mapping to intronic regions (both 
absolute and relative fraction) compared to mRNA library preparation for FF RNA.

Figure 3. Coverage along the normalized transcript length. Coverage plots along the normalized 
transcript length for all transcripts (A) and for three different transcript length categories (B: 0.5–4 kbp, C: 
4–8 kbp, D: > 8 kbp) are shown to determine the effect of transcript length on the coverage along the entire 
transcript. The samples are color coded (e.g. FF2474&FFPE2474: blue), while the storage types are shown 
with different line styles (FF: solid; FFPE: dashed). The results show a discernable 3′  bias in FF samples 
while uniform coverage is observed in FFPE samples.
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with increasing transcript length, we observe a more pronounced 3′  bias in FF samples, with the lone 
exception of samples FF2938 (Fig. 3B–D), which also has the highest RIN number among the FF samples 
(Table S1). In addition, FF2474 and FF3356 have pronounced 3′  bias for medium and long transcripts, 
and these samples have the lowest RIN numbers (Table S1). These results collectively suggest that high 
quality RNA is needed to minimize 3′  bias in RNA library preparations that utilize oligo-dT capture. 
These results suggest that random priming reverse transcription of RNA from FFPE tumor samples 
effectively eliminates the 3′  bias expected from the heavily degraded RNA. In addition, the results also 
suggest that longer transcripts from FF samples are susceptible to degradation, and these transcripts 
may have been degraded at the 5′  during or prior to oligo-dT capture, thereby contributing to a drop 
in 5′  coverage.

Gene Expression Correlation. We then used the NanoString technology as an orthogonal verifica-
tion platform to determine the extent of correlation in gene expression between FF and FFPE samples 
(Figure S5). The gene count from both technologies and storage types has been quantile normalized, 
before calculating the correlation. Figure  3 visualizes the correlation matrix as a clustered heat map. 
Clusters are represented as a dendrogram. The color code has been adjusted according to the highest 
and lowest correlation value. Correlation boundaries, where both matching samples come from the same 
technique (RNA-sequencing or NanoString), are highlighted with a white frame. Correlation boundaries, 
where both matching samples come from different techniques (RNA-sequencing and NanoString), are 
highlighted with a blue frame.

All matching FF and FFPE samples cluster together (Fig. 4). These results indicate that the correlation 
between matched FF and FFPE samples are stronger than the correlation between unmatched samples. 
The correlation of gene expression between matched FF and FFPE samples quantified with NanoString 
technology is also very high. Even matched samples from RNA sequencing vs the NanoString (blue 
frame) show a distinctly better correlation than non-matching samples. Because the correlation between 
the NanoString and RNA-sequencing is higher in sample 3356 than for any other pair, both techniques 
cluster together instead of clustering with each particular technique. These results show that matched FF 
and FFPE samples share a strongly correlated gene expression, suggesting that FFPE samples can be a 
suitable replacement for FF samples in gene expression studies.

Differential Gene Expression. The differential gene expression of six pairs of FF and FFPE samples 
was calculated utilizing DEseq2. RNA-sequencing data from seven normal fallopian tube samples was 
used as reference. The results show a very strong correlation of fold-change, relative to normal samples, 
in gene expression between matched FF and FFPE tumor samples (Fig. 5A). To determine the extent 
to which gene expression levels affect the correlation of gene expression between matched FF and 
FFPE pairs, we generated a MA-plot, where we plotted average gene expression on the x-axis and gene 
expression difference on the y-axis (Fig. 5B). We observed a marginally higher gene expression in FF 
samples for transcripts with log2-expression values less than 10 (Fig.  5B inset). These results suggest 
that less abundant transcripts are most likely to be affected by FFPE processing than the longer and 
more abundant transcripts. It is important to note that, although longer transcripts are more suscep-
tible to degradation, the remaining degraded fragments can still be reverse-transcribed by random 
primers. In contrast, shorter and less abundant transcripts may be degraded to a state in which random 
priming is not possible. Another factor that may contribute to the observed bias in gene expression 
of low abundant transcripts is the reduced fraction of mapped reads to coding regions for the FFPE 
data sets.

We then performed differential gene expression analysis between FFPE tumor samples and FF nor-
mal samples as well as between FF tumor and FF normal samples. P-values of each transcripts were 
compared between FF and FFPE sample groups in relationship to the average level of gene expression 
(Fig. 5C). We do not observe any effect of gene expression levels on the differences of p-value. There is 
only a marginal p-value difference for each transcript between FF and FFPE samples, indicated by the 
regression smoothing line.

Four hundred seventy out of 742 (63.3%) genes, upregulated in FF tumor samples with reference 
to normal samples, were also upregulated in FFPE samples. One hundred fifty one out of 270 (55.9%) 
genes downregulated in FF tumor samples were also downregulated in FFPE samples. To perform 
pathway analysis, two lists of up-regulated genes from FF and FFPE samples were used as inputs for 
DAVID (Database for Annotation, Visualization and Integrated Discovery) analysis30. Approximately 
50% of pathways identified in each storage group were also identified in the other storage group  
(Table S2).

Mutation Analysis. Finally, a modified version of the pipeline “SNPiR” was used to analyze base 
changes in FF and FFPE RNA sequencing data sets. Mutations in RNA transcripts were called from 
both storage types (FF and FFPE), and the results were compared to mutations found in corresponding 
FF DNA sample by whole exome sequencing analysis. To visualize the comparison, for each sample the 
RNA variant allele frequency (variant detection rate) was plotted on the left y-axis and the DNA variant 
allele frequency (mutation rate) was plotted on the right y-axis (Fig. 6A). Each line represents a variant 
called in the RNA sample. The lines have color codes depending on the coverage and (in-)consistency 
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of reported sequence variation. Variants with at least 10% allele frequency found in both RNA and 
DNA samples are colored green and called concordant if the DNA coverage is at least 10X for the base 
position. If the DNA coverage is below 10X for a certain base position, the variant is classified as ambig-
uous and indicated as a dotted line. Lines are colored red for discordant calls if the DNA coverage for 
the base position is at least 10X and the mutations are found only in RNA (AF> 10%) and not in DNA 
(AF ≤  10%).

Initially, FFPE samples produced a large number of discordant/false positive mutation calls (Fig. 6B). 
The majority of these false positive calls are most likely generated by formalin fixation process because 
the characteristic FFPE-prone C> T or G> A substitutions were significantly higher in FFPE samples 

Figure 4. Clustered heat map to visualize correlation matrix. Heat map of clustered correlation matrix 
(RNA-seq&NanoString data sets from paired FF&FFPE samples) shows strong correlation in gene 
expression between paired FF and FFPE samples. Color key was adjusted to minimal and maximal values to 
differentiate the differences. Dendrogram illustrates the relationship-distance between samples. Associated 
samples (e.g. FF2474 and FFPE2474) from the data sets produced with the same technology (either RNA 
sequencing or NanoString) are highlighted with a white frame, whereas associated samples from different 
technologies are highlighted with a blue frame. Sample NS_FF3356r1.NS_FF4079r1 was a replicate sample 
that was mislabeled as FF3356r1 during NanoString analysis. However, clustering analysis correctly identified 
it as FF4079r1. Note that correctly labeled FF3356r1 clustered with other FF3356 and FFPE3356 replicates.
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than in FF samples (Fig.  6C). Box plot analysis of concordant and discordant C> T or G> A substitu-
tions indicates these FFPE artifacts are present in FFPE samples at variant frequencies less than 50% 
(see Figure S6). We were therefore able to effectively eliminate these artifacts by applying a hard filter of 
≥ 50% variant allele frequencies only for C> T or G> A substitutions. It is important to note that filtering 
these artifacts removed most of the discordant variant calls with little effect on concordant calls (Fig. 6D 
and Table 1).

These results show that RNA sequencing from FFPE samples can be used to identify high-confident 
single-nucleotide variations in tumor samples. It is important to note that neither FF nor FFPE RNA 
sequencing will pick up all mutations that can be found in DNA due to missing coverage in RNA (e.g. 
not expressed gene) or as a result of limitation in detecting mutations around splice sites from RNA 
sequencing data. FFPE samples have a false positive rate of approximately 4%. The slightly higher false 
positive rate is most likely caused by the formalin fixation process.

Conclusion
RNA sequencing analysis indicates that gene expression between matched FF and FFPE pairs are strongly 
correlated, indicating the feasibility of using FFPE samples as a suitable replacement for FF samples. 
These results are consistent with prior studies by Hedegaard et al.22, indicating a strong correlation in 
gene expression between paired FF and FFPE samples. Our study took further steps by comparing dif-
ferential gene expression between paired FF and FFPE tumor samples relative to FF normal samples 
and sequence variations from RNA sequencing data. These analyses indicate that fold-change in gene 
expression relative to normal tissues and sequence variations are strongly correlated between matched 
FF and FFPE pairs.

The observed overlap of approximately 50% in differential gene expression and pathway analysis may 
seem less impressive. However, considering that differential gene expression analysis of two randomly 
assigned groups within FF samples showed similar percentage of overlap in differentially expressed genes 
relative to 7 normal samples (data not shown), it is important to recognize the heterogeneity between 
tumor samples and the limitation of small sample size in current study that may be contributing to lower 
overlap in differentially expressed genes between FF and FFPE samples. Finally, our analysis demon-
strates that FFPE sequence variation artifacts can be effectively removed by applying an allele fraction 

Figure 5. Differential gene expression correlation. Panel A shows a representative scatter plot of fold-
change in gene expression in matched FFPE (y-axis) and FF (x-axis) tumor samples compared to seven 
normal samples. Each point represents a log2 (fold-change) value for a gene. R =  0.744 indicates strong 
correlation of fold-change in gene expression between matched FF and FFPE tumor samples compared 
to the gene expression in normal samples. Panel B presents a MA-plot, showing the normalized gene 
expression difference over the normalized average gene expression. A locally weighted smoothing regression 
was calculated for each sample and color coded. All six locally weighted smoothing regressions are also 
shown (zoomed in) as the inset. The results indicate consistently higher gene expression in FF samples 
compared to FFPE samples for genes with averaged log2 expression values of < 10. Panel C shows a 
modified MA-plot. The differences in p-values derived from differential gene expression analysis is plotted 
against normalized average gene expression to investigate the bias in p-values for genes that are expressed 
at different levels. The results indicate no discernable effect of gene expression levels on the p-values from 
differential gene expression analysis of FF or FFPE samples compared to normal samples.
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Figure 6. Variant allele frequencies and FFPE artifacts. Panel A, B and D show the comparison of 
variant allele fraction in FF or FFPE RNA (left y-axis) and FF DNA (right y-axis). Each line represents the 
relationship of one variant in comparison. The color code indicates whether the mutations is concordant 
(green), discordant (red), or ambiguous (black) because of low DNA coverage. Panel A shows the 
comparison between RNA with DNA from fresh frozen sample (2474). Most of the variants detected in 
RNA samples are concordant with variant calls from DNA. No discordant calls were observed. Eighteen 
variant calls from RNA sequence data were considered ambiguous because the same variants were not called 
in DNA due to low coverage. Panel B shows the comparison of variant allele fraction in RNA and DNA 
from paired FFPE and FF samples (2474), respectively. High degree of discordant calls were observed. Panel 
C shows the distribution of various substitutions in FF and FFPE samples. Substitutions that are concordant 
between paired FF and FFPE samples are indicated by green and discordant substitutions are indicated by 
red. The majority of discordant calls are observed as C> T or G> A substitutions, suggesting a documented 
FFPE artifact. Results from Panel D indicate that a small fraction of discordant calls remained after 
removing the C> T or G> A substitutions present at < 0.5 fraction in FFPE RNA sequencing data sets. Note 
that the remaining discordant calls with allele fraction < 0.5 are other types of substitutions.

Sample 
ID

FF 
concordant discordant

FFPE 
concordant 

before 
filter after filter

discordant 
before 
filter after filter

2474 161 0 223 222 125 17

2561 126 0 146 145 208 6

2938 179 2 224 224 108 6

3356 225 3 224 222 33 5

4079 281 0 215 215 128 6

4191 297 0 169 169 82 19

total 1269 5 1201 1197 (99.67%) 684 59 (− 91.14%)

Table 1. Concordance of SNV calls from FF and FFPE RNA sequencing compared to exome sequencing 
of FF DNA. This table shows the efficiency of the applied filter to remove characteristic FFPE artifacts 
(C> T mutation at a low rate). Both, concordant and discordant, FFPE mutations are shown before and after 
applying the filter.
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filter to C> T and G> A substitutions. Information will be useful for investigators planning to include 
FFPE samples for translational and clinical genomic studies.
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