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Abstract

Background: Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable
environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle.
Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic
information is already available for Milnesium tardigradum the proteome is still to be discovered.

Principal Findings: Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum
on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from
tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since
only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public
databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray
ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the
publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144
unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique
contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function,
biological process and cellular component. For the proteins of unknown function more information could be obtained by
performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock
protein families and LEA group 3, which might play important roles in surviving extreme conditions.

Conclusions: The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to
identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics
workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are
characteristic of the active and anhydrobiotic states of tardigrades.
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Introduction

Many organisms are exposed to unfavourable, stressful environ-

mental conditions, either permanently or for just certain periods of

their lives. To survive these extreme conditions, they possess

different mechanisms. One of amazing adaptation is anhydrobiosis

(from the Greek for ‘‘life without water’’), which has puzzled

scientists for more than 300 years. For the first time the Dutch

microscopist Anton van Leeuwenhoek (1702) gave a formal

description of this phenomenon. He reported the revival of

‘‘animalcules’’ from rehydrated moss samples. In extreme states of

dehydration, anhydrobiotic invertebrates undergo a metabolic

dormancy, in which metabolism decreases to a non-measurable

level and life comes to a reversible standstill until activity is resumed

under more favourable conditions [1]. One of the best known

anhydrobiotic organisms are tardigrades. Tardigrades remain in

their active form when they are surrounded by at least a film of

water. By loosing most of their free and bound water (.95%)

anhydrobiosis occurs [2]. Tardigrades begin to contract their bodies

and change their body structure into a so-called tun state (Figure 1).

In the dry state these organisms are highly resistant to environ-

mental challenge and they may remain dormant for a long period of

time. Based on their amazing capability to undergo anhydrobiosis,

tardigrades colonise a diversity of extreme habitats [3], and they are

able to tolerate harsh environmental conditions in any develop-

mental state [4]. Possessing the ability to enter anhydrobiosis at any

stage of life cycle, tardigrades can extend their lifespan significantly

[4,5]. Additionally, in the anhydrobiotic state, tardigrades are
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extraordinary tolerant to physical extremes including high and

subzero temperatures [6,7,8], high pressure [6,9], and extreme

levels of ionizing radiation [10,11]. Interestingly, tardigrades are

even able to survive space vacuum (imposing extreme desiccation)

and some specimens have even recovered after combined exposure

to space vacuum and solar radiation [12].

Anhydrobiosis seems to be the result of dynamic processes and

appears to be mediated by protective systems that prevent lethal

damage and repair systems. However, the molecular mechanisms

of these processes are still poorly understood. Up to now

investigations of mechanisms of desiccation tolerance have focused

mainly on sugar metabolisms, stress proteins and a family of

hydrophilic proteins called LEA (late embryogenesis abundant).

The presence of non-reducing trehalose and its expression during

anhydrobiosis has been reported for different anhydrobiotic

species [13,14], which indicates the important role of trehalose

in anhydrobiosis. However, the existence of anhydrobiotic animals

that exhibit excellent desiccation tolerance without having

disaccharides in their system [15,16] shows that sugars alone do

not sufficiently explain these phenomena.

Milnesium tardigradum Doyère (1840) is a very well known species

of carnivorous tardigrade. Different aspects of the life history of

this species have been already described [17]. While some genetic

studies of M. tardigradum exist [18] almost nothing is known about

the proteome. Partial sequences of three heat shock protein (hsp70

family) genes and the housekeeping gene beta-actin have been

described [18] and the relation of hsp70 expression to desiccation

tolerance could be shown by real time PCR [18] and by de novo

protein synthesis [6]. Since no trehalose could be detected in M.

tardigradum [19], investigating proteins and posttranslational

modifications is of particular importance to clarify surviving

mechanisms during desiccation.

To gain insight into the unique adaptation capabilities of

tardigrades on the protein level we aimed to establish a

comprehensive proteome reference map of active M. tardigradum

employing optimized protocols for protein extraction, generation

of high-resolution 2D gels and high-throughput protein identifi-

cation by electrospray ionization tandem mass spectrometry (ESI-

MS/MS). The proteome reference map of M. tardigradum provides

the basis for further studies in order to understand important

physiological processes such as anhydrobiosis and stress resis-

tance. The optimized proteomics workflow will enable applica-

tion of sensitive quantification techniques to detect differences in

protein expression, which are characteristic of active and

anhydrobiotic states. Thus, our proteomic approach together

with in-depth bioinformatic analysis will certainly provide

valuable information to solve the over 300 years existing puzzle

of anhydrobiosis.

Results

Preparation of Protein Extracts from Active Tardigrades
To establish and optimize a reliable and robust protocol for the

extraction of proteins from tardigrades in the active state we

applied different workup protocols and evaluated them by one-

dimensional (1D) gel electrophoresis. Figure 2 shows the

separation of protein extracts from whole tardigrades without

any precipitation step (lane 2), after trichloroacetic acid/acetone

precipitation (lane 3), after chloroform/methanol precipitation

(lane 4) and after using a commercially available clean-up kit (lane

5). When using trichloroacetic acid/acetone precipitation we lost

many proteins especially in the low molecular weight range.

Chloroform/methanol precipitation and application of clean-up

kit delivered satisfying results but also using the whole protein

lysate directly without any further purification resulted in high

yields across the entire molecular weight range. This workup

protocol was therefore used throughout our proteome study. To

evaluate the quality of our protocol especially with respect to

proteolysis we performed Western blot analysis to detect any

protein degradation. Since no proteins have been identified so far,

we have chosen two polyclonal antibodies directed against the

highly conserved proteins actin and alpha-tubulin. As shown in

Figure 3A and 3B both proteins could be detected at their

expected molecular weight at approx. 40 and 50 kDa, respectively,

which is in agreement with the protein bands of the control lysate

of HeLa cells. Importantly, no protein degradation could be

observed during our sample preparation.

Two Dimensional Gel Electrophoresis (2-DE)
The establishment of an optimized workup protocol was a

prerequisite for high quality 2D gels from tardigrades in the active

state. The proteomics workflow is depicted in Figure 4. One

important step in the workflow is the collection and preparation of

the samples. To avoid contamination with food-organisms,

Figure 1. SEM images of M. tardigradum in the active and tun
state. Tardigrades are in the active form when they are surrounded by
at least a film of water. By loosing most of their free and bound water
(.95%) anhydrobiosis occurs. Tardigrades begin to contract their
bodies and change their body structure into a so-called tun.
doi:10.1371/journal.pone.0009502.g001

Figure 2. Comparison of different workup protocols for M.
tardigradum. Total protein extract of tardigrades in the active state was
separated on a one-dimensional polyacrylamide gel. Lane 1: Rainbow
molecular weight marker. Lane 2: Protein extract of whole tardigrades
without any precipitation step. Lane 3: Protein extract after TCA
precipitation. Lane 4: Protein extract after chloroform/methanol
precipitation. Lane 5: Protein extract using clean-up kit.
doi:10.1371/journal.pone.0009502.g002

Proteome Map of Tardigrades
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tardigrades were washed several times and starved over 3 days.

Direct homogenization and sonication of deep-frozen tardigrades

in ice cold lysis buffer without any previous precipitation step

yielded protein extracts which were separated by high resolution

2D gel electrophoresis. For maximal resolution of protein spots

and high loading capacity (330 mg proteins) we used pI 3–11 NL

strips (24 cm) for the first dimension. Thus, high resolution

separation could be achieved in the acidic as well as in the basic

pH range as shown in the image of the silver stained preparative

gel of whole protein extract (Figure 5).

Approximately 1000 protein spots were automatically detected

on the 2D gel image using the Proteomweaver image software. A

total of 606 protein spots were picked from the silver stained gel.

These spots were digested with trypsin and after extraction of the

tryptic peptides from the gel plugs peptide mixtures were analyzed

by nanoLC-ESI-MS/MS.

Protein Identification
Identification of proteins depends on the representation of the

sequence or a close homologue in the database. Since almost no

genome or EST sequences of M. tardigradum are available to date in

public databases we initiated the tardigrade EST sequencing

project as outlined in figure 4 (Mali et al, submitted data). A cDNA

library was prepared from tardigrades in different states (active,

inactive, transition states). The cDNAs were sequenced as ESTs

and clustered. Thereby, we obtained a nucleotide database

containing 818 contigs and 2500 singlets. cDNA sequencing and

generation of ESTs are still ongoing, thus the sequence coverage of

M. tardigradum in the database is incomplete.

For protein identification we used the following databases: the

database of M. tardigradum containing the clustered ESTs as

outlined above, the tardigrade protein database, which was

translated from the clustered EST database and thus represents

a subdatabase containing only annotated proteins with known

function and the publicly available NCBInr database. The selected

606 spots from the 2D gel correspond to some highly expressed

proteins, but mostly to spots in the medium and low expression

range. A total of 271 spots could be identified from the tardigrade

protein and the NCBInr databases. Figure 6 demonstrates how

identified proteins are distributed among these two databases. 56

unique proteins were successfully identified by searching the

NCBInr database. It concerns proteins which are either highly

conserved among different species e. g. actin or protein entries

from M. tardigradum which are already available in the NCBInr

database e.g. elongation factor 1-alpha. Further 73 unique

proteins could be identified by searching the tardigrade protein

database and another 15 unique proteins were present in both

databases. Identical proteins that were identified from several spots

were included only once in the statistics to avoid bias. Thus, the

combination of the two databases was sufficient for the

identification of 144 unique proteins. The corresponding protein

spots are indicated by green circles in the 2D reference map shown

in Figure 5. Table 1 shows an overview of identified proteins with

annotation in different functional groups. In addition, detailed

information about each of the identified 144 proteins including

spot number, protein annotation, accession number (NCBInr and

Tardigrade specific accession number), total protein score, number

of matched peptides, peptide sequence and sequence coverage is

Figure 3. Analysis of protein degradation in total protein
extracts of tardigrades by Western blot analysis. Actin (A) and
alpha tubulin (B) were used as marker proteins for the detection of
proteolysis. Lane 1A and 1B: DualVue Western blotting marker. Lane 2A
and 2B: Total protein extract of HeLa cells as control. Lane 3A and 3B:
Total protein extract of M. tardigradum. Notably, no protein degrada-
tion was observed during the workup procedure.
doi:10.1371/journal.pone.0009502.g003

Figure 4. The experimental workflow to developing the
proteome map. Tardigrades were sonicated directly in lysis buffer.
Total protein extracts were separated by two-dimensional gel
electrophoresis. After silver staining protein spots were picked and in-
gel digested with trypsin. MS/MS data obtained by LC-ESI-MS/MS
analysis were searched against the NCBInr database, the clustered
tardigrade EST database and the tardigrade protein database. Identified
proteins with annotation were classified in different functional groups
using the Blast2GO program. Identified proteins without annotation
were analysed with the DomainSweep program to annotate protein
domains.
doi:10.1371/journal.pone.0009502.g004
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listed in Table 2. The individual ion score is included in brackets at

the end of every peptide sequence. Following ion scores indicate a

significant hit (p,0.05): .53 for NCBInr searches, .14 for

searches in the tardigrade protein database and .27 by searching

the EST clustered database. Identical proteins identified in

different spots are listed only once in Table 2. In these cases the

spot with the highest protein score (in bold) is ranked at the top

whereas the other spots are listed below. All further information

such as accession numbers, peptide sequences and sequence

coverage refer to the top-ranked spot.

The 15 proteins which were identified in both databases are

indicated with asterisk (e.g. spot A30*) and both accession

numbers are listed. In these cases the listed peptide sequences

belong to the hit with the highest score. Protein spots below the

bold one are marked with u, when only found in the NCBInr

database or marked with ^, when only found in the tardigrade

protein database.

Furthermore we were able to identify additional 150 protein

spots by searching MS/MS data in the clustered EST database of

M. tardigradum. These 150 proteins correspond to 36 unique contigs

and ESTs. The protein information is listed in Table 3 and the

protein spots are indicated by blue circles in the 2D reference map

(Figure 5). Unfortunately, it was not possible to annotate them

when performing a BLAST search. For these proteins of unknown

function more information could be obtained by applying protein

domain annotation methods. We ran all proteins through the

DomainSweep pipeline which identifies the domain architecture

within a protein sequence and therefore aids in finding correct

functional assignments for uncharacterized protein sequences. It

employs different database search methods to scan a number of

Figure 5. Image of a preparative 2D-gel with selected analysed protein spots. Total protein extract of 400 tardigrades in the active state
corresponding to 330 mg was separated by high resolution two-dimensional gel electrophoresis. Proteins were visualised by silver staining. Three
different categories are shown: Identified proteins with functional annotation are indicated in green, identified proteins without annotation are
indicated in blue and not yet identified proteins are indicated in red.
doi:10.1371/journal.pone.0009502.g005
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protein/domain family databases. 2 out of the 36 unique proteins

gave a significant hit, whereas 28 proteins were listed as putative

and 6 proteins gave no hit at all.

In addition, we analyzed further 185 protein spots, which are

indicated with red colour in Figure 5. Despite high quality MS/

MS spectra, it was not possible to identify these protein spots in

either of the databases used in our study.

In summary, we identified 421 (69.5%) out of 606 protein spots

which were picked from the preparative 2D gel. 271 spots yielded

144 unique proteins with distinct functions whereas 150 spots were

identified as proteins with yet unknown functions.

Functional Assignment of Proteins
The 144 unique proteins with annotation were further analysed

using the Blast2GO program, which provides analysis of sequences

and annotation of each protein with GO number to categorize the

proteins in molecular function, biological process and cellular

component. By analysing the proteins on the GO level 2 in the

category molecular function we received a total of 9 subgroups as

shown in Figure 7, upper middle chart. The majority of the

identified proteins exhibit either binding (45%) or catalytic activity

(33%). A more detailed analysis (GO level 3) revealed that 39% of

the proteins with catalytic activity are involved in hydrolase

activity (Figure 7, upper right chart) and 38% of binding proteins

bind to other proteins (Figure 7, upper left chart).

Identified proteins are involved in diverse biological processes.

A total of 16 subgroups of biological processes are represented

(Figure 7, lower middle chart). 23% are involved in cellular

processes and 18% in metabolic processes. Within the cellular

processes a majority of 20% of tardigrade proteins are involved in

cellular component organization and biogenesis. Within the

metabolic processes 28% of proteins are involved in cellular

metabolic processes, 26% in primary metabolic processes and 21%

in macromolecule metabolic processes (Figure 7, lower right

chart). A detailed GO description of all identified and annotated

tardigrade proteins is included in Table S1.

Identified Proteins and Protein Families
In our proteomic study several heat shock proteins have been

identified, namely hsp-1 (spot F27), hsp-3 (spot F21), hsp60 (spot

F57), hsp70 (spot B146, B173, C131, C133), hsp82 (spot F13), hsp86

(spot F24, F25), hsp90 alpha (spot E64), hsp90 beta (spot F24) and

hsp108 (spot F12). Hsp70 is already described in M. tardigradum as a

molecular chaperone which could play a role in desiccation

tolerance [18]. Hsp60 could be identified in spot F57 when

searching the corresponding MS/MS data against the NCBInr

database. No hit was obtained in the tardigrade EST or protein

database which is surprising, because hsp60 is an abundant protein.

Several protein spots have been identified as cytoskeletal

proteins, including actin as most abundant protein spot (E48) on

the 2D gel and tubulin. Actin and tubulin are highly conserved

proteins and were used to control proteolytic degradation during

our workup procedure by Western blotting. Four different actin

proteins are found by MS/MS analysis, which play important

roles in muscle contraction, cell motility, cytoskeletal structure and

cell division. Tubulin is a key component of the cytoskeletal

microtubules. Both alpha- and beta-tubulin could be identified on

the 2D gel in spot D107, D110 and F6. Further proteins involved

in motor activity and muscle contraction were found, namely

tropomyosin (e.g. spot F35), myosin (e.g. spot F81), annexin A6

(e.g. spot D90) and myophilin (e.g. spot A128), which is a smooth-

muscle protein and was described in the tapeworm Echinococcus

granulosus [20].

In addition, several proteins have been identified which are

known to have important roles in embryonic or larval develop-

ment. Mitochondrial malate dehydrogenase precursor (e.g. spot

B109), vitellogenin 1 and 2 (e.g. spot D62 and B88), GDP-

mannose dehydratase (spot C87), protein disulfide isomerase 2

(e.g. spot F3), hsp-3 (spot F21), hsp-1 (spot F27), tropomyosin (spot

F35) and troponin C (spot F87) belong to this group of proteins.

Vitellogenin, a major lipoprotein in many oviparous animals, is

known as the precursor of major yolk protein vitellin [21].

Vitellogenin is a phospholipo-glycoprotein which functions as a

nutritional source for the development of embryos [22]. During

developing oocytes vitellogenin and vitellin are modified through

cleavage and by different posttranslational modifications (PTMs)

like glycosylation, lipidation and phosphorylation. Interestingly we

could identify vitellogenin in several spots on the 2D gel showing

vertical (pI) shifts most probably caused by PTMs.

Peroxiredoxins identified first in yeast [23] are conserved,

abundant, thioredoxin peroxidase enzymes containing one or two

conserved cysteine residues that protect lipids, enzymes, and DNA

against reactive oxygen species. Different isoforms of peroxiredox-

ins could be identified on the 2D gel: peroxiredoxin-4 (spot C132),

peroxiredoxin-5 (spot B183) and peroxiredoxin-6 (spot D159). An

important aspect of desiccation tolerance is protection against free

radicals [24,25]. Notably, the expression of 1-cysteine (1-Cys)

peroxiredoxin family of antioxidants is reported in Arabidopsis

thaliana and is shown to be related to dormancy [26]. Our results

show the presence of important antioxidant systems, including

superoxide dismutase (SOD) and peroxidases. Additionally

different forms of glutathione S-transferases (spot A122, B153,

B166, B169, D166, and D159) could be identified. Glutathione

transferases (GSTs) constitute a superfamily of detoxifying

enzymes involved in phase II metabolism. Detoxification occurs

by either glutathione conjugation, peroxidase activity or passive

binding [27]. Furthermore GSTs have cellular physiology roles

such as regulators of cellular pathways of stress response and

housekeeping roles in the binding and transport of specific ligands

[28]. The consequence of this diversity in role is the expression of

multiple forms of GST in an organism. It has been shown that the

expression of the different isoenzymes is highly tissue-specific [29],

and this heterogeneity of GSTs may be further complicated by

posttranslational modifications such as glycosylation [30].

Some protein spots were identified as calreticulin (e.g. spot F14)

which is a Ca2+-binding protein and molecular chaperone.

Calreticulin is also involved in the folding of synthesized proteins

and glycoproteins [31].

Figure 6. Comparison of database performance for protein
identification. Protein spots were analysed by nanoLC-ESI-MS/MS and
searched against the NCBInr database and the tardigrade protein
database. The diagram illustrates the number of positive identifications
in the respective database and the overlap between the two databases.
doi:10.1371/journal.pone.0009502.g006

Proteome Map of Tardigrades

PLoS ONE | www.plosone.org 5 March 2010 | Volume 5 | Issue 3 | e9502



Table 1. Overview of identified proteins classified in different functional groups.

Cytoskeleton elements and modulators Enzymes Proteases and protease inhibitors

Alpha-III tubulin Glucan endo-1,3-beta-glucosidase Cathepsin K

Beta-tubulin class-IV Prostatic acid phosphatase Cathepsin Z

Beta-tubulin class-I Adenylate kinase isoenzyme 1 Cathepsin L1

Actin Peptidyl-prolyl cis-trans isomerase Neprilysin-2

Actin-5C Glutamate dehydrogenase Peptidase M17 precursor

Beta actin Lysosomal acid phosphatase Actinidain

Alpha actin Mitochondrial malate dehydrogenase Plasminogen

Actin, muscle-type (A2) Arginine kinase Aspartic protease inhibitor 8

muscle actin Aconitase, mitochondrial AFG3-like protein 2

Similar to alpha actinin CG4376-PB Transaldolase 26S proteasome non-ATPase regulatory subunit 8

Myophilin Aldolase A protein Rab GDP dissociation inhibitor beta

Tropomyosin-1, isoforms 9A/A/B Protein disulfide isomerase-3 Gamma-glutamyltranspeptidase

Tropomyosin Matrix metalloproteinase-17 Response to stress or heat

Myosin regulatory light polypeptide 9 Mitochondrial long-chain enoyl-CoA hydratase/3-
hydroxycyl-CoA

NADP-dependent isocitrate dehydrogenase

Myosin, essential light chain Dehydrogenase alpha-subunit Heat shock 70 kDa protein II

Heat shock proteins Peroxidase similar to heat shock cognate 70 protein isoform 2

Heat Shock Protein family member (hsp-3) Methylmalonate-semialdehyde dehydrogenase Short-chain dehydrogenase/reductase SDR YhdF

Heat Shock Protein family member (hsp-1) Thioredoxin reductase 1 Aspartic protease inhibitor 8

Hsp 60 Succinyl-CoA ligase [GDP-forming] subunit beta,
Mitochondrial E

UspA

Hsp 70 GTP-specific succinyl-CoA synthetase beta subunit Rubber elongation factor protein (REF) (Allergen Hev b 1)

Heat shock cognate 70 Glycosyl transferase Small rubber particle protein (SRPP) (22 kDa rubber particle
protein)

Heat shock cognate 70 protein isoform 2 DEAD-box family (SNF2-like) helicase Heat shock protein 90-beta

Heat shock 70 kDa protein II (HSP70 II) Cysteine conjugate beta-lyase Heat shock protein 83

Hsp 90-beta 26S proteasome non-ATPase regulatory subunit 13 Heat shock protein 60

Hsp90-alpha GH19645 Other Proteins

Hsp90 Glycolysis Translationally-controlled tumor protein homolog

Hsp 82 Glyceraldehyde-3-phosphate dehydrogenase Elongation factor 1-alpha

Hsp 83 Triosephosphate isomerase Elongation factor 1 gamma

Hsp108 Enolase Elongation factor 2

Protein lethal(2)essential for life (member of
Hsp20 family)

Phosphoglycerate kinase Angiopoietin-related protein 1

Embryonic/larval development Transporters Spaghetti CG13570-PA

Vitellogenin-1 H(+)-transporting ATP synthase Prohibitin

Vitellogenin-2 ATP synthase subunit d, mitochondrial Proteasome subunit alpha type-4

Protein disulfide-isomerase 2 ATP synthase beta subunit 40S ribosomal protein S12

Heat Shock Protein family member (hsp-3) Mitochondrial ATP synthase alpha subunit precursor Periostin

Heat Shock Protein family member (hsp-1) Annexin A6 Acetylcholine receptor subunit alpha-L1

Troponin C Antioxidant proteins Nucleosome remodelling factor – 38kD CG4634-PA

Putative LEA III protein isoform 2 Thiol-specific antioxidant protein Coiled-coil domain-containing protein 25

GDP-Mannose Dehydratase Superoxide dismutase [Cu-Zn] Calreticulin

Tropomyosin Peroxiredoxin-5, mitochondria Lipoprotein-related protein

Dormancy related protein Peroxiredoxin-4 14-3-3 protein beta/alpha-2 (Protein 14-3-3B2)

Putative LEA III protein isoform 2 Glutathione S-transferase 60S ribosomal protein L26-1

Peroxiredoxin-6 Histone H4

Histone H2B.2

Identified proteins with annotation are listed in 8 different groups with majority in protein enzymes. We also identified many heat shock proteins and proteins, which
are involved in embryonic development, response to stress/heat and dormancy.
doi:10.1371/journal.pone.0009502.t001
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Table 3. Identified proteins without annotation.

Spot no.
Accession
no.

Total protein
score

No. of unique/
significant
peptides

MS/MS peptide sequence
(Indv. Ion score)

Sequence
coverage DomainSweep analysis

A11 GH986700 52 1 -.VIAVSLPR.N(52) 3% No hits

A82, A88, B33, B41, B43,
C50,

D99, D105, E72, F87

A11 GH986755 32 1 -.LSISHNATLR.V(32) 4% Putative

IPR006210EGF

A94 GH986643 39 1 R.VDRSIPR.L(39) 3% Putative

A91, A95, A110,
A123, A140,

IPR004077 Interleukin-1
receptor, type II

B49, B64, B83, B90,
B98, B105,

B155, B165, B173,
B176, B185,

B186, B187, B188,
B189, B190,

B191, B192, B193,
B194, B195,

C51, C128, C141, C153, D45,

D46, D56, D57,
D74, D123

A100 EZ048767 229 4 K.YDLIYK.G(15) 20% Putative

K.FLGFDTAGK.T(61) IPR017956 AT hook,
DNA-binding,

K.IISFDVCNK.N(54) conserved site

K.TDSGVSCDVTD-
KCDPIVK.A(39)

IPR006689 ARF/
SAR superfamily

K.AVVDIEDPNN-
SAGDSIDYGK.Y(60)

IPR005464
Psychosine receptor

A112 GH986667 317 5 R.EQFTQGCTVGR.N(61) 22% Putative

A114 K.LEAAPNQCPEYK.K(89) IPR001749 GPCR,
family 2, gastric

K.KLEAAPNQCPEYK.K(64) inhibitory
polypeptide receptor

K.IMEVCNEPNTYENVNR.F +
Oxidation (M)(44)

IPR000372
Leucine-rich repeat,
cysteine-

K.IQSLCTPADLQ-
FFQSTHDR.I(60)

rich flanking region,
N-terminal

IPR004825 Insulin/
IGF/relaxin

A112 EZ048821 98 2 K.NADPLTILK.E(37) 14% Putative

K.IQSLCTPADLQ-
FFQSTHDR.I(60)

IPR008355
Interferon-gamma
receptor

alpha subunit

A114 EZ048817 49 1 R.IGTETTSFDYLR.E(49) 3% Putative

IPR004354 Meiotic
recombination protein

rec114

A123 EZ048785 221 4 K.FLDFTR.G(28) 17% Putative

R.AADLDTLTK.L(57) IPR000762 PTN/MK
heparin-binding

R.YLDMDQYDW-
DTR.S + Oxidation (M)(54)

protein

R.GTFDTAHIQG-
LTALTTLR.L(60)
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Spot no.
Accession
no.

Total protein
score

No. of unique/
significant
peptides

MS/MS peptide sequence
(Indv. Ion score)

Sequence
coverage DomainSweep analysis

R.IMSVDLTDINS-
APGMFDAAK.T + 2 -
Oxidation (M)(23)

A136 EZ048814 55 1 R.IPAQFQSK.I(55) 5% Putative

IPR015874 4-disulphide
core

B48 EZ048766 273 5 K.QVNAETFQK.A(36) 24% Putative

A157, A158, B49, B65 K.YSETVHYEGGK.Q(39) IPR000507 Adrenergic
receptor, beta 1

R.VDYVYSYHTK.M(4) IPR000463 Cytosolic
fatty-acid binding

R.GDFWSTDKPHR.Y(32) IPR004825 Insulin/IGF/
relaxin

K.YDIALDTVEATLK.S(70)

R.LIPDELLGTYEFSGK.Q(93)

B61 GH986621 231 6 R.VLNNGVLR.V(39) 13% Putative

B60, B62, B64,
B65, B79, B84,

R.VITVPEGIK.V(49) IPR001610 PAC motif
(peptide matched in

B93, B112, B143 R.SLLGEIPITK.G(38) frame 4)

R.RVITVPEGIK.V(46) IPR007758 Nucleoporin,
Nsp1-like, C-

R.VITVPEGIKVESFK.S(26) terminal (peptide
matched in frame 6)

K.GSLTAGSSSNTSGST-
GSSSYSSGTTGSSGTSGGK.T(34)

B62 EZ048776 230 6 R.VLNNGVLR.V(39) 18% Putative

A138, B48, B60,
B61, B64, B65,

R.VITVPEGIK.V(49) IPR007758 Nucleoporin,
Nsp1-like, C-

B84, B112, B138,
B142, B143,

R.SLLGEIPITK.G(38) terminal

B144, B161, B173 R.RVITVPEGIK.V(46)

R.VEAPIQVDQLTADQQR.S(93)

R.VLNNGVLRVEAPIQ-
VDQLTADQQR.S (69)

B79, GH986933 38 1 K.NGDVSIPR.Q(38) 6% No hits

D67, D109

B91 GH986939 54 1 R.EALSAVTGGR.R(62) 9% No hits

B43, B78-B80,
B82, B83, B86,

B87, B90, B92, B93, B97,
B191,

B193, C12, C51, C71, C112,

C114, C123, C129,
D2-D5, D8,

D10, D21-D24, D27, D28,
D31,

D44, D47, D105, D118,
D123,

D124

B102 EZ048815 403 6 K.QVNAETFNK.A(40) 26% Putative

A23, A24, A26,
A112, A127,

K.GGPAWPKDEK.F(17) IPR000507 Adrenergic
receptor, beta 1

B99, B103, B105,
B107, B108,

K.ILFRPTLSAR.A(36) IPR006080 Mammalian
defensin

Table 3. Cont.
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Spot no.
Accession
no.

Total protein
score

No. of unique/
significant
peptides

MS/MS peptide sequence
(Indv. Ion score)

Sequence
coverage DomainSweep analysis

B110, B111, B144 R.AQGLWEATTEGK.N(68) IPR002181 Fibrinogen,
alpha/beta/gamma

R.LIPDELLGTFEFSGK.Q(92) chain, C-terminal
globular

R.RLIPDELLGTFEFSGK.Q(36) IPR000463 Cytosolic
fatty-acid binding

K.DYEFKEDGNMQMTAK.F +
Oxidation (M)(20)

K.EVEYTSNYDMALDTVK.A(51)

R.MGLGVWESTSEQ
ENMLEYLK.A(22)

R.GDKPGLAAFGDNIIEYSFTA-
DSEGETGVLHGK.F(21)

B103 EZ048768 40 1 R.VTTVSIPR.I(40) 3% No hits

B185, C150, C151, C153

B150 GH986581 108 3 R.VFVEEQLK.A(33) 14% Putative

B151, B173 R.FNFLVFLGSTR.E(46) IPR000990 Innexin

R.GHTYEIMDPEK.V +
Oxidation (M)(29)

B152 EZ048775 42 1 R.KLEFILXFIF.-(42) 5% Putative

IPR003061 Colicin E1
(microcin) immunity

Protein

IPR000048 IQ
calmodulin-binding
region

B179 GH986603 53 1 R.AFEVPASECGK.S(53) 5% Putative

PR015880 Zinc finger,
C2H2-like

IPR008264 Beta-
glucanase

B191 EZ048789 26 1 K.GSIGAPDVPK.N(26) 4% Putative

IPR001955 Pancreatic
hormone

B186 GH986708 468 6 R.AFEVPASECGK.S(46) 25% Putative

A140 R.AFEVPASECGKSPK.R(82) IPR015880 Zinc finger,
C2H2-like

R.YRAFEVPASECGK.S(36) IPR000436 Sushi/SCR/
CCP

K.IVSKDVCGSSPKPR.K(90) IPR008264 Beta-
glucanase

R.SESGALWSEEQECTAK.F(62) IPR000008 C2 calcium-
dependent

R.SESGALWSEEQ
ECTAKFHPR.D(137)

membrane targeting

R.VQVMDKDVGSSDDLVEQ-
FECLTGPLVSSR.S+Oxidation
(15)

C18 EZ048777 46 1 R.NLADQAMSMGDGPLNFAK.A + 2
Oxidation (M)

8% Putative

IPR003569 Cytochrome
c-type biogenesis

Protein CcbS

IPR002282 Platelet-
activating factor
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Spot no.
Accession
no.

Total protein
score

No. of unique/
significant
peptides

MS/MS peptide sequence
(Indv. Ion score)

Sequence
coverage DomainSweep analysis

receptor

C78 GH986847 32 1 K.SEVFPRIR.S(32) 3% Putative

B188, B173, C141 IPR003916 NADH-
ubiquinone

oxidoreductase, chain 5

C86 GH986916 196 4 K.NPYLELTDPK.-(38) 12% Putative

K.TPEESEAPQAIR.R(68) IPR000863
Sulfotransferase

K.TPEESEAPQAIRR.K(58) IPR003504 Glial cell line-
derived

K.VEKTPEESEAPQAIR.R(32) neurotrophic factor
receptor alpha 2

C95 GH986921 35 1 -.VIAVSLPR.N(30) 2% No hits

B18, B19, B47, B49, B138,
C51,

C62, C65, D107

C95 GH986692 31 1 K.TALITGASTGIGR.A(31) 5% Significant

IPR002347 Glucose/
ribitol dehydrogenase

IPR002198 Short-chain

dehydrogenase/
reductase SDR

Putative

IPR003560 2,3-dihydro-2,3-

dihydroxybenzoate
dehydrogenase

IPR002225 3-beta
hydroxysteroid

dehydrogenase/
isomerase

C110 GH986711 31 1 K.ERSPLANK.I(31) 4% Putative

IPR006210 EGF

C118 EZ048824 45 0 K.DSVAIGFPK.D(24) 7% Putative

K.ADEAGFTDAIK.A(21) IPR003535 Intimin
bacterial adhesion

mediator protein

C141 EZ048801 395 6 R.NQVYQSMER.H(34) 22% Putative

C117, C145 R.QNIDAIEIPR.L(78) IPR002546 Myogenic
basic muscle-

K.DFLSAVVNSIQR.R(58) specific protein

R.LSQLAVDSVEIAK.D(74) IPR000795 Protein
synthesis factor, GTP-

R.MTISEPFESAEALK.D +
Oxidation (M)(72)

binding

R.LEDVDDVLMSAFGMLK.A + 2
Oxidation (M)(26)

R.MTISEPFESAEALKDMIVR.L + 2
Oxidation (M)(15)

R.LQSSPTLSSL
VDQDTFELIR.Q(37)

C141 GH986597 27 1 -.TAVEAVVR.T(27) 4% Putative

IPR003065 Invasion
protein B

C156 EZ048804 277 5 K.QFPFPISAK.H(43) 27% Putative

Table 3. Cont.
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Three different cathepsin proteins could be identified: cathepsin

K (spot A84), cathepsin Z (spot E80) and cathepsin L1 (spot F81).

Cathepsin L is a ubiquitous cysteine protease in eukaryotes and

has been reported as an essential protein for development in

Xenopus laevis [32], Caenorhabditis elegans [33] and Artemia franciscana

[34].

Several protein spots are associated with ATP generation and

consumption and may have important roles in the early

development as described for Artemia, because many important

metabolic processes require ATP [35,36]. ATP synthase (spot

B152) regenerates ATP from ADP and Pi [37]. It consists of two

parts: a hydrophobic membrane-bound part (CF0) and a soluble

part (CF1) which consists of five different subunits, alpha, beta

(spot E89), gamma, delta (spot C139) and epsilon. Arginine

kinase (spot B167) is an ATP/guanidine phosphotransferase that

provides ATP by catalyzing the conversion of ADP and

phosphorylarginine to ATP and arginine [38]. The presence of

arginine kinase has been shown in tissues with high energy

demand [39].

Interestingly, we could identify the translationally controlled

tumor protein (TCTP) (spot F75) on the 2D gel. TCTP is an

important component of TOR (target of rapamycin) signalling

pathway, which is the major regulator of cell growth in animals

and fungi [40].

Spot no.
Accession
no.

Total protein
score

No. of unique/
significant
peptides

MS/MS peptide sequence
(Indv. Ion score)

Sequence
coverage DomainSweep analysis

R.NELGAQYNFK.I(44) IPR001610 PAC motif

R.VIQAATEILPGK.-(73) IPR001713 Proteinase
inhibitor

K.LGHFQQYDVR.L(60) IPR000010 Proteinase
inhibitor I25,

K.DRNELGAQYNFK.I(52) cystatin

K.HTGGSDFLI
ADPEAQGVADAVR.S(4)

IPR001878 Zinc finger,
CCHC-type

D87 GH986563 35 1 K.DNVPLFVGR.V(35) 4% Putative

IPR000215 Protease
inhibitor I4, serpin

D110 EZ048786 46 1 R.FATPLILTGSK.D(3) 6% Putative

R.DVSPHPAACLTHSGR.V(43) IPR002353 Type II
antifreeze protein

IPR002371 Flagellar
hook-associated

protein

IPR000204 Orexin
receptor

E9 GH986691 257 7 K.YANPQELR.Q(51) 31% Putative

D2-D5, D8, D18, D10, D13, K.SINVPQVEK.E(32) IPR000980 SH2 motif

D14, D15, D19-D23, D27,
D28,

K.QYWPYVDEKPR.M(46) IPR000463 Cytosolic
fatty-acid binding

D31, D40, D47, E3, E4, E6, E7, K.KQYWPYVDEKPR.M(30)

E8, E10, E11, E12, E14, E15, R.DEDSFLYETPEA
QNPIVQK.K(28)

E16, E18, E19, E60, E61, E63, K.RDEDSFLY
ETPEAQNPIVQK.K(37)

E64, F31, F94, F95 K.GLESETEDTAATTILIADMVHY-
LK.Y(33)

F6, GH986624 35 1 R.ESLDFFR.V(35) 3% No hits

F48

F63 GH986878 38 1 K.AEETVPVLLTAEEK.L(38) 7% Significant

IPR007327 Tumor
protein D52

Putative

IPR004077 Interleukin-1
receptor, type II

Generated MS/MS data were searched against the tardigrade clustered database. Spot number, protein annotation, accession number, total protein score, number of
matched peptides, peptide sequence and sequence coverage are listed. Identical proteins identified in different spots are listed only once and the spot with the highest
protein score (in bold) is ranked at the top. The significant or putative candidates found in Domain Sweep are also listed in the Table.
doi:10.1371/journal.pone.0009502.t003
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Evaluation of Heat Shock Proteins by Western Blot
Analysis

To evaluate the highly conserved heat shock proteins 60 and 70,

we performed Western blot analyses with antisera directed against

these proteins. Hsp70 was found in several spots on the reference

2D proteome map, e.g. in spot B172, C31, C133 and F27. None of

these spots fits well to the calculated molecular weight of approx.

70 kDa, most of them were considerably smaller. In contrast, the

Figure 7. GO analysis of proteins identified in M. tardigradum. A total of 271 spots representing 144 unique proteins was analysed with the Blast2GO
program. The GO categories ‘‘molecular function’’ and ‘‘biological process’’ are shown as pie charts. A total of 9 different molecular function groups and 16
groups for biological processes are present in our result. The major parts of these categories (level 2) are shown in more detail (level 3) on the left and right side.
doi:10.1371/journal.pone.0009502.g007
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immunoblot shows the strongest band at the expected position

which is in agreement with the position of hsp70 in the control

lysate of HeLa cells (Figure 8B). However, several additional bands

can be observed at higher as well as at lower molecular weights.

The lower bands might account for the identified spots on the 2D

gel with lower molecular weight. The full-length protein might

have escaped the spot picking procedure since only a limited

number of detected spots were further processed.

Hsp60 was identified in spot F57 of the 2D map as described

above. Since hsp60 was identified by only one peptide hit we

confirmed this result by immunostaining using an antibody directed

against a peptide in the C-terminal region of the entire protein.

Only one band is visible on the Western blot at approx. 24 kDa

whereas the protein band in the HeLa control lysate is located at its

expected position (Figure 8A). The lower molecular weight is in

accordance with the location of hsp60 (spot F57) on the 2D gel.

Thus, in M. tardigradum hsp60 exists in a significantly shorter form.

Whether the observed difference in the molecular weight indicates a

different function and role of this protein in M. tardigradum needs to

be investigated in future experiments. To test whether other

tardigrade species show similar results we performed an immuno-

blot with protein lysates from 5 other species namely Paramacrobiotus

richtersi, Paramacrobiotus ‘‘richtersi group’’ 3, Macrobiotus tonollii,

Paramacrobiotus ‘‘richtersi group’’ 2 and Paramacrobiotus ‘‘richtersi group’’

1. Total protein lysate from HeLa cells was loaded as control

(Figure 9A, lane 1). Actin served as loading control for all lysates

(Figure 9B). Interestingly, some species also exhibit truncated forms

of hsp60 on the Western blot whereas others show higher forms.

The molecular weights are ranging from approx. 75 kDa for P.

‘‘richtersi group’’ 2 and P. ‘‘richtersi group’’ 1 lysates (Figure 9A, lane 4

and 6), 35 kDa for P. ‘‘richtersi group’’ 3 and P. richtersi lysates

(Figure 9A, lane 5 and 8) down to 24 kDa for M. tardigradum and M.

tonollii (Figure 9, lane 3 and 7).

Discussion

Establishing a Comprehensive Proteome Map of
Milnesium tardigradum

The analysis of the proteome of M. tardigradum represents to our

knowledge the first detailed study of tardigrades on the protein

level. Our experimental strategy aimed to identify as many as

possible proteins from tardigrades. Thus, we have not employed

any subcellular fractionation steps to obtain specific subproteomes.

We have tested various protocols for protein extraction from whole

tardigrades. We could show that direct homogenisation of

tardigrades in lysis buffer without any previous precipitation steps

is most efficient and enables the generation of high quality 2D gels.

Since nothing was known about the proteolytic activity in M.

tardigradum special precautions were taken to avoid any protein

degradation or proteolysis throughout the whole workup proce-

dure. Integrity of proteins was carefully inspected by Western blot

analysis of the two housekeeping proteins actin and tubulin where

the sequence homology was assumed to be high enough to detect

the proteins with commercially available antibodies. The devel-

opment of a robust workup protocol laid the basis for the

generation of a protein map from whole tardigrades in the active

state. 56 unique proteins could be identified by searching high

Figure 8. Detection of hsp60 and hsp70 by Western blotting.
Total protein extract of M. tardigradum in the active state was separated
on a one-dimensional polyacrylamide gel. Hsp60 (A) and hsp70 (B)
could be immunodetected with high sensitivity. Lane 1A and 1B:
DualVue Western blotting marker. Lane 2A and 2B: Total protein extract
of HeLa cells. Lane 3A and 3B: Total protein extract of tardigrades.
Notably, the protein bands in the HeLa control lysate show molecular
weights of 60 and 70 kDa as expected. In contrast the detected protein
band for hsp60 in M. tardigradum is considerably smaller. For hsp70
multiple bands are observed in M. tardigradum at higher as well as at
lower molecular weights.
doi:10.1371/journal.pone.0009502.g008

Figure 9. Detection of hsp60 in six different tardigrade species
by Western blotting. Total protein extracts of tardigrades in the
active state were separated on a one-dimensional polyacrylamide gel.
Hsp60 (A) and actin (B) as loading control were immunodetected with
high sensitivity. Lane 1: DualVue Western blotting marker. Lane 2: Total
protein extract of HeLa cells. Lane 3: Total protein extract of M.
tardigradum. Lane 4: Total protein extract of Paramacrobiotus richtersi.
Lane 5: Total protein extract of Paramacrobiotus ‘‘richtersi group’’ 3.
Lane 6: Total protein extract of Macrobiotus tonollii. Lane 7: Total
protein extract of Paramacrobiotus ‘‘richtersi group’’ 2. Lane 8: Total
protein extract of Paramacrobiotus ‘‘richtersi group’’ 1. Interestingly, the
detected protein bands were ranging from 100 kDa to less than 24 kDa.
Only hsp60 in the HeLa control lysate was detected at its expected
position at 60 kDa.
doi:10.1371/journal.pone.0009502.g009
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quality MS/MS spectra against the publicly available NCBInr

database. However, for many proteins we could not find any

homologues in the NCBInr database and only by using our own

newly generated tardigrade protein database it was possible to

identify another 73 unique proteins. 15 proteins were present in

both databases. In addition 36 unique proteins were found in the

clustered tardigrade EST database which could not be annotated

by BLAST search. This concerns new specific proteins of M.

tardigradum.

Performance of Database Searches
When we started our study of the tardigrade proteome very

little was known about tardigrades at the genome and gene

expression level. To this day, only 12 proteins are recorded in the

NCBInr database, which originate from M. tardigradum. For all of

them only partial sequences ranging from as few as 43 amino

acids for beta actin up to 703 amino acids for elongation factor-2

are available. Therefore, in parallel to our proteomic study a M.

tardigradum EST sequencing project has been initiated. Subse-

quently, two tardigrade specific databases have been established:

a clustered tardigrade EST database and a tardigrade protein

database which was extracted from the clustered EST database

and thus represents a subdatabase containing all tardigrade-

specific proteins with annotated function. However, since cDNA

sequencing is still ongoing sequence information remains

incomplete. We assume that the tardigrade database currently

covers approximately one tenth of the tardigrade specific genes

comparing the unique clusters found in tardigrades to all known

proteins of Caenorhabditis elegans or Drosophila melanogaster in

Ensembl. This fact is greatly influencing our database searches.

For most of the protein spots that were analysed by ESI-MS/MS

high quality fragmentation spectra were obtained from MS/MS

experiments. However, when we searched these MS/MS data

against the tardigrade databases and the publicly available

NCBInr database, only about 70% of the spots yielded in protein

identification whereas the remaining spots gave no significant

protein hit. In addition it was impossible to manually extract

peptide sequences that were sufficient in length to perform

BLAST searches with satisfactory results.

When we examined the protein hits obtained by the three

databases in more detail we found that in the NCBInr database

approximately one half of the proteins were identified by only one

significant peptide hit (Figure 10). For about 25% of the proteins

more than one significant peptide hit was obtained. For the

remaining 25% only the protein score which is the sum of two or

more individual peptides scores was above the significance

threshold while none of the peptide scores alone reached this

value. In contrast, proteins found in the tardigrade protein

database were predominantly identified by more than one

significant peptide hit whereas a smaller number was represented

by only one peptide. In no cases a protein was identified by the

sum of non-significant peptide matches. For proteins without

annotation the number of proteins identified by only one peptide

was only slightly higher than the number of proteins identified by

two or more peptides.

These results are not surprising. Since the NCBInr database

contains very few sequences originating from M. tardigradum e.g.

elongation factor 1-alpha the identification relies predominantly

on high homologies between tardigrade sequences and sequences

from other more or less related species of other taxa. The chances

for detecting more than one identical peptide is significantly higher

when searching MS/MS data against the tardigrade EST and

tardigrade protein databases since these databases contain only

tardigrade specific sequences.

Overall, one might evoke a potentially high false positive rate

especially since proteins are included in the reference map which

are either identified by only one significant peptide hit or where

two or more non-significant peptide scores are summed up to a

significant protein score. On the other hand, proteins like LEA

and heat shock protein 60 are identified by only one peptide

match. Nevertheless they could be confirmed by Western blot

analysis to be present in the tardigrade protein extract. Given the

incomplete sequence data available to date many proteins might

escape confirmation by orthogonal methods e.g. due to the lack of

specific antibodies.

Proteins Associated with Anhydrobiosis
Among the numerous proteins which were identified in our

proteomic study some proteins have already been reported to play

an important role in anhydrobiotic organisms. Most importantly,

spot F88 was identified as a protein belonging to the LEA (late

embryogenesis abundant) family (group 3). This result was already

known from Western blot analyses (Schill et al., 2005, poster

presentation, ISEPEP, Denmark). At least six different groups of

LEA proteins have been described so far. Group 1, 2 and 3 are the

three major groups. Whereas group 1 is only found in plants and

group 2 predominantly in plants, group 3 is reported in organisms

other than plants. Although the precise role of LEA proteins has

not yet been fully elucidated, different research groups have

reported on their association with tolerance to water stress by

desiccation [41,42]. LEA protein of group 3 could be already

identified in nematodes C. elegans, Steinernema feltiae and Aphelenchus

avenae, and the prokaryotes Deinococcus radiodurans, Bacillus subtilis

and Haemophilus influenzae [43,44,45].

Proteins Exhibiting an Unusual Location on the 2D Map
In general we identified some proteins which show a lower

molecular weight than expected. As described above hsp60 is

detected as a protein band at 24 kDa by Western blotting and

the location of the corresponding spot on the 2D gel shows the

same molecular weight. Comparison of different tardigrade

species indicates the existence of short as well as long forms of

hsp60.

Figure 10. Statistical analysis of significant peptides found in
the three different databases which were used to search the
MS/MS data. The number of significant peptide hits is compared
between the different databases. When searching against the NCBInr
database most proteins were identified with only one significant
peptide hit. In contrast when using the tardigrade protein database
most proteins were represented by two or more significant peptides.
doi:10.1371/journal.pone.0009502.g010
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Unique proteins, when analyzed on the 2D gel, often show

multiple spots due to posttranslational modifications. Proteins of

the vitellogenin family are widely distributed on the 2D gel and

show pI as well as molecular weight shifts, which are due to

modification through cleavage and to different PTMs like

glycosylation and phosphorylation during development of oocytes.

Ongoing experiments to detect PTMs using different fluorescence

staining methods like ProQ-Emerald for the detection of

glycoproteins and ProQ-Diamond for the detection of phospho-

proteins indicate that these modifications indeed occur in

tardigrades (data not shown).

Prediction of Functional Domains in Proteins with Yet
Unknown Functions

36 proteins which could not be identified by BLAST searches

were further examined looking for matching functional protein

domains with DomainSweep. The function of the following two

spots could be revealed with high confidence (Table 3): spot F63

seems to belong to the ‘‘tumor protein D52’’ interpro family

(IPR007327). The hD52 gene was originally identified through its

elevated expression level in human breast carcinoma, but cloning

of D52 homologues from other species has indicated that D52 may

play roles in calcium-mediated signal transduction and cell

proliferation. Regarding the taxonomic neighbours of the

tardigrades, one member in C. elegans and 10 members in

Drosophila melanogaster are reported by Interpro for this family.

Spot C95 seems to belong to the family ‘‘glucose/ribitol

dehydrogenase’’ (IPR002347). 80 members both in C. elegans and

in Drosophila melanogaster are reported for this family. 28 putative

hits were found associated with other spots. These protein hits are

putative candidates and therefore less reliable. A comprehensive

protein database of M. tardigradum as the result of our ongoing

cDNA sequencing will help us to evaluate these candidates.

Conclusion
In this study we present for the first time a comprehensive

proteome map of M. tardigradum. A full description of proteins

present in the active state provides a valuable basis for future

studies. Most importantly, the protein reference map allows us to

undertake quantitative proteomics analysis to detecting proteins

with different expression levels in the active versus the anhydro-

biotic state. In particular, our workflow is fully compatible with the

application of 2D difference gel electrophoresis (2D DIGE), which

is one technique allowing sensitive analysis of differences in the

protein expression levels. This differential analysis on the protein

level will help us to understand survival mechanisms in

anhydrobiotic organisms and eventually to develop new methods

for preservation of biological materials.

Materials and Methods

Tardigrade Culture and Sampling
Tardigardes of the species M. tardigradum Doyère 1840 were

maintained in a laboratory culture. The culture was grown on

agarose plates (3%) (peqGOLD Universal Agarose, peqLAB,

Erlangen Germany) covered with VolvicTM water (Danone

Waters, Wiesbaden, Germany) at 20uC. The juveniles were fed

on green algae Chlorogonium elongatum, the adults with bdelloid

rotifers Philodina citrina. The specimens for the experiments were all

of middle-age, thus effects of age can be excluded. Tardigrades

were starved over 3 days and washed several times with VolvicTM

water to avoid contamination with food-organisms. Subsequently

the animals were transferred to microliter tubes (200 individuals

per tube) and surrounding water was reduced to approx. 1–2 ml.

An active state (I) according to Schill et al. [18] was investigated in

this work. All samples were shock frozen in liquid nitrogen and

stored at 280uC. 200 individuals are defined as one aliquot. Other

tardigrade species (Paramacrobiotus richtersi, Paramacrobiotus ‘‘richtersi

group’’ 3, Macrobiotus tonollii, Paramacrobiotus ‘‘richtersi group’’ 2 and

Paramacrobiotus ‘‘richtersi group’’ 1) used for immunodetection of

hsp60 were prepared in the same way.

Sample Preparation for Gel Electrophoresis
To optimize the sample preparation different precipitation

methods have been tested. Chloroform/methanol and TCA/

acetone precipitations were performed as described by Wessel,

Fluegge [46] and Görg [47], respectively. We used also the

commercially available precipitation kit (clean-up kit from GE

Healthcare). Comparing the result of different precipitation

protocols on a 1D gel we decided to homogenise the tardigrades

directly in ice cold lysis buffer and avoid any precipitation steps. The

animals (200 individuals) were homogenised directly in 60 ml lysis

buffer (containing 8 M urea, 4% CHAPS, 30 mM Tris, pH 8,5) by

ultrasonication (SONOPULS, HD3100, Bandelin Electronic) with

45% amplitude intensity and 1–0.5 sec intervals. The lysis buffer

contained a Protease Inhibitor Mix (GE Healthcare) to inhibit

serine, cysteine and calpain proteases. After homogenisation the

samples were stored at 280uC. For gel electrophoresis insoluble

particles were removed by centrifugation for 2 min at 14,000 g and

the supernatant was quantified using BCA mini-assay.

One Dimensional Gel Electrophoresis and Western
Blotting

To compare the efficiency of different sample preparation

methods we separated approx. 10 mg total protein extract on a 1D

gel. The gel was stained with protein staining solution (PageBlue

from Fermentas). For Western blotting a total protein extract of

tardigrades (15–20 ug) was separated on a NuPAGETM 4–12%

Bis-Tris mini gel (Invitrogen) using MES running buffer. 200 V

were applied until the bromophenol blue front had reached the

bottom of the gel (approx. 40 min). Separated proteins were

electro transferred onto PVDF membrane for 1.5 h at maximum

50 mA (0.8/cm2) in a semi-dry transfer unit (HoeferTM TE 77)

using following transfer solution: 24 mM Tris, 192 mM glycine

and 10% methanol. The PVDF membrane was incubated in a

blocking buffer containing 5% non-fat milk, 0.1% Tween20 in

PBS. As primary antibodies we used anti actin pan Ab-5 (dianova),

anti hsp 60 Ab (D307) (Cell signaling), anti hsp70 Ab (BD

Biosciences Pharmingen) and anti a-Tubulin Ab (Sigma).

For molecular weight determination of the target proteins on

film we used ECL DualVue marker (GE-Healthcare). Immuno-

reaction was detected using the ECL Western Blotting Detection

kit from GE Healthcare. Images were acquired using an Image

Scanner Model UTA-1100 (Amersham Biosciences).

Two Dimensional Gel Electrophoresis
For 2D gel preparation we added 60 ml 2x sample buffer (7 M

urea, 2 M thiourea, 2% CHAPS, 2% DTT, 2% IPG-buffer 3–

11 NL) to each aliquot and incubated by shaking for 30 min at

25uC. To avoid streaking on the gels we used 330 ml destreaking

buffer (GE Healthcare) instead of rehydration buffer, to which we

added 2% IPG-buffer (pI 3–11). Samples were incubated by

shaking for 30 min at 25uC. We loaded 100 mg protein on

analytical gels and 330 mg on preparative gel.

Strip loading. Loading of proteins was performed during

strip rehydration with the recommended volume (450 ml for 24 cm

strips) over night.
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IEF conditions. First dimension isoelectric focusing (IEF) was

performed, using 24 cm long IPG strips with non-linear gradients

from pH 3–11 and an Ettan IPGphor instrument and proceeded

for 46.4 kVh with the following running protocol: 3 h at 300 V,

6 h at 500 V, 8-h gradient up to 1000 V, 3-h gradient up to

8000 V and 3 h at 8000 V. Strips were either immediately used

for the second dimension or stored at 280uC.

Second dimension. Strips were equilibrated in 6 M urea,

2% SDS, 30% glycerol, 0.375 M Tris-HCl pH 8.8, 0.002%

bromophenol blue and 10 mg/ml DTT for 15 min, followed by a

second equilibration step with the same buffer containing 25 mg/

ml iodoacetamide instead of DTT, also for 15 min.

Strips were loaded on 12% SDS-gels with an overlay of agarose

solution (0,5 mg/100 ml electrophoresis buffer). The second

dimension was performed using an Ettan Dalttwelve electropho-

resis system (GE Healthcare). Separation was carried out at 1.5

watt/1.5 mm thick gel until the bromophenol blue reached the

bottom of the gel (approx. 18 h).

Silver staining of proteins and image analysis. Proteins

on analytical gels were visualized by destructive silver staining

according to Blum [48]. Additionally, we performed a silver stain

compatible with mass spectrometric analysis described by Sinha

[49] for preparative gels. Images were acquired using an Image

Scanner Model UTA-1100 (Amersham Biosciences).

Protein Identification
In-gel digestion. Protein spots were excised semi-manually

with a spot picker (GelPal, Genetix) following non-destructive

silver staining and stored at 280uC after removing water. Gel

pieces were reduced, alkylated and in-gel digested with trypsin.

Briefly, after incubation with 150 ml water at 42uC for 8 min,

water was removed (washing step) and gel pieces were shrunk by

dehydration with 150 ml 40 mM NH4HCO3/ethanol 50:50 (v/v)

at 42uC for 5 min in a thermo mixer (600 rpm). The solution was

removed and the proteins were reduced with 50 ml 10 mM

dithiothreitol in 40 mM NH4HCO3 for 1 h at 56uC. The solution

was removed and gel pieces were incubated with 150 ml 40 mM

NH4HCO3 for 5 min at 42uC. After removing the solution gel

pieces were alkylated with 100 ml 55 mM iodoacetamide in

40 mM NH4HCO3 for 30 min at 25uC in the dark, followed by

three alternating washing steps each with 150 ml of 40 mM

NH4HCO3 and ethanol for 5 min at 37uC. Gel pieces were then

dehydrated with 100 ml neat acetonitrile for 1 min at room

temperature, dried for 15 min and subsequently rehydrated with

porcine trypsin (sequencing grade, Promega, Mannheim,

Germany) with the minimal volume sufficient to cover the gel

pieces after rehydration (100 ng trypsin in 40 mM NH4HCO3).

Samples were incubated over night at 37uC.

Extraction. After digestion over night the supernatant was

collected in PCR-tubes while gel pieces were subjected to four

further extraction steps. Gel pieces were sonicated for 5 min in

acetonitrile/0.1% TFA 50:50 (v/v). After centrifugation the

supernatant was collected and gel pieces were sonicated for

5 min in acetonitrile. After collecting the supernatant gel pieces

were sonicated for 5 min in 0.1% TFA followed by an extraction

step again with acetonitrile. The combined solutions were dried in

a speed-vac at 37uC for 2 h. Peptides were redissolved in 6 ml

0.1% TFA by sonication for 5 min and applied for ESI-MS/MS

analysis.

ESI-MS/MS analysis and database search. NanoLC-

ESI-MS/MS was performed on a Qtof Ultima mass spectrometer

(Waters) coupled on-line to a nanoLC system (CapLC, Waters).

For each measurement 5 ml of the digested sample was injected.

Peptides were trapped on a Trapping guard C18- AQ,

10 mm60.3 mm, particle size 5 mm (Dr. Maisch). The liquid

chromatography separation was performed at a flow rate of

200 nl/min on a Reprosil C18-AQ column, 150 mm675 mm,

particle size 3 mm (Dr. Maisch GmbH). The following linear

gradient was applied: 5% B for 5 min, from 5 to 15% B in 5 min,

from 15 to 40% B in 25 min, from 40 to 60% B in 15 min and

finally 60 to 95% B in 5 min. Solvent A contains 94.9% water,

5% acetonitrile, 0.1% formic acid, solvent B contains 95%

acetonitrile, 4.9% water and 0.1% ml formic acid. The LC-ESI-

MS/MS device was adjusted with a PicoTip Emitter (New

Objective, Woburn, MA) fitted on a Z-spray nanoESI interface

(Waters). Spectra were collected in the positive ion mode. The

capillary voltage was set to 2400 V and the cone voltage was set

to 80 V. Data acquisition was controlled by MassLynxTM 4.0

software (Waters). Low-energy collision-induced dissociation

(CID) was performed using argon as a collision gas (pressure in

the collision cell was set to 561025 mbar), and the collision

energy was in the range of 25–40 eV and optimized for all

precursor ions dependent on their charge state and molecular

weight. Mass Lynx raw data files were processed with Protein

Lynx Global Server 2.2 software (Waters). Deisotoping was

performed using the MaxEnt3 algorithm.

The obtained MS/MS spectra were searched against the

publicly available NCBInr database using the MASCOT algo-

rithm version 2.0 (Matrix Science, London, UK). The mass

tolerance was set to 0.1 Da for fragment ions and 200 ppm for

precursor ions. No fragment ions score cutoff was applied. The

following search parameters were selected: variable modification

due to methionine oxidation, fixed cysteine modification with the

carbamidomethyl-side chain, one missed cleavage site in the case

of incomplete trypsin hydrolysis. The following settings were

applied: minimum protein score .53, minimum number of

peptides $1. Furthermore, protein hits were taken as identified if a

minimum of one peptide had an individual ion score exceeding the

MASCOT identity threshold. Under the applied search param-

eters a sum MASCOT score of .53 refers to a match probability

of p,0.05, where p is the probability that the observed match is a

random event. Redundancy of proteins that appeared in the

database under different names and accession numbers was

eliminated. Additionally we searched against the M. tardigradum

EST and protein database (see below) to identify sequences not

present in the NCBInr databases. The following settings were

applied: minimum protein score .14 for the EST and .27 for the

clustered EST database (p,0.05). Other parameters were as

described for the NCBInr searches.

Generation of the Tardigrade EST Database
cDNA libraries from mRNA from tardigrades in different states

(active, inactive, transition states) were prepared and sequenced

(Mali et al, submitted data). The obtained EST sequences were

cleaned from vector sequences using Seqclean against UniVec-

database from NCBI (version 12. September 2008, Kitts et al.,

unpublished). Repeats within the cleaned ESTs were masked using

the online service RepeatMasker (version 3.2.6, RM-20080801,

Smit et al., unpublished data) followed by a second Seqclean run

to eliminate low quality and short sequences. The assembly was

performed using cap3 [50] with clipping enabled and resulted in

3318 Unigenes (2500 singlets, 818 contigs). Identification of

ribosomal sequences was done using a BlastN-search [51] against

the Silva-DB (only eukaryotic sequences, Silva95, [52]) and an E-

value cutoff of 1e-3 and resulted in 46 sequences which showed

high similarity to ribosomal sequences. Unigenes coding for known

proteins were identified using a BlastX search against Uniprot/

Swissprot (version 14.1, September 2008), Uniprot/TrEMBL
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(version 56.1, September 2008, The UniProt Consortium, 2008)

and NRDB (version 12. September 2008,) with an E-value cutoff

of 1e-3 and a hmmer-search against PFAM database (release 22,

[53]) with an E-value cutoff of 0.1. Translation of Unigen

sequences which gave a BlastX or PFAM hit (1539/1889

sequences) into the corresponding frame and a six-frame

translation was performed using Virtual Ribosome (version 1.1

Feb-Mar, 2006, [54]). For six frame translation the read through

mode of Virtual Ribosome was used. Afterwards stop codons were

substituted by an undefined amino acid (X). All new sequences

have been deposited in GenBank. The accession numbers are

indicated in the Tables 2, 3 and S1 in the column ‘‘Tardigrade

specific Accession no.’’.

Classification of Proteins
For functional analysis of identified proteins we used Blast2GO

software, which consists of three main steps: blast to find

homologous sequences, mapping to collect GO-terms associated

to blast hits and annotation to assign functional terms to query

sequences from the pool of GO terms collected in the mapping

step [55]. Function assignment is based on GO database.

Sequence data of identified proteins were uploaded as a multiple

FASTA file to the Blast2GO software. We performed the blast step

against public database NCBI through blastp. Other parameters

were kept at default values: e-value threshold of 1e-3 and a

recovery of 20 hits per sequence. Furthermore, minimal alignment

length (hsp filter) was set to 33 to avoid hits with matching region

smaller than 100 nucleotides. QBlast-NCBI was set as Blast mode.

Furthermore, we have chosen an annotation configuration with an

e-value-Hit-filter of 1.0E-6, Annotation CutOff of 55 and GO

weight of 5. For visualizing the functional information (GO

categories: Molecular Function and Biological process) we used the

analysis tool of the Blast2GO software.

Protein Domain Analysis of Proteins without Annotation
Six frame translations of the Unigenes were run through the

DomainSweep pipeline [56] and the significant and putative hits

were collected. For each of the protein/domain databases used,

different thresholds and rules were established [56]. Domain hits

are listed as ‘significant’

i. if two or more hits belong to the same INTERPRO [57]

family. The task compares all true positive hits of the different

protein family databases grouping together those hits, which

are members of the same INTERPRO family/domain.

ii. if the motif shows the same order as described in PRINTS

[58] or BLOCKS [59]. Both databases characterize a protein

family with a group of highly conserved motifs/segments in a

well-defined order. The task compares the order of the

identified true positive hits with the order described in the

corresponding PRINTS or BLOCKS entry. Only hits in

correct order are accepted.

All other hits above the trusted thresholds are listed as ‘putative’.

By comparing the peptides which were identified by mass

spectrometry with the six translations, the correct frame and the

associated domain information was listed.

Supporting Information

Table S1 Blast2GO analysis of identified proteins. Spot number,

protein annotation, accession number and GO information in all

three categories molecular function, biological process and cellular

component are listed.

Found at: doi:10.1371/journal.pone.0009502.s001 (0.16 MB

XLS)
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