
CMPLServer
An open source approach for distributed and grid optimisation

Mike Steglich
Technical University of Applied Sciences Wildau

Hochschulring 1, D-15745 Wildau, Germany
E-mail: mike.steglich@th-wildau.de

KEYWORDS
Mathematical Modelling Language, Distributed and
Grid Optimisation

ABSTRACT

This paper describes CMPLServer, an XML-RPC-based
web service for distributed and grid optimisation for
CMPL (Coin|Coliop Mathematical Programming Lan-
guage) which is a mathematical programming language
as well as a system for mathematical programming and
optimisation of linear optimisation problems.

1 INTRODUCTION

Since the change in information and communication
technologies over the last couple of years, Operations
Research has been faced with new user needs. For ex-
ample, the increasing use of mobile devices to make and
analyse decisions requires Operations Research soft-
ware that provides remote access to databases, model-
ling and optimisation software. Due to these demands, a
lot of distributed optimisation approaches like the
NEOS Server (Czyzyk et al. 1998), that be can used via
a lot of different interface including the Kestrel interface
(Dolan et al. 2008), commercial solutions like Gurobi
Cloud, the CPLEX Enterprise Server and FICO
XPRESS-Insight and also open source approaches like
COIN-OR Optimization Services (Fourer et al. 2010)
have appeared.

CMPL (<Coin|Coliop>Mathematical Programming
Language) is also faced with these new challenges.
Therefore, the CMPLServer was created as an open
source approach for distributed and grid optimisation.
The main targets are to ensure a high performance and a
high reliability and to enable CMPL users to start and
use CMPLServer as easily as possible.

CMPL is a mathematical programming language and
a system for mathematical programming and optimisa-
tion of linear optimisation problems. CMPL executes
CBC, GLPK, Gurobi, SCIP and CPLEX directly to
solve the generated model instance. Since it is also pos-
sible to transform the mathematical problem into MPS,
Free-MPS or OSiL files, alternative solvers can also be
used. CMPL contains pyCMPL and jCMPL as applica-
tion programming interfaces (API’s) for Python and
Java and is available for most of the relevant operating
systems (Windows, OS X and Linux). CMPL is a
COIN-OR project initiated by the Technical University
of Applied Sciences Wildau and the Institute for Opera-
tions Research and Business Management at the Martin
Luther University Halle-Wittenberg. (Steglich and

Schleiff 2010) The CMPL distribution is available at
http://coliop.org.

In this article, the CMPLServer which is an XML-
RPC-based web service for distributed and grid optimi-
sation is discussed. After an overview of the main func-
tionalities in section 2, the XML-based file formats
(CmplInstance, CmplSolutions, CmplMes-
sages, CmplInfo) for the communication between a
CMPLServer and its clients are described in section 3.
In section 4 the single server mode including the syn-
chronous and the asynchronous mode is explained. All
these distributed optimisation procedures require a one-
to-one connection between a CMPLServer and the cli-
ent. Therefore, section 5 discusses how CMPLServers
from several locations can be coupled to one “virtual
CMPLServer”, how a client can connect with it and how
optimisation jobs are coordinated within the CMPL-
Server grid. In the following section 6, is presented how
a high reliability can be ensured by different approach-
es. The last section, number 7, describes an analysis of
the positive effects of shipping optimisation problems to
a CMPLServer or into a grid of CMPLServers versus
the corresponding network traffic.

2 CMPLSERVER IN A GLANCE

The CMPLServer is an XML-RPC-based web service
for distributed and grid optimisation. XML-RPC pro-
vides XML based procedures for Remote Procedure
Calls (RPC) which are transmitted between a client and
a server via HTTP. (Laurent et al. 2001, p. 1) XML-
RPC was chosen because it is less resource consuming
than other protocols like SOAP or REST due to its sim-
pler functionalities.

As shown in Figure 1 a CMPLServer can be used in
a single server mode or in a grid mode. Both modes can
be understood as distributed systems “in which hard-
ware and software components located at networks
computers communicate and coordinate their actions
only by passing messages”. (Coulouris et al. 2012, p. 2)
Distributed optimisation is in this meaning interpretable
as a distributed system that can be used for solving op-
timisation problems. (Kshemkalyani and Singhal 2008,
p. 1; Fourer et al. 2010)

In the single server mode only one CMPLServer ex-
ists in the network and can be accessed synchronously
or asynchronously by the clients. The client sends the
model to the CMPLServer and then waits for the results.
If the model is feasible and an optimal solution is found
the solution(s) can be received. If the model contains
syntax or other errors or if the model is not feasible
CMPL and solver messages can be obtained.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 9

Figure 1: Single server mode and grid mode.

Whereby in the synchronous mode the client has to wait
for the results and messages in one process after sending
the problem, a model can also be solved asynchronously
in several steps. After sending the model to the CMPL-
Server via the method send the server status can be
obtained with the method knock. When the CMPL-
Server is finished, the solution, the CMPL as well as the
solver states and messages can be received by the meth-
od retrieve. It is reasonable to use the single server
mode if a large model is formulated on a thin client in
order to solve it remotely on a CMPLServer that is in-
stalled on a high performance system.

The grid mode extends this approach by coupling
CMPLServers from several locations and at least one
coordinating CMPLGridScheduler to one “virtual
CMPLServer” as a grid computing system that can be
defined “as a system that coordinates distributed re-
sources using standard, open, general-purpose protocols
and interfaces to deliver non-trivial qualities of service.”
(Foster and Kesselman 2004, pos. 722) For the client
there does not appear any difference whether there is a
connection made to a single CMPLServer or to a
CMPLGrid. The client's model is connected with the
same functionalities as for a single CMPLServer to a
CMPLGridScheduler which is responsible for the load
balancing within the CMPLGrid and the assignment of
the model to one of the connected CMPLServers. After
this step the client is automatically connected to the
chosen CMPLServer for one optimisation run and the
model can be solved synchronously or asynchronously.
A CMPLGrid should be used for handling a huge
amount of large scale optimisation problems. An ex-

ample can be a simulation in which each agent has to
solve its own optimisation problem at several times. An
additional example for such a CMPLGrid application is
an optimisation web portal that provides a huge amount
of optimisation problems.

3 CMPL SPECIFIC XML FORMATS

The communication between a client and a server works
through XML-RPC and four CMPL-specific XML for-
mats for the communication between clients and serv-
ers. A CmplInstance file contains an optimisation
problem formulated in CMPL, the corresponding sets
and parameters in the CmplData file format as well as
all CMPL and solver options that belong to the CMPL
model. If the model is feasible and a solution is found,
then a CmplSolutions file contains the solution(s)
and the status of the invoked solver. If the model is not
feasible then only the solver's status and the solver mes-
sages are given in the CmplSolutions file. The
CmplMessages file is intended to provide the CMPL
status and (if existing) the CMPL error or warning mes-
sages. A CmplInfo file is an XML file that contains
(if requested) several statistics and the generated matrix
of the CMPL model. For all of these files the XSD
schemes are available at www.coliop.org/schemes.

This section is intended to describe these XML for-
mats by using the following simple linear programme:

311;0
20010510
17515105

221810
to subject

maximise

321

321

321

nx
xxx
xxx
xxx

n

(1)

(2)

(3)

(4)
This model can be formulated in matrix-vector form as
follows:

0x
bxa

xcT

to subject
maximise (5)

(6)
(7)

with

3

2

1

,200
175

10510
151055

,
15
10
5

x
x
x

xb

ac (8)

(9)

The first step to solve the model is to formulate a
CmplData file and a CMPL model. A CmplData file
is a plain text file that contains the definition of parame-
ters and sets with their values in a specific syntax. As
shown in the Listing 1 it is necessary to define two in-
dexing sets n and m (lines 1 and 2) used for the defini-
tions of the vectors c and b and the matrix a (lines 4-
6).

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 10

01
02
03
04
05
06

%n set <1..2>
%m set <1..3>

%c[m] < 15 18 22 >
%b[n] < 175 200 >
%a[n,m] < 5 10 15 10 5 10 >

Listing 1: CmplData example - test.cdat

The parameters and sets can be read into a CMPL
model by using the CMPL header argument %data as
shown in the CMPL model (Listing 2 - line 1). The set
m can then be used for the definition of the vector x of
the nonnegative, continuous variables (line 4). The next
lines are intended to create the objective function
profit and the constraints res in matrix-vector form
as in the terms (5)-(6) .

01
02
03
04
05
06
07
08

%data test.cdat

variables:
 x[m]: real[0..];
objectives:
 profit: c[]T * x[] -> max;
constraints:
res: a[,] * x[] <= b[];

Listing 2: CMPL example - test.cmpl

To solve this model on a CMPLServer located at
http://10.0.1.52:8008 and to to save the gen-
erated matrix and also some statistics the following
command has to be executed:

cmpl test.cmpl ↵
 -cmplUrl http://10.0.1.52:8008 ↵

-matrix "test.mat" -s "test.stat"

Figure 2 gives an overview of the main working steps
of solving a CMPL model on a CMPLServer. In the first
step CMPL writes automatically all model relevant in-
formation (CMPL and CmplData files, CMPL and
solver options) in a CmplInstance file and sends it
to the connected CMPLServer, where the included
CMPL model and the corresponding CmplData files
are parsed and translated into a Free-MPS file.

As shown in Listing 3 for the given example a
CmplInstance file consists of three major sections.
The <general> section contains the name of the
problem and the jobId that is received automatically
while connecting the CMPLServer (lines 3-6). The
<options> section consists of the CMPL and the
solver options that a user has specified on the command
line (lines 7-11). The <problemFiles> section is
indented to store the CMPL file(s) and all corresponding
CmplData files. The CMPL example file (Listing 2) is
included in the CmplInstance file in the lines 13-21
followed by the corresponding CmplData file (Listing
1) in the lines 22-19.

To avoid misinterpretations of some special charac-
ters while reading and parsing the CmplInstance on

the CMPLServer the content of the CMPL model and
the CmplData files are automatically unescaped.

Figure 2: Single server mode and grid mode

The generated Free-MPS file and the solver specific
parameters are handed over to the chosen solver that is
executed directly. If the problem is feasible and an op-
timal solution is found this solution is read in the form
of the solver specific result format. The CMPLServer
then automatically creates three XML-based files
(CmplSolutions, CmplMessages, CmplInfo)
and sends them to the CMPL client. After that, the user
can obtain (if an optimal solution is found) the standard
solution report, can save the solution(s) in several for-
mats and is also able to get the generated matrix and
some statistics. If the CMPL model contains errors, then
the user retrieves the CMPL messages automatically.

CmplSolutions is an XML-based format for rep-
resenting the general status and the solution(s) if the
problem is feasible and one or more solutions are found.
As shown in Listing 4 a CmplSolutions file con-
tains a <general> block for general information
about the solved problem and a <solutions> block
for the results of all solutions found including the varia-
bles and constraints. Each entry in the variables and
constraints section contains information about the index,
the name, the type, the activity, the bounds and the mar-
ginal (shadow prices or reduced costs).

CmplMessages is an XML-based format for rep-
resenting the general status and (if existing) the errors or
warnings of the transformation of a CMPL model in one
of the supported output files. A CmplMessages file
consists of two major sections. The <general> sec-
tion describes the general status, the name of the model
and a general message after the transformation. The
<messages> section contains one or more messages
about specific lines in the CMPL model.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 11

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<CmplInstance version="1.0">
<general>

<name>test.cmpl</name>
 <jobId>10.0.1.2-2014-01-05-17-05-23-496795</jobId>
</general>
<options>

<opt>%arg -cmplUrl http://10.0.1.52:8008</opt>
<opt>%arg -matrix "test.mat"</opt>
<opt>%arg -s "test.stat"</opt>

</options>
<problemFiles>

<file name="test.cmpl" type="cmplMain">
%data test.cdat
variables:

 x[m]: real[0..];
objectives:

 profit: c[]T * x[] -> max;
constraints:
 res: A[,] * x[] <= b[];

</file>
<file name="test.cdat" type="cmplData">

%n set <1..2>
%m set <1..3>

%c[m] < 15 18 22 >
%b[n] < 175 200 >
%A[n,m] < 5 10 15 10 5 10 >

</file>
 </problemFiles>
</CmplInstance>

Listing 3: CmplInstance example - test.cinst

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

17

18

19
20
21

22

23
24
25

<?xml version = "1.1" encoding="UTF-8" standalone="yes"?>
<CmplSolutions version="1.0">
<general>

<instanceName>test.cmpl</instanceName>
<nrOfVariables>3</nrOfVariables>
<nrOfConstraints>2</nrOfConstraints>
<objectiveName>profit</objectiveName>
<objectiveSense>max</objectiveSense>
<nrOfSolutions>1</nrOfSolutions>
<solverName>CBC</solverName>
<variablesDisplayOptions>(all)</variablesDisplayOptions>
<constraintsDisplayOptions>(all)</constraintsDisplayOptions>

</general>
<solution idx="0" status="optimal" value="405">

<variables>
<variable idx="0" name="x[1]" type="C" activity="15" lowerBound="0"

upperBound="INF" marginal="0"/>
<variable idx="1" name="x[2]" type="C" activity="10" lowerBound="0"

upperBound="INF" marginal="0"/>
<variable idx="2" name="x[3]" type="C" activity="0" lowerBound="0"

upperBound="INF" marginal="-7"/>
</variables>
<linearConstraints>

<constraint idx="0" name="res[1]" type="L" activity="175"
lowerBound="-INF" upperBound="175" marginal="1.4"/>

<constraint idx="1" name="res[2]" type="L" activity="200"
lowerBound="-INF" upperBound="200" marginal="0.8"/>

</linearConstraints>
 </solution>
</CmplSolutions>

Listing 4: CmplSolution example - test.csol

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 12

After executing the CMPL example model, CMPL will
finish without errors. The general status is represented
in the following CmplMessages file test.cmsg
shown in Listing 5. If a wrong symbol name for the ma-
trix A[,] (e.g. a[,]) is used in line 11, CMPL would
be finished with errors represented in CmplMessages
file test.cmsg shown in Listing 6.

In case that a user requests some statistics or wants
to obtain the generated matrix a CmplInfo file is gen-
erated automatically and sent to the CMPL client.
CmplInfo is a simple XML file that contains several
statistics and the generated matrix of the CMPL model
as shown in Listing 7.

4 SINGLE SERVER MODE

In the single server mode only one CMPLServer ex-
ists in the network and can be connected by several
CMPL clients.

The first step to establish the single server mode is
to start the CMPLServer by typing the following com-
mand.

cmplServer -start [<port>]
 [-showLog]

Optionally, a port can be specified as a second argument
and the log file can be shown by using the command
line argument showLog. The behaviour of a CMPL-
Server can be influenced by editing the file cmpl-
Server.opt that is located in the CMPLServer instal-
lation folder. The example below shows the default val-
ues in this file.

cmplServerPort = 8008
maxProblems = 4
maxInactivityTime = 43200
serviceIntervall = 30
solvers = cbc glpk

The default port of the CMPLServer can be specified
with the parameter port. The parameter maxProb-
lems defines how many problems can be carried out
simultaneously. If more problems than maxProblems
are connected with the CMPLServer, the supernumerary
problems are assigned to the problem waiting queue and
automatically started if a running problem is finished or
cancelled. If a problem is inactive longer than defined
by the parameter maxInactivityTime it is can-
celled and deleted automatically by the CMPLServer.
This procedure as well as the problem waiting queue
handling are performed by a service thread that works
perpetual after a couple of seconds defined by the pa-
rameter serviceIntervall. With the parameter
solvers it can be specified which solvers are provid-
ed by the CMPLServer.

A running CMPLServer can be accessed by the
CMPL binary or via CMPL's Python and Java APIs that

contain CMPLServer clients. One can execute a CMPL
model remotely on a CMPLServer by using the com-
mand line argument -cmplUrl.

cmpl <problem>.cmpl -cmplUrl
 http://<ip-or-domain>:<port>

In this case CMPL uses the CMPLServer synchronous-
ly. That means CMPL waits for the results and messag-
es in one process right after sending the problem.

In pyCMPL and jCMPL programmes a CMPLServ-
er can be connected via the method Cmpl.con-
nect() and executed synchronously with the method
Cmpl.solve() or asynchronously by using the
methods Cmpl.send(), Cmpl.knock() and
Cmpl.retrieve(). These main functionalities are
illustrated in Figure 3.

Figure 3: Single server mode procedures

In the first step, the client connects the CMPLServer,
hands over the problem name and the solver with which
the problem shall be solved. Then the client receives the
status of the CMPLServer and also the jobId if the
status is CMPLSERVER_OK. The status equals CMPL-
SERVER_ERROR if the demanded solver is not sup-
ported or an error on the CMPLServer occurs.

The synchronous method Cmpl.solve() is a
bundle of the asynchronous methods Cmpl.send(),
Cmpl.knock() and Cmpl.retrieve().

Cmpl.send() sends a CmplInstance XML
string that contains all relevant information about the
CMPL model including the jobId. If the number of
running problems including the model sent is greater
than maxProblems the model is moved to the prob-
lem waiting queue and the CMPLServer returns the sta-
tus CMPLSERVER_BUSY. If the status is CMPLSERV-
ER_OK, then the CMPLServer starts the solving pro-
cess automatically. After that the status is set to PROB-
LEM_RUNNING.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 13

In the next step, the client asks the CMPLServer wheth-
er solving the problem is finished or not via
Cmpl.knock() whereby the jobId identifies the
problem and the CMPLServer returns the current status.
The client has to knock until the status is PROB-
LEM_FINISHED (or CMPLSERVER_ERROR). If the
status is CMPLSERVER_BUSY, the problem is put into
the problem waiting queue until an empty solving slot is
available or the maximum queuing time is reached. The
procedure then stops automatically.

If the status is equal to PROBLEM_FINISHED the
solution, the CMPL and the solver messages and if re-
quested some statistics can be received by using
Cmpl.retrieve(). The client sends its jobId and
then retrieves the CmplSolution, CmplMesages
and CmplInfo XML strings. If Cmpl.knock() re-
turns CMPLSERVER_ERROR, the process is stopped.

The CMPLServer can be stopped by typing the
command:

cmplServer -stop [<port>]

01
02
03
04
05
06
07
08

<?xml version="1.0" encoding="UTF-8"?>
<CmplMessages version="1.1">
<general>

<generalStatus>normal</generalStatus>
<instanceName>test.cmpl</instanceName>
<message>cmpl finished normal</message>

 </general>
</CmplMessages>

Listing 5: CmplMessages example without errors and warnings: test.cmsg

01
02
03
04
05
06
07
08
09

10
11

<?xml version="1.0" encoding="UTF-8"?>
<CmplMessages version="1.1">
<general>

<generalStatus>error</generalStatus>
<instanceName>test.cmpl</instanceName>
<message>cmpl finished with errors</message>

</general>
<messages numberOfMessages="1">

<message type="error" file="test.cmpl" line="11" description="syntax error,
unexpected SYMBOL_UNDEF"/>

 </messages>
</CmplMessages>

Listing 6: CmplMessages example with an error

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<?xml version="1.0" encoding="UTF-8"?>
<CmplInfo version="1.0">
<general>
 <instancename>test.cmpl</instancename>
<general>
<statistics file="test.stat">

File: /Users/mike/CmplServer/10.0.1.2-2014-01-05-17-05-23-496795/test.cmpl
3 Columns (variables), 3 Rows (constraints + objective function)
6 (100%) of 6 coefficients of the constraints are non-zero.

</statistics>
 <matrix file="test.mat">
Variable name x[1] x[2] x[3]
Variable type C C C

profit max 15 18 22
 Subject to RHS
res[1] L 5 10 15 175
res[2] L 10 5 10 200

Lower Bound 0 0 0
Upper Bound

</matrix>
</CmplInfo>

Listing 7: CmplInfo example - test.cinfo

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 14

5 GRID MODE

A CMPLGrid consists at least of one CMPLGridSched-
uler and usually a couple of CMPLServers that are con-
nected to at least one scheduler. A CMPLGridScheduler
is the gateway to the CMPLGrid for the clients and has
to coordinate the traffic in the grid. That means it is re-
sponsible for the load balancing within the CMPLGrid
and the assignment of the models to the connected
CMPLServers. After receiving a model from a CMPL-
GridScheduler a CMPLServer communicates directly
with the client to receive the model, to solve it and to
send (if the problem is feasible) the solution(s), the
CMPL and solver messages and if requested some in-
formation to the client. After these steps the client is
disconnected automatically and the CMPLServer is
waiting for the next problem from a CMPLGridSched-
uler.

The first step to start a CMPLGrid is to execute one
or more CMPLGridSchedulers by typing the command:

cmplServer –startScheduler
 [<port>] [-showLog]

As for the CMPLServers the parameter of a
CMPLGridScheduler can be edited in the file cmpl-
Server.opt. The relevant parameters for a CMPL-
GridScheduler with their default values are shown be-
low.

cmplServerPort = 8008
maxServerTries = 3
schedulerServiceIntervall = 0.1

The parameter port specifies the default port of the
CMPLGridScheduler. If one wants to run a CMPLSer-
ver on the same computer as the CMPLGridScheduler
then the server needs to be started with a different port
via command line argument. Since the CMPL-
GridScheduler has to call functions provided by con-
nected CMPLServers with a high availability and failo-
ver, the CMPLGridScheduler repeats failed CMPLSer-
ver calls whereby the number of tries are specified by
the parameter maxServerTries. There is also a ser-
vice thread that works permanently after a couple of
seconds defined by the parameter serviceInter-
vall.

After running one or more CMPLGridSchedulers,
the involved CMPLServers can be started by typing the
following command as also shown in Figure 4.

cmplServer -startInGrid [<port>]
 [-showLog]

In addition to the described parameters in
cmplServer.opt the following parameters are nec-
essary for running a CMPLServer in a CMPLGrid.

...
maxServerTries = 3
performanceIndex = 1
cmplGridScheduler =
http://10.0.1.52:8008 4

Figure 4: Start CMPLServer in grid mode

A CMPLServer in a CMPLGrid also has to call func-
tions provided by a CMPLGridScheduler. Due to a
maximum availability and failover the maximum num-
ber of tries of failed CMPLGridScheduler calls are spec-
ified with the parameter maxServerTries. Assum-
ing heterogeneous hardware for the CMPLServers in a
CMPLGrid it is necessary to identify several perfor-
mance levels of the invoked CMPLServers for a reason-
able load balancing. This can be done by the parameter
performanceIndex that influences the load balanc-
ing function directly. The involved operators of the
CMPLServers and the CMPLGridScheduler(s) should
specify standardised performance classes used within
the entire CMPLGrid with the simple rule: the higher
the performance class, the higher the perform-
anceIndex. The parameter cmplGridScheduler
is intended to specify the CMPLGridScheduler with
which the CMPLServer is to be connected. The first
argument is the URL of the scheduler. The second pa-
rameter defines the maximum number of parallel prob-
lems that the CMPLServer provides to this
CMPLGridScheduler. If a CMPLServer should be con-
nected to more than one scheduler one entry per
CMPLGridScheduler is required.

While connecting the CMPLGridScheduler the
CMPLServer sends its port, the maximum number of
provided problems and its performance index. It re-
ceives the status of the CMPLGridScheduler and a
serverId. Possible states for connecting a CMPL-
Server are CMPLGRID_SCHEDULER_OK or CMPL-
GRID_SCHEDULER_ERROR.

Now a client can connect the CMPLGrid in the same
way as a client connects a single CMPLServer either by
using the CMPL binary

cmpl <problem>.cmpl -cmplUrl
 http://<ip-or-domain>:<port>

or through the method Cmpl.connect() in pyCmpl
and jCMPL programmes.

The client automatically sends the name of the prob-
lem and the name of the solver with which the problem
should be solved to the CMPLGridScheduler.

If the solver is not available in the CMPLGrid the
CMPLGridScheduler returns CMPLSERVER_ERROR.
The status CMPLGRID_SCHEDULER_BUSY occurs
when the grid is busy and the problem is assigned to the
problem waiting queue. Otherwise, the CMPLGrid-

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 15

Scheduler returns the status CMPLGRID_SCHED-
ULER_OK, the serverUrl of the CMPLServer on
which the problem will be solved and the jobId of the
problem. This CMPLServer is determined on the basis
of the load balancing function that is shown in Figure
Figure 5. Per server that is providing the requested solv-
er the current capacity factor is calculated by the rela-
tionship between the number of the current empty prob-
lems and the maximum number of provided problems.

Figure 5: Load balancing

The number of empty problems is monitored by the
CMPLGridScheduler with a lower bound of zero and an
upper bound equal to the maximum number of provided
problems. This parameter is decreased if the CMPL-
Server is taking over a problem and it is increased when
the CMPLServer has finished the problem or the prob-
lem is cancelled. The idea is to send problems tenden-
tiously to those CMPLServer with the highest empty
capacity. To include the different performance levels of
the invoked CMPLServers in the load balancing deci-
sion, the current capacity factor is multiplied by the per-
formance index. The result is the load balancing factor
and the CMPLServer with the highest load balancing
factor is assigned to the client to solve the problem. This
CMPLServer then gets the jobId of the CMPL prob-
lem by the CMPLGridServer in order to take over all
relevant processes to solve this problem. Afterwards,
the client is automatically connected to this CMPLServ-
er.

The problem waiting queue handling is organised by
the CMPLGridScheduler service thread that assigns the
waiting problems automatically to CMPLServers by
using the load balancing functionalities as described
above. The waiting clients either ask automatically in
the synchronous mode or manually in the asynchronous
mode both through Cmpl.knock() until the received
status is not equal to CMPLGRID_SCHEDULER_BUSY.

The next steps to solve the problem synchronously
or asynchronously on the CMPLServer are similar to the
procedures in the single server mode as shown Figure 6.

The methods Cmpl.send(), Cmpl.knock()
and Cmpl.retrieve() are used to send the problem
to the CMPLServer, to knock for the current status, to
retrieve the solution and the CMPL messages as well as

the solver messages and (if requested) some statistics.
The main differences to the single server mode are that
the CMPLServer calls the CMPLServerGrid to add an
empty problem slot after finishing solving the problem
and that the client is disconnected automatically from
the CMPLServer after retrieving the solution, messages
and statistics.

Figure 6: CmplGrid procedures

The CmplGridScheduler and the CmplServers can be
stopped by typing the command:

cmplServer -stop [<port>]

6 RELIABILITY AND FAILOVER

A distributed optimisation or a grid optimisation system
is usually implemented in a heterogeneous environment.
The network nodes can be installed on different hard-
ware as well as on different operating systems. This fact
could cause some disturbances within the optimisation
network that should be either avoided or reduced in
their negative impact on the optimisation processes.

Therefore, maximum reliability and failover are ad-
ditional important targets of the CMPLServer and the
CMPLGrid implementations. They are ensured by:

1. the problem queue handling on the CMPLGrid-
Scheduler and the CMPLServer,

2. multiple executions of failed server calls and
3. re-connections of problems to the CMPLGrid-

Scheduler if an assigned CMPLServer fails.

6.1 Problem queue handling
If a problem is connected to a CMPLServer or a CMPL-
GridScheduler and the number of running problems
including the model sent is greater than maxProb-
lems, it neither makes sense to cancel the problem nor
to interrupt the solving process. Especially in case of an
iterating solving process with a couple of depending
problems it is the better way to refer the supernumerary
problems automatically to the problem waiting queue.

In the single server mode, the problem queue han-
dling is organised by the CMPLServer whilst in the grid
mode the CMPLGridScheduler(s) are responsible for it.
In both modes a problem stored in the problem waiting

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 16

queue has to wait until an empty solving slot is available
or the maximum queuing time is reached.

In the single server mode, the number of problems
that can be executed simultaneously on the particular
CMPLServer are defined by the parameter maxprob-
lems in the option file cmplServer.opt. With this
parameter it both should be avoided to overwhelm the
server and the super-proportional effort of managing a
huge amount of parallel problems. The first empty solv-
ing slot that appears when a running problem is finished
or cancelled, is taking over a waiting problem by using
the FIFO approach.

The number of simultaneously running problems in
a CMPLGrid is defined by the sum over all connected
CMPLServers of the maximum number of problems
provided by the servers. This parameter has to be de-
fined per CMPLServer in cmplServer.opt as sec-
ond argument in the entry cmplGridScheduler =
<url> <maxProblems>. The CMPLGridScheduler
counts the number of running problems per CMPLServ-
er in relation to its maximum number of provided prob-
lems. If it is not possible to find a connected CMPL-
Server with an empty solving slot, then the problem is
put to the problem waiting queue. In contrast to the sin-
gle server mode the problem which has been waiting
longest is not executed automatically by the first appear-
ing free CMPLServer. The next next running CMPL
problem is chosen by the described load balancing func-
tion over the set of CMPLServers that stated an empty
solving slot during two iterations of the CMPLGrid-
Scheduler service thread.

The client's maximum queuing time in seconds can
be specified with the CMPL command line argument
-maxQueuingTime <sec>. This argument can also
be set as CMPL header entry or in pyCMPL and jCMPL
with the method Cmpl.setOption([option]).
The default value is 300 seconds.

6.2 Multiple executions of failed server calls
To avoid that a single execution of a server method,
which fails due to network problems like socket errors
or others, cancels the entire process, all failed server
calls can be executed again several times.

As a necessary parameter the maximum number of
executions of failed server calls can be specified for the
clients with the CMPL command line argument
-maxServerTries <tries> or in the CMPL
model as CMPL header entry or in pyCMPL and
jCMPL by using Cmpl.setOption([option]).
The default value is 10.

The number of maximum executions of failed server
calls in the communication between the
CMPLGridScheduler and CMPLServers is defined in
cmplServer.opt with the entry maxServer-
Tries = <tries>.

An exemplary and simplified implementation of this
behaviour is shown in the pseudo code listing below
(Listing 9).

In a first step, the variable serverTries is as-
signed zero. The call of the server method (line 4) is
imbedded in an infinite loop (lines 2-13) and in a try-
except-block for the exception handling (lines 3-11). If
no exception occurs, then the loop is finished by the
break command in line 12. Otherwise serverTries
is incremented by 1. If the maximum number is not ex-
ceeded (line 7) the server method is called again (line
4). If serverTries is greater than maxServer-
Tries then the class variable Cmpl.status is set to
CMPLSERVER_ERROR and a CmplException is
raised that has to be handled in the code in which the
listing below is imbedded (lines 7-9).

6.3 Re-connections of failed problems to the
CMPLGridScheduler

Multiple server calls are mainly intended to prevent
network problems. But it could be also possible that
other problems caused by CMPLServers connected to a
CMPLGridScheduler (e.g. a failed execution of a solver,
file handling problems at a CMPLServer or the unpre-
dictable shutdown of a CMPLServer) occur. The idea to
handle such problems is to reconnect the particular
CMPL problem to the CMPLGridScheduler if the
CMPLServer fails and to assign the problem to another
CMPLServer automatically.

The pseudo code in Listing 9 describes a simplified
implementation of Cmpl.solve()only for the grid
mode to illustrate this approach.

As in the listing of the multiple server calls the vari-
able serverTries is assigned zero (line 1). The en-
tire method is also imbedded in an infinite loop (lines 2-
37) and the exception handling is organised as try-
except-block (lines 3-36).

Before Cmpl.solve() is called the client has to
execute Cmpl.connect() successfully. Therefore
the class variable Cmpl.status has to be unequal to
CMPLSERVER_ERROR and an additional execution of
Cmpl.connect() is not necessary in the first run of
Cmpl.solve() (lines 4-6).

It is possible that the entire CMPLGrid is busy
(CMPLGRID_SCHEDULER_BUSY) (line 8) and the
problem is moved to the CMPLGridScheduler problem
waiting queue. In this case the problem has to wait for
the next empty solving slot via Cmpl.knock() (line
10) until the CMPLGridScheduler returns the status
CMPLGRID_SCHEDULER_OK (line 9) or the waiting
time exceeds the maximum queuing time and a
CmplException is raised (lines 11-13).

After this loop the problem is automatically con-
nected to a CMPLServer within the CMPLGrid. The
class variable Cmpl.connectedToServer is as-
signed True (line 16) and the problem is sent to this
server through Cmpl.send() (line 18). The problem
then has to wait until the problem status is PROB-
LEM_FINISHED (lines 20-22). As soon as the problem
is finished, the solution(s), the CMPL and the solver
messages as well as (if requested) some statistics can be
retrieved via Cmpl.retrieve() (line 24). If no

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 17

CmplException or another exception appeared dur-
ing these procedures the infinite loop is left by the break
command in line 25.

If during these procedures a CmplException or
other exceptions occur this has to be handled in the ex-
cept block in the lines 27-36. The first step is to increase
the number of failed server call tries (line 28). If the
problem is connected to a CMPLServer and a
CmplException is raised on the server (status equals

CMPL_ERROR) then the client reports via CMPLGrid-
Scheduler.cmplServerFailed() that this
CMPLServer failed (line 30). This CMPLServer is then
excluded from the CMPLGridScheduler load balancing
until CMPLGridScheduler's service thread recognises
that this CMPLServer is able to take over problems
again.

If the number of failed server calls exceeds the max-
imum number of tries or the status is CMPL-

01
02
03
04
05
06
07
08
09
10
11
12
13

serverTries=0
while True do

try
callServerMethod()

except
serverTries+=1
if serverTries>maxServerTries then

status=CMPLSERVER_ERROR
raise CmplException("calling CmplServer function failed")

end if
end try
break

end while

Listing 9: Pseudo code for multiple executions of failed server calls

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

serverTries=0
while True do
try

if status==CMPLSERVER_ERROR then
 CmplGridScheduler.connect()
end if

if status==CMPLGRID_SCHEDULER_BUSY then
while status<>CMPLGRID_SCHEDULER_OK do
 CmplGridScheduler.knock()

if waitingTime()>=maxQueuingTime then
 raise Exception("max. queuing time is exceeded.")

end if
 end while
end if
connectedToServer=True

CmplServer.send()

while status<>PROBLEM_FINISHED do
 CmplServer.knock()
end while

CmplServer.retrieve()
break

except
serverTries+=1
if status==CMPL_ERROR and connectedToServer==True then

CmplGridScheduler.cmplServerFailed()
end if
if serverTries>maxServerTries or status==CMPLGRID_SCHEDULER_BUSY then

ExceptionHandling()
 exit
end if

 end try
end while

Listing 9: Re-connections of failed problems to the CMPLGridScheduler

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 18

GRID_SCHEDULER_BUSY because the maximum
queuing time is exceeded (line 32), the entire procedure
stops by doing the necessary exception handling and by
exiting the programme (lines 33-34).

Otherwise the problem has to pass the loop again.
That means that the problem is reconnected to the
CMPLGrid via CMPLGridScheduler.connect()
(lines 4-6) and the solving process starts again.

7 PERFORMANCE TESTS

One of the main targets of this project was to ensure a
high performance. This section describes a performance
test through that the performance and the efficiency of
the CMPLGrid is analysed.

There are two conflicting effects on the total compu-
ting time of a set of simultaneous problems.

The first positive effect is the decreased total com-
puting time due to the use of an increased number of
computing nodes in a grid of CMPLServers. The more
CMPLServers in a CMPLGrid exist the more compu-
ting nodes can be used and the number of problems that
have to be solved simultaneously on each node are de-
creased. It can be assumed that in an ideal environment
the total computing time declines linearly. This effect is
shown with an example in Table 1.

number of
optimisation

nodes

maximum
number of

parallel prob-
lems per node

normalised
theoretical
minimum

computation
time

1 10 100
2 5 50
3 4 40
4 3 30
5 2 20
Table 1: Theoretical computation time

Having scenarios in the range of one to up to five opti-
misation nodes the maximum number of problems is
halved in the scenario with two optimisation nodes and
then decreased by one problem per node by adding an
additional node. The normalised theoretical minimum
computation time corresponds with the number of the
optimisation nodes.

But this positive effect has to be paid by the in-
creased time spent on managing the problems within the
grid and by the network traffic times itself.

To analyse these two conflicting effects, a perfor-
mance test is realised in which the average total compu-
tation time and the average normalised computation
time of a pyCMPL script that executes ten identical
CMPL models simultaneously in separate threads are
measured for seven scenarios and five different CMPL
models. The first two scenarios are the standalone sce-
nario in which the problems are solved locally and the
single CMPLServer scenario in which one CMPLServer
takes over all optimisation tasks. The following scenari-
os are CMPLGrids with one CMPLGridScheduler coor-
dinating one to up to five CMPLServers. The parame-

ters of the CMPL models are shown in Table 2. In all
scenarios (excluding the standalone scenario) an addi-
tional network node works as the client for the
CMPLServer or the CMPLGrid. CBC was chosen as
solver for all scenarios.

All performance tests are made on a (self-made)
Raspberry Pi cluster computer that is shown in Figure
Figure 7. The Raspberry Pi is a low cost, credit-card
sized computer with a Broadcom BCM2835 system on a
chip. (http://www.raspberrypi.org/) A Raspberry Pi is
definitely not a good environment for optimisations due
to its restricted hardware but it is perfect for software
tests. It is possible to analyse all effects of shipping op-
timisation problems into a grid of CMPLServers and the
corresponding network traffic with a standardised hard-
ware that costs roughly USD 500.

Figure 7: Raspberry Pi cluster computer

As shown in Table 2 and in Figure 8 the CMPL models
vary in their size and in the average total computation
time. All models need more computation time in the
Scenario with one CMPLServer compared to the
standalone scenario. This effect is caused by the co-
ordinating effort on the CMPLServer and the additional
time which all models need for the network traffic be-
tween the client and the CMPLServer. By using a
CMPLGrid with one CMPLServer the average total
computation time is less than the time needed in the
single server scenario. The reason for this effect is that
the CMPLGridScheduler coordinates the models sent by
the client whereby the CMPLServer only solves the
problems whereby in the single server scenario the
CMPLServer is responsible for both coordinating and
solving the models. For all other scenarios it can be
shown that the average total computation time declines
by adding more optimisation nodes into the CMPLGrid
whereby it seems that the CMPLGrid scales linearly.
This behaviour can be proved with the average normal-
ised computation times shown in Figure 9.

The standalone scenario is the basis with a target of
100% normalised computation time.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 19

short name description number of varia-
bles

number of con-
straints

non zeros

mcdm Goal programming model with
Euclidean distance measure

74 (30 integer) 107 01 (3.80\%)

tsp18 Traveling salesman problem with
18 cities

341 (all integer) 308 1464 (1.39%)

tsp20 Traveling salesman problem with
20 cities

419 (all integer) 382 1826 (1.14%)

tsp22 Traveling salesman problem with
22 cities

505 (all integer) 464 2228 (0.95%)

warehouse Warehouse location problem 3600 (all integer) 3659 10680 (0.08%)
Table 2: Overview of the tested problems

Figure 8: Total computing time (averages)

Figure 9: Normalised computing time (averages)

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 20

All CMPL models in the single CMPLServer scenario
need more than 100% normalised computation time due
to the additional network traffic and the coordination
effort. The average normalised computation times of the
CMPLGrid scenario with only one CMPLServer are
approximately 100%. As mentioned before, this effect
mainly depends on the share of the coordination and
solving tasks between the scheduler and the server
whilst in the single server scenario the CMPLServer is
responsible for both. It seems somehow irritating that
some of the CMPL models need less than 100%. But
this effect is caused by the limited hardware of a Rasp-
berry Pi which is overwhelmed in the standalone scenar-
io by coordinating ten simultaneous models in separate
threads on a single-core CPU and by swapping the
memory. In all of the CMPLGrid scenarios all CMPL
models nearly meet the targets of the theoretical mini-
mum of the normalised computation time. That means
that a CMPLGrid scales linearly for all tested CMPL
models that vary in their size and structure.

It can be summarised that the target of a huge per-
formance and a high efficiency seems to be reached.

8 SUMMARY

Since the information and communication technologies
has been changed by the internet technologies, CMPL
was faced (as other optimisation software packages too)
with the necessity of distributed optimisation. There-
fore, the CMPLServer which is an XML-RPC-based
web service for distributed and grid optimisation was
created. The aim of this article was to explain
CMPLServer.

After an overview of the main functionalities, the
XML-based file formats (CmplInstance, CmplSo-
lutions, CmplMessages, CmplInfo) for the
communication between a CMPLServer and its clients
were described. A CmplInstance file contains an
optimisation problem formulated in CMPL, the corre-
sponding sets and parameters in the CmplData file
format as well as all CMPL and solver options that be-
long to the CMPL model. If the model is feasible and a
solution is found, then a CmplSolutions file con-
tains the solution(s) and the status of the invoked solver.
The CmplMessages file is intended to provide the
CMPL status and (if existing) the CMPL error or warn-
ing messages. A CmplInfo file is an XML file that
contains (if requested) several statistics and the generat-
ed matrix of the CMPL model.

A CMPLServer can be used in a single server mode
or in a grid mode which were described in the following
sections.

In the single server mode only one CMPLServer ex-
ists in the network and can be accessed synchronously
or asynchronously by the clients. The client sends the
model to the CMPLServer and then waits for the results.
If the model is feasible and an optimal solution is found
the solution(s) can be received. If the model contains
syntax or other errors or if the model is not feasible the
CMPL and solver messages can be obtained. Whereby

in the synchronous mode the client has to wait after
sending the problem for the results and messages in one
process. A model can also be solved asynchronously in
several steps. It seems reasonable to use the single serv-
er mode if a large model is formulated on a thin client in
order to solve it remotely on a CMPLServer that is in-
stalled on a high performance system.

The grid mode extends this single server mode by
coupling CMPLServers from several locations and at
least one coordinating CMPLGridScheduler. For the
client there does not appear any difference whether
there is a connection made to a single CMPLServer or
to a CMPLGrid. The client's model is connected with
the same functionalities as for a single CMPLServer to a
CMPLGridScheduler which is responsible for the load
balancing within the CMPLGrid and the assignment of
the model to one of the connected CMPLServers. After
this step the client is automatically connected to the
chosen CMPLServer for one optimisation run and the
model can be solved synchronously or asynchronously.
A CMPLGrid should be used for handling a huge
amount of large scale optimisation problems. An exam-
ple can be a simulation in which each agent has to solve
its own optimisation problem at several times. An addi-
tional example for such a CMPLGrid application is an
optimisation web portal that provides a huge amount of
optimisation problems.

A distributed optimisation or a grid optimisation sys-
tem is usually implemented in a heterogeneous envi-
ronment that could cause some disturbances within the
optimisation network. That should be either avoided or
reduced in their negative impact on the optimisation
processes. Therefore, maximum reliability and failover
are additional important targets of the CMPLServer and
the CMPLGrid implementations. In a next section, it
was explained that these targets can be ensured by the
problem queue handling on the CMPLGridScheduler
and the CMPLServer, multiple executions of failed
server calls and re-connections of problems to the
CMPLGridScheduler if an assigned CMPLServer fails.

In the last section, a performance test to measure the
performance and the efficiency of the CMPLGrid was
described. It was shown that CMPLGrid scales linearly
without an impact of the size or structure of the CMPL
model.

REFERENCES

Coulouris, G.F., J. Dollimore, T. Kindberg, G. Blai.
2012. Distributed Systems: Concepts and Design.
5th ed. Addison-Wesley.

Czyzyk, J., M. P. Mesnier, J. J. Moré. 1998. The neos
server. IEEE Journal on Computational Science and
Engineering 5 68–75.

Dolan, Elizabeth D., Robert Fourer, Jean-Pierre Goux,
Jason Sarich Todd S. Munson. 2008. Kestrel: An in-
terface from optimization modeling systems to the
neos server. INFORMS Journal on Computing 20
525–538.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 21

Foster, I., C. Kesselman. 2004. The Grid2: 2nd Edition:
Blueprint for a New Computing Infrastructure. Kin-
dle edition ed. Morgan Kaufmann Publishers Inc.

Fourer, Robert, Jun Ma, R. Kipp Martin. 2010. Optimi-
zation services: A framework for distributed opti-
mization. Operations Research 58 1624–1636.

Kshemkalyani, Ajay D., Mukesh Singhal. 2008. Dis-
tributed Computing: Principles, Algorithms, and
Systems. 1st ed. Cambridge University Press.

Laurent, S. St., J. Johnston, E. Dumbill. 2001. Pro-
gramming Web Services with XML-RPC. 1st ed.
O’Reilly.

Steglich, M. and Schleiff, Th. 2010. “CMPL: Coliop
Mathematical Programming Language.” In: Wildau-
er Schriftenreihe - Entscheidungsunterstützung und
Operations Research, Beitrag 1, Technische Hoch-
schule Wildau [FH].

AUTHOR BIOGRAPHIE

Mike Steglich is a Professor of Business Administra-
tion, Quantitative Methods and Management Account-

ing in the Faculty of Business, Com-
puting, Law of the Technical Univer-
sity of Applied Sciences Wildau in
Germany. He is also one of the au-
thors and distributors of the open
source project CMPL (<Coliop|Coin>
Mathematical Programming Lan-
guage).

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 4 (2016) Seite 22

