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Abstract. Since in-depth sensing indentation load–depth data of the entire
loading–unloading cycle are available, more information than a single hardness
value and an elastic modulus can be extracted from the experimental data.
The conventional hardness H(h) = F(h)/AC(h) and the differential hardness
Hd(h) = dF/dAC are calculated as continuous functions of depthh and compared
to each other in this paper (F : load, AC: contact area). It turns out that Hd

describes the momentary material resistance to deformation, whereasH integrates
over deformation states from first tip–sample contact to current penetration h.
This difference is particularly important for materials not homogeneous in depth
(e.g. layer systems), and for situations where time-dependent external factors
influence the momentary deformation resistance. Photoplasticity is considered
as an example for the latter.
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1. Introduction

In traditional microhardness testing, the area of the imprint A is measured after complete
unloading using some surface visualization technique, commonly light microscopy. In addition,
scanning electron microscopy and scanning force microscopy have been used recently [1]–
[3]. The hardness H as a measure of material resistance to irreversible deformation is then
calculated as H = F/A. The successful development of scanning probe microscopy, STM and
atomic force microscopy (AFM), between 1980 and 1990 gave rise to improvements in depth
sensing indentation [4]–[6], resulting in commercial instruments such as the Nanoindenter [7]
or the HYSITRON transducer [8]. In these instruments, load F and depth h are recorded
simultaneously, and from the obtained F(h)-function hardness and elastic modulus are derived.
The so-called Oliver–Pharr approach [9], a further development of ideas of Doerner and Nix [10],
became the standard technique of data analysis. After onset of plastic deformation (yielding), the
loading curve is an overlap of both plastic and elastic deformation, and the relative percentages
of these contributions to the depth are a priori not known. In contrast to this, the unloading
curve is commonly regarded as purely elastic, apart from situations with strong viscosity, as
found with polymers, or in the case of phase transformations that occur in Si, e.g. [11]. For
the reason of simple separation of plasticity and elasticity the unloading curve is used as the
main source of information in data analysis based on the Oliver–Pharr approach. The loading
curve—though containing a lot of, however, not easily accessible information—is commonly
not used for indentation experiment analysis.

In this paper we aim to assign each point of the loading curve a corresponding hardness
value. This requires knowledge of the contact depth hC as a function of the total penetration
depth h. This function can be obtained by performing a multicycling indent, i.e. a sequence
of n reloading/unloading cycles with increasing maximum load from cycle to cycle. The
multicycling delivers a set of n data pairs (hC, h) where each data pair (hC, h) is inferred from
one unloading process. The discrete data pairs (hC, h)i , i = 1, . . . , n, can be used to establish
a fit-function hC(h). Using this function the conventional hardness is calculated according to
H(h) = F(h)/AC(hC(h)) = F(h)/AC(h). AC is the contact area: the cross-sectional area of
the indenter when cut at a distance hC from its end. Normally AC is determined as a function of
hC in a calibration procedure [9], but replacing hC by the fit-function hC(h) delivers AC(h). We
called this deduction of a continuous hardness function H(h) from multicycling indentation the
‘hC(h) technique’. A brief description of the hC(h) technique is given in sections 3 and 4.1. A
more detailed discussion of the hC(h) technique can be found in [12].

Apart from conventional hardness H = F/AC a differential entity Hd = dF/dAC can be
considered. This ‘differential hardness’ is obviously more sensitive to the momentary material
resistance to indenter penetration than H(h), which involves the entire material response from
the first indenter–sample contact to penetration h. It is shown in section 4.3 that the difference
between H and Hd is proportional to (dH/dh). A separate consideration of both H and Hd

is therefore useful if the hardness is depth dependent. This is obviously the case for samples
which are inhomogeneous in depth (layer systems). However, homogeneous materials can also
exhibit hardness which depends on depth and consequently on indentation size. The material
displacement during indentation takes advantage of defects, as dislocations in ductile crystals,
micro- and nanocracks in very brittle matter (quasicrystals, for instance [13]), grain boundaries,
or free volumes (e.g. holes and pores in glass). With respect to homogeneous materials we can
differentiate between two situations.
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(i) The material contains a large number of defects. In this case, the deformation is based on
defects which already exist in the material. We obtain a hardness which is almost constant
provided that the indenter obeys self-similarity (as for pyramids or cones, but not in the
case of spheres).

(ii) The material contains a very small number of defects. Then the deformation is mainly
based on defects which are generated during indentation. Thus, the material does not
remain homogeneous after the beginning of indentation, and the hardness depends on the
indentation history. The contact pressure can rise to values close to the theoretical limit
of strength in very perfect single crystals, and then significantly drop after the sudden
formation of first dislocations (visible as yield steps, so-called ‘pop-in’-phenomena, in the
load–depth curve F(h) [14]–[16]). Once dislocations have been formed, they can easily
multiply and facilitate further deformation. However, dislocation mobility will decrease
with increasing dislocation density. Similar considerations can be made with respect to
cracks. A detailed discussion of the indentation size effect in bulk materials, thin films and
nanolayer composites can be found in [17]–[19].

Finally, the concept of differential hardness proves useful for samples, the momentary hardness
of which can be controlled by external factors, e.g. by illumination (photoplasticity) [20]–[22].

Since the calculation of both H(h) and Hd(h) requires knowledge of the hC(h)-function,
which in turn is derived from multicycling, this paper addresses the following considerations:

• multicycling and determination of hC(h),

• theoretical determination of H(h),

• theoretical determination of Hd(h),

• application of these concepts to selected samples.

2. Experimental details

All experiments were performed using a HYSITRON Triboscope attached to either a Nanoscope
E scanning force microscope of Digital Instruments (now VEECO) at TFH Wildau, or to a
Nanoscope III Dimension 3000 SFM system at TU Dresden (the latter being used for photoplastic
experiments only; see section 5 for a detailed discussion of this subject). The main device of the
Triboscope is an electrostatic transducer: a three-plate capacitor, the mid-plate of which carries
the indentation diamond mounted to a stylus. Application of a DC voltage up to 600 V results in
an electrostatic force (maximum load depending on capacitor plate spacing and area, maximum
6.3 mN in our configuration) that drives the diamond tip into the specimen. The change of the
capacitance is simultaneously recorded as a measure of penetration depth. The primary data
(voltage U , capacitance change �C) are converted into (load F , depth h), resulting in a F(h)

curve. After complete unloading the impression site can be scanned with the same tip. A more
detailed description of the indenter is given in [23].

We tested samples from three different materials: copper, diamond-like carbon (DLC)
coatings on silicon, and ZnSe. Details of sample characteristics are given below.

(i) Single-crystalline copper grown by the Bridgman technique at Universität Saarbrücken,
Werkstoffwissenschaften, Lehrstuhl Professor Vehoff. The crystal was oriented by the x-
ray Laue technique, cut into slices, ground and polished down to a finish of 0.25 µm using
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standard metallographic procedures, and finally electrochemically polished (60% H3PO4

solution, platinum electrode, 1.9 V DC at 20 ◦C for 30 s). This sample was used as a
representative of materials which are inherently homogeneous in depth, but show a distinct
indentation size effect owing to indentation-induced defects (dislocations).

(ii) (100)-oriented silicon wafers, coated by DLC. The DLC coating was performed using high-
current arc deposition (HCA technique) at Fraunhofer Institute IWS Dresden. The DLC
layers are amorphous. Two samples are considered here.

• Sample 1, coated with 960 nm DLC, as a representative of samples with extended elastic
contact, and where the layer is thick enough to obtain a hardness plateau (negligible
substrate impact).

• Sample 2, coated with 113 nm DLC. This sample exhibits both an extended region of
elastic contact, and at deeper penetrations a strong hardness drop due to the growing
influence of the substrate. It is thus a representative of samples with particularly strong
hardness gradients.

(iii) Photoplastic experiments were conducted on a single-crystalline ZnSe sample purchased
from Crystec GmbH, Berlin [24]. ZnSe is a II–VI-semiconductor the band-gap of which
(2.6 eV) allows the inducing of reversible hardness changes by visible light.

3. Multicycling testing

Multicycling testing refers to performing a sequence of n loading–unloading cycles in one
experiment at the same lateral position. It enables us to obtain hardness and elastic modulus
as depth-dependent data. Besides saving time, the data collection does not suffer from lateral
inhomogeneities of the sample. We should note that such a multicycling test takes much more
time than a single indent, hence drift correction is an important issue. In figure 1 (left) the
load–time regime of a multi-indent, comprising 18 cycles, is shown, whereas in the right part
of figure 1 the resulting load–depth curve after application to single-crystalline copper (100)
is depicted. This experiment delivers 18 data sets (Ft , ht , hC, AC, . . .)i , i = 1, . . . , 18. The
symbols stand for: Ft , maximum load of a loading/unloading cycle; ht , maximum penetration
depth when applying Ft ; hC , contact depth when applying Ft ; AC , contact area related to Ft .
The hardness

Hi = (Ft/AC)i (1)

can be either assigned to ht or to hC , i.e. we obtain H(ht)i or H(hC)i, respectively.
It is now possible to consider a quantity

Hdi = (�Ft/�AC)i = [(Fti+1 − Fti)/(ACi+1 − ACi)] (2)

that we will call differential hardness. In figure 2, Hi and Hdi , derived from the multi-indent into
copper (figure 1), have been plotted against the total penetration depth ht . (When we consider
Ft and ht as continuously changing values during a loading cycle we can write F instead of Fti ,
and h instead of hti , i.e. h is the total depth which is related to application of load F .) Two
observations are obvious from figure 2:

(i) the hardness decreases with increasing load (normal indentation size effect ISE), and

(ii) Hd < H.

New Journal of Physics 5 (2003) 15.1–15.17 (http://www.njp.org/)

http://www.njp.org/


15.5

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time t(s)  

Multicycling indent
      18 cycles

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Penetration depth h(nm )

  Cu(100)
Cube Corner Indenter

Lo
ad

  F
(m

N
)

Lo
ad

  F
(m

N
)

(a) (b)

Figure 1. Load–time scheme of a multicycling nanoindentation (left) and
resulting load–depth curve F(h) for application to a copper single crystal.
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Figure 2. Conventional hardness F/AC and differential hardness �F/�AC

derived from the multi-indent shown in figure 1 (copper (100)).

The ISE of copper can be explained using the model of geometrically necessary
dislocations [22, 23]. A smaller indent generates on average a higher dislocation density than a
larger one, and owing to dislocation–dislocation interaction the hardness increases with the root
of the dislocation density, i.e. with smaller penetrations.

The relation H > Hd will be considered in more detail in section 4.3. It can, however,
be qualitatively understood following this argument: H(h) is an entity averaging over all
deformation states from depth = 0 to h. In contrast to this, Hd describes the momentary sample
response to deformation. When H and Hd are decreasing with h, H must be larger than Hd , since
H averages over situations where the deformation resistance was larger and larger in comparison
to the present situation.

For theoretical calculations the knowledge of the relation between contact depth hC and
total depth ht = h is interesting, since this relation is the key to separate the total penetration into
an elastic and a plastic part. This relation has been studied in detail in [12]. Experimentally the
hC(h) relation can be obtained from a multicycling experiment that delivers n pairs (hC, ht) which
can be fitted to a fit-function hC(h). This function for copper, inferred from the multicycling
test of figure 1, is shown in figure 3. Because of the high ductility of copper hC is only a small
fraction (2%) smaller than h in case of larger depths where the plastic zone is fully developed.
This is different for less ductile materials like glass, ceramics or semiconductors, where hC is
much smaller than h. For examples of this class of materials consider figures 6(b) and 7(b).
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Figure 3. Ratio γ = hC/h between contact depth and total penetration depth
extracted from the multi-indent of figure 1. The parameters of the fit-function are
a = 0.703, b = 0.272, c = 24.3 nm, d = 1.9 × 10−5 nm−1.

4. Determination of hardness H(h) and differential hardness Hd(h) from the load–depth
curve F (h)

4.1. Determination of H(h) using the hC(h) approach

In nanoindentation experiments the indenter can never be regarded as of ideal geometric shape.
As a consequence the indenter cross-sectional area must be determined in a calibration procedure.
This calibration must be repeated after suitable periods (depending on how intensely the indenter
is used, typically once a month), since the indenter tip is subject to progressive blunting,
particularly when testing hard materials. The standard technique of tip calibration is to perform
a series of indents into a calibration standard with different loads and consequently penetration
depths. The calibration standard should be a homogeneous and isotropic material, which is
not affected by reactions in air. A recommended material is fused silica, which is used in our
laboratory, too. A series of n indents of different loads Fi delivers n values of contact depth
hCi(Fi), i = 1, . . . , n. Instead of individual single indentations, a multi-indent can also be used
for tip area calibrations.

The corresponding contact areas ACi(hCi) are determined such that the analysis of the elastic
unloading curves delivers the correct value of the elastic modulus E (E = 70 GPa for fused
silica), which has been measured by an independent technique (measurement of the speed of
ultrasonic waves). Now, the n pairs (hCi, ACi) can be fitted to a continuous function AC(hC),
which is a universal function, valid for all materials. One can use any mathematical function that
fits the data pairs; the preferred expression is AC = C2h

2
C + C1hC + C1/2h

1/2
C (Ci: fit parameter).

The parabolic term describes the behaviour of an ideal pyramid, the linear term that of a parabola
of rotation (or a sphere, when restricting to small depths compared to the radius), and the root
is related to tip truncation. The described calibration procedure was suggested in [9]. Another
possibility of indenter calibration is the three-dimensional reconstruction of the indenter shape
from AFM imaging, which we have described in [27]. We found, however, that AC(hC) can be
up to 30% larger in the last case owing to tip dirtification. Soft contamination layers increase the
apparent volume of the indenter as determined by AFM mapping, but are not ‘active’ volume
(i.e. are easily displaced) when indenting hard samples.

Different materials have different relations between total depth h and contact depth hC
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owing to different percentages of the elastic contribution to the total depth h. If the contact
depth hC is substituted by a mathematical expression of h and inserted into AC(hC) one obtains
AC(hC(h)) = AC(h). In contrast to AC(hC) as a universal function the expression AC(h) is a
very special one, valid for the material under investigation only.

Having determined AC(h), the hardness can be calculated according to

H(h) = F(h)/AC(h). (3)

We found that for the measured sample of copper the function hC(h) can be fitted by an expression

hC(h) = [a + b(1 − exp(−h/c)]h + dh2 (4)

with fit parameters a, b, c and d, their numerical values are given in the legend of figure 3. The
formalism can be now applied to any F(h) curve of copper to assign each depth a corresponding
hardness value. In figure 4 a load–depth curve of a single indent into Cu(100) is shown on the
left, and the right plot depicts the resulting hardness–depth function as derived from application
of the hC(h) formalism to the left curve.

It is often claimed that load–depth curves obtained with pyramid indenters were parabolic
curves, i.e. exhibit a F ∼ h2 behaviour. Figure 4 clearly demonstrates that this statement is
wrong. In fact the F(h) curve is nearly linear. For better recognition a ‘theoretical’ F ∼ h2

curve was inserted into figure 4. This almost linear behaviour is not due to indenter truncation.
The cube corner in use has a radius of curvature R ≈ 150 nm, i.e. for depths >100 nm it can be
regarded as almost ideal. The main reason for the nonparabolic F(h) curve is the ISE. Due to the
decreasing hardness the load rises less quickly than the contact area does with increasing depth.
When using the model of geometrically necessary dislocations [25, 26] the hardness behaves:
H ∼ h−1/2. For the load we find F = HAC ∼ h−1/2h2 ∼ h3/2 which can reasonably explain
the results of figure 4.

One of the particular advantages of the hC(h) technique is that it delivers the hardness as
a continuous function of depth, and provided that the load–depth curve F(h) is smooth, at least
in several segments, H(h) is also a smooth function and suitable for differentiation, as is used
in the following section.

4.2. Differential hardness Hd(h)

Instead of calculating the ‘conventional’ hardness as load divided by impression area, one can
also consider the corresponding differential entity

Hd = dF/dAC. (5)

This quantity describes the instantaneous material resistance to mechanical deformation,
whereas the conventional hardness H = F/AC provides an average measure of the deformation
resistance from the very beginning of tip penetration up to unloading. It is obvious that Hd has
the following properties.

(i) Hd = H in case of constant H , since for H = constant we have AC ∼ F and
dF/dAC = F/AC .

(ii) In comparison to H the differential hardness Hd is more sensitive to the material properties
directly beneath the indenter tip, and less sensitive to the material at the outermost surface.
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Figure 4. Load–depth curve of a cube-corner nanoindent (single indent) into
Cu(100) on the left, and resulting conventional hardness H(h) = F(h)/AC(h)

obtained by using the hC(h) formalism. A comparison with figure 2 shows the
coincidence of the hardness data inferred by the multicycling and by the hC(h)

approach, respectively.

For a layer–substrate system the substrate impact is stronger on Hd than on H . For a multilayer
system, where the tip penetrated to layer n, a layer k, with k < n, has a smaller, and a layer l, with
l > n, has a stronger impact on the currently measured Hd data. A more detailed comparison
between H and Hd is made in section 4.3.

The easiest access to Hd provides a multi-indent with n loading/unloading segments with
load increments from segment to segment. The calculation is done according to equation (2),
and the result for copper is illustrated in figure 2. In the case of copper the mean contact pressure
(hardness) decreases continuously, apart from the very first state of penetration which is purely
elastic (not shown in the figure). In the following, the situation of a hard and stiff layer on a much
softer and more compliant substrate is considered, namely a layer of DLC on silicon. Owing to
both high hardness and large elastic modulus of DLC, there is an extended depth region of pure
elastic contact where the contact pressure H increases according to H ∼ √

h. At a depth of
10–15% of the tip radius (Rtip ≈ 150 nm) the DLC starts to yield. For single crystals the yielding
becomes often visible by a pop-in, a sudden depth excursion due to nucleation and propagation
of dislocations [14]–[16]. Such a pop-in will not occur in a nanocrystalline or amorphous DLC
layer. After onset of plastic deformation the contact pressure (hardness) will further rise, which
is due to the increase of the constraint factor C. The constraint factor C is the ratio between
hardness and yield strength Y [1]:

C = H/Y. (6)

We find C ≈ 1 at initial yielding, and after formation of the full plastic zone, C attains a saturation
value Csat , depending on the nature of the material. For ductile matter (metals like steel) we
have Csat ≈ 3, for brittle materials Csat can be much larger, up to 40 [28]. The saturation of C,
resulting in a constant hardness, is related to obtaining self-symmetry of the imprint, i.e. when
using a pyramid indenter, the penetration must be larger than the spherical cap due to tip blunting.
When the penetration exceeds 10% of the layer thickness, the substrate hardness will start to
influence the measured hardness. Table 1 summarizes the stages of contact pressure evolution
for a layer–substrate system (hard layer on a softer substrate).
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Figure 5. Schematic illustration of a blunted pointed indenter. A spherical
cap is added to the trunk of a cone or pyramid. The transition from the cap
to the cone or pyramid occurs without discontinuity for a height of the cap
hcap = Rtip(1 − cos α).

Table 1. Overview on contact pressure development during nanoindentation.

Penetration depth h Situation

<(0.1, . . . , 0.15)Rtip Pure elastic contact, H ∼ √
h

>(0.1, . . . , 0.15)Rtip Development of the plastic zone, H slowly increases with
<2hcap the trend of saturation

>2hcap Hardness plateau
<0.1d

>2hcap No hardness plateau, substrate influence decreases
>0.1d hardness before maximum layer hardness is attained

Besides the tip radius Rtip the height of the spherical cap hcap is a critical parameter for
measurement of true layer properties. When 10% of the layer thickness d is smaller than 2hcap

one will never measure the ‘true’ layer hardness. Figure 5 reveals that

hcap = Rtip(1 − cos α) (7)

where α is the angle between the horizontal direction and the side plane of the pyramid. For a
cube-corner indenter one obtains hcap = 0.3Rtip.

In figure 6 nanoindentation results for 960 nm DLC on silicon are summarized. In this
case the layer is thick enough to allow the hardness to achieve a plateau. On the other hand, the
penetration depth is small enough to avoid a significant substrate influence, even for the highest
load of the indentation machine (6 mN). Figure 6(a) depicts the load–depth curve for 5 mN
load, and in figure 6(c) conventional hardness H and differential hardness Hd from a series of
multicycling indents are shown. Since �F and �AC are much smaller than F and AC the data
scattering of Hd is larger than that of H . In figure 6(d) curves of H(h) and Hd(h) are shown
that were continuously derived from the F(h) curve of figure 6(a). H was determined using the
hC(h) technique. The necessary value of γ = hC/h was derived from those multi-indents, the
results of which are shown in figure 6(c). The curve Hd(h) was calculated in the following way:

Hd = dF/dAC = (dF/dh)(dh/dAC) = (dF/dh)(dAC/dhC)−1(dhC/dh)−1. (8)
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Figure 6. (a) Load–depth curve of a cube-corner nanoindent into 960 nm DLC
on Si, (b) corresponding ratio of contact depth over total depth, (c) conventional
hardness H and differential hardness Hd derived from multicycling tests and
(d) from a single indent using the hC(h) technique.

To determine the necessary differential quotients F(h), AC(hC) and hC(h) were fitted to
analytical functions after appropriate data smoothing, and the resulting functions were
analytically differentiated. The results (figure 6(d)) coincide with the numerically determined
values (figure 6(c)) but with considerably smaller noise.

The same procedure was applied to a sample of 113 nm DLC on silicon; the corresponding
results are shown in figures 7(a)–(d). In this case the layer is too small to measure the ‘true’
layer hardness. 10% of the thickness is 11 nm which is smaller than (10, . . . , 15%) of Rtip

(15, . . . , 23 nm), and smaller than the height of the spherical cap (45 nm). From measurements
of the elastic modulus E by surface acoustic waves a similar modulus as in the case of the
960 nm thick layer was derived (960 nm thick DLC: E = (540 ± 30) GPa, 113 nm DLC:
E = (570 ± 40) GPa), hence the ‘true’ layer hardness may be similar to that of the thicker layer,
around 70 GPa, too.

When comparing H and Hd the following facts can be noted (see figures 7(c) and (d)):

(i) in the range of elastic contact (h = 0, . . . ,≈20 nm) Hd rises more quickly than H , and
Hd > H (Hd ≈ 1.5 H),

(ii) Hd attains its maximum at a smaller depth than H ,

(iii) H ≈ Hd at the maximum H ,

(iv) Hd < H for depths larger than 70 nm, i.e. where dH/dh < 0,

(v) Hd → H when H becomes constant.
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Figure 7. (a) Load–depth curve of a cube-corner nanoindent into 113 nm DLC on
Si, (b) corresponding ratio of contact depth over total depth and (c) conventional
hardness H and differential hardness Hd derived from multicycling tests. In
(d) H derived from multicycling is compared to Hd derived from a single indent
using numerical differentiation instead of analytical approximation and analytical
differentiation. The fit parameters for γ (h) in (b) are a = 0.36, b = 0.85,
c = 179 nm, d = −0.62 × 10−4 nm−1.

These observations are theoretically explained in section 4.3.

4.3. Relation between conventional and differential hardness

We write the following mathematical equivalences:

H = F/AC = (1/AC)

∫
dF = (1/AC)

∫
(dF/dAC)(dAC/dh) dh (9)

HAC =
∫

(dF/dAC)(dAC/dh) dh =
∫

Hd(dAC/dh) dh. (10)

Differentiating (10) gives

(dH/dh)AC + H(dAC/dh) = Hd(dAC/dh), (11)

and after dividing by (dAC/dh)

Hd = H + (dH/dh)AC/(dAC/dh). (12)

Equation (12) is the fundamental relation between Hd and H . It shows that Hd = H for
(dH/dh) = 0, i.e. in case of constant hardness (statement (v) at the end of the last section), and
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in the case of a maximum or minimum of H (statement (iii)). Furthermore, we have Hd > H

as long as H increases with h (statement (i)), and Hd < H for dH/dh < 0 (statement (iv)).
Let us now consider the situation of the pure elastic contact (spherical cap). According to

Hertz [29, 30] the reduced elastic modulus can be expressed by

Er = 3F/4rCδ = 3F/4rCh. (13)

Er : reduced elastic indentation modulus, rC: contact radius (rC = √
AC/π), δ: elastic

deformation depth, δ = h = 2hC . Furthermore, we can write

r2
C = hC(2Rtip − hC) ≈ Rtiph for h << Rtip (14)

rC = √
(Rtiph) (15)

F = (4/3)ErR
1/2h3/2 dF = 2Er

√
(Rtiph) dh (16)

AC = πr2
C = πRtiph dAC = πRtip dh (17)

H = F/AC = (4/3π)Er

√
(h/Rtip) ∼ √

h (18)

Hd = dF/dAC = (2/π)Er

√
(h/Rtip) = 1.5H. (19)

Equation (19) demonstrates that in the case of a Hertzian elastic contact, Hd develops in the same
way as H , and is by a factor of 1.5 larger than H .

Now, it remains to calculate the position h, where the differential hardness Hd achieves its
maximum. We differentiate equation (12):

dHd/dh = [d2H/dh2][AC/(dAC/dh)] + dH/dh[2 − AC(d2AC/dh2)/(dAC/dh)2]. (20)

The maximum is obtained for dHd/dh = 0. Equation (20) is considerably simplified, if ideal
geometries are considered. In the case of a sphere, which will be the case for application of small
loads (the indenter is in contact with its spherical cap only), we have (compare equation (17))

dAC/dh = πRtip, d2AC/dh2 = 0, [AC/(dAC/dh)] = h (21)

dHd/dh = 2(dH/dh) + h(d2H/dh2) = 0 (22)

2(dH/dh) = −h(d2H/dh2). (23)

In figure 8 the curves of 2dH/dh and −h(d2H/dh2) are plotted versus h to determine the
intersection. Unfortunately, both curves are almost parallel between the two vertical lines inserted
into the figure. Hence the intersection point is difficult to determine—it lies somewhere between
the vertical lines, i.e. h(Hd,max) = (24 ± 3) nm. This result is in good agreement with the
maximum position of Hd in figures 7(c) and (d) around 25 nm.

At the end of this section we want to simplify the fundamental relation between Hd and H

(equation (12)) for spheres and ideal pyramids/cones, respectively.
According to equations (17) and (21) we have [AC/(dAC/dh)] = h, consequently

Hd = H + h(dH/h) for spherical indents. (24)

For a cone/pyramid, there is AC = CAh2
C , and

dAC/dh = (dAC/dhC)(dhC/dh) = 2CAhC(dhC/dh) ≈ 2CAh2
C/h = 2AC/h (25)

[AC/(dAC/dh)] = h/2 (26)

Hd = H + (h/2)(dH/dh) for pyramids and cones. (27)

Equation (24) means that for a spherical indent H is the linear average of Hd :

H = (1/h)

∫
Hd dh for spherical indents. (28)
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since the intersection of the drawn curves is badly defined.

It follows that hH = ∫
Hd dh, and after differentiation H +h(dH/dh) = Hd in accordance with

equation (24).
Equations (24) and (27) show that Hd − H ∼ h(dH/dh). The coincidence of H and

Hd at deep penetrations requires that dH/dh diminishes with increasing h more rapidly than
1/h. Otherwise the difference Hd − H would increase with deeper indentations. The model of
geometrically necessary dislocations predicts that H ∼ h−1/2, resulting in dH/dh ∼ h−3/2. This
model guarantees that the difference between Hd and H vanishes for large depths. One notes,
however, that the vanishing of the difference between conventional and differential hardness is
a slow process, and the depths, attainable by our nanoindentation equipment, are too small to
achieve equivalent values of H and Hd .

To summarize, a depth-dependent contact pressure, i.e. a situation (dH/dh) �= 0, is the
deeper reason for differences between H and Hd . Equation (12) shows that Hd > H for
(dH/dh) > 0. Apart from situations ‘soft layer on hard substrate’, this applies to the initial state
of every indentation where the contact is purely elastic. As long as the indenter tip is far from the
substrate, the contact pressure is zero. Consequently, the contact pressure must always start at
zero, and it increases with increasing penetration depth. After yielding, the hardness can further
increase owing to the transition from spherical to pyramidal contact. This transition results in
a reduction of the effective full apex angle ψ . According to the models of Johnson [31] and
Tanaka [32], the hardness increases with cot(ψ/2), i.e. a sharper indentation results in a higher
effective strain, which in turn gives rise to a higher hardness. The described scenario explains
the hardness evolution of Berkovich indents into the thick DLC layer on silicon, depicted in
figure 6, as well as the first states of indentation of figure 7.

In situations, characterized by (dH/dh) < 0, we find Hd < H . This is typical for the ISE
in homogeneous materials, as for copper (figure 2). Furthermore, it applies to sufficiently deep
indents into hard layers on soft substrates, as the late indentation states of figure 7.
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Figure 9. Experimental set-up for photoplastic experiments. The transparent
sample is glued to a glass plate (1). It is illuminated by laser light reflected at the
mirror (2). Alternatively the sample can be illuminated using a fibre guide, or
by direct illumination. In the latter case the transducer geometry limits the angle
of incidence to αmax ≈ 20◦. Furthermore, illumination from the top results in
unwanted shadowing by the diamond tip.

5. Advantageous applications of differential hardness

Let us first emphasize that hardness, and depth sensing nanohardness in particular, is not a
material property. It is an experimental parameter, namely the mean contact pressure beneath
the indenter, from which ‘true’ physical properties must be extracted. Equations (18) and (19)
show how for the elastic contact the ‘true’ physical property elastic modulus can be inferred from
H and Hd , respectively. For very large indents, where H and Hd are constant, the yield stress
can be extracted from hardness (equation (6)), provided that the constraint factor is known.
Extraction of physical units from hardness is particularly difficult in the transition area from
elastic to plastic deformation. The differential hardness is a good indicator of the beginning of
yielding in the absence of discontinuities (pop-ins). Since after onset of yielding the material is
more easily deformed, Hd as a measure of current properties reacts first. Hd does not increase
any further, and may even decrease after yielding, whereas H may further increase. This is
particularly obvious in figures 7(c) and (d), where yielding starts at a depth of about 25 nm. At
this depth Hd has a distinct maximum, whereas H continues to slowly increase.

Since Hd is a measure of the momentary deformation resistance, it proves particularly
useful for situations where external factors, influencing the hardness, are changed during the
indentation process. Such a factor is the sample temperature. However, depth-sensing hardness
measurements under conditions of simultaneous temperature change are difficult to perform,
mainly due to thermal drift. It is therefore better to look for athermal factors that can modify
the hardness during the indentation process. An interesting possibility of reversible hardness
modification is the application of light. In semiconductors of sphalerite structure (ZnS structure)
small intensities (some mW cm−2) of light of appropriate wavelengths can induce the so-called
photoplastic effect [20]–[22], [33, 34]. In this class of materials, dislocations can be electrically
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charged (this is a consequence of the fact that the (111) sliding planes are polar planes, i.e. consist
of one kind of atom only). Mobile charge carriers, generated by the internal photoelectric
effect, can move to dislocations and may alter the dislocation charge. As a consequence,
electrostatic forces between dislocations, between dislocations and electrically active point
defects, or between dislocations and the entire crystal lattice are changed. This results in a
change of the dislocation mobility, and consequently in a variation of the hardness. The hardness
can increase under illumination (positive photoplastic effect), as is very often found with II–VI-
semiconductors, or it can decrease during illumination (negative photoplastic effect), as often
found with III–V-semiconductors [35]. We investigated the positive photoplastic effect of the II–
VI-semiconductor ZnSe owing to laser illumination at a wavelength λ = 524 nm. The sample,
mounted on a transparent sample holder, was illuminated from below as illustrated in figure 9.
The light was focused to a small spot directly beneath the indenter tip. The heat generated in
the light spot distributes over the sample surface. Thus the total heat energy, absorbed by the
sample, can be kept very small, even for high light intensities. The total temperature increase
was found to be less than 10−2 K. In figure 10 details of two load–depth curves into ZnSe, using
a Berkovich indenter, are shown. The total load for both curves is 16 mN. Curve 2 represents an
indent in permanent darkness whereas curve 1 displays the situation where the indent started in
darkness, and where at a total depth of 600 nm the laser light was turned on. The light resulted in
a prompt dramatic increase of the slope of the load–depth curve F(h). The total depth for a load
F = 16 mN in permanent darkness is h2 = 664 nm, whereas the illumination reduced the depth
to h1 = 637 nm. At these large depths, the pyramid is almost ideal, i.e. AC ∼ h2, H ∼ F/h2.
A depth decrease by �h results in a relative hardness increase

�H/H = −2�h/h. (29)

We find �H/H ≈ 8% in our experiment. This is not very much since the illumination was
started close to the end of the indentation process. When comparing indents that were conducted
under permanent darkness and under permanent illumination, respectively, the difference is
�H/H ≈ 21%. In contrast to this, the change of the differential hardness is much stronger when
turning the light on. In figure 10 the slope of the loading curve at h = 600 nm is (dF/dh)[2] =
3.7×104 N m−1 for curve 2 (permanent darkness) and (dF/dh)[1] = 7.4×104 N m−1 for curve 1
(laser light turned on), i.e. there is a slope increase by a factor of two. From equation (8) one
concludes that there is an increase of the differential hardness by a factor of 2, too.

6. Summary

The key to separation of elastic and plastic contributions to the indenter penetration is the
knowledge of the relation between contact depth hC and total depth ht . Unfortunately, the
ratio hC/ht is not a constant, but changes with depth, since at the initial state of indentation the
contact is purely elastic, and with increasing load the plastic part increases. Multicycling testing
delivers a set of data pairs (hC, ht), from which a continuous function hC(h) can be constructed
by data fitting. This allows us to calculate the conventional hardness H(h) = F(h)/AC(h)

as a continuous function of depth from a single indent. Instead of H a differential hardness
Hd = dF/dAC can be considered, which is a measure of the current deformation resistance.
The difference Hd − H was found to be proportional to (dH/dh). An overall equivalence of
Hd and H requires a constant hardness. In all other cases Hd equals H at the extrema of H

only. For situations with dH/dh > 0 a relation Hd > H was found, whereas the normal ISE
(dH/dh < 0) results in a differential hardness smaller than the conventional hardness.
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