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Abstract

Implementing processes for traceability is required in various industries to assure product quality during manufacturing, provide evidence
on required processing conditions or facilitate product recalls. Commonly, radio-frequency identification (RFID) or code recognition tech-
niques (e.g. Data Matrix) are applied to track the flow of workpieces through a manufacturing system and link processing data accordingly.
Although the analysis of tracking data is well-examined, we still see a gap in the research on the trade-off between data acquisition, data analytics
and data quality. Here, we present a framework to increase the value of existing data by enabling data analytics while addressing common pitfalls

and reducing the costs of data management.
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1. Introduction

With the increasing integration of digital technologies in the
manufacturing industry, it is necessary for companies to not
only have means for data acquisition and analytics implemented
but also to keep accompanying processes simple and efficient.
Here, we focus on the collection and usage of traceability data.
The implementation of processes and software to support the
traceability of workpieces is required in various industries in
order to assure product quality during manufacturing, provide
evidence on required processing conditions or facilitate possi-
ble product recalls.

Furthermore, the analysis of traceability data can support
performance evaluation of manufacturing systems and facilitate
model building for material flow simulation [1]. Although the
analysis of traceability data can support continuous improve-
ment of manufacturing systems, often the cost of collecting data
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and maintenance of high data quality over time is not consid-
ered. However, continuous improvement processes are crucial
for increasing the efficiency of manufacturing systems. Given
the significance of sustainability (c.f. [2, 3, 4]), these processes
may address economic, environmental and social challenges.

Accordingly, we provide a framework to support the track-
ing of workpieces throughout the production line while avoid-
ing common issues of data quality and enabling insightful data
analytics. We structured our contribution as follows. After the
introduction, related work is discussed before extensively moti-
vating our framework. Subsequently, the methodology is intro-
duced and eventually a conclusion is drawn.

2. Related work

As far as manufacturing data is considered, general
methodologies may be applied to address challenges of data
management [5, 6]. Especially, the concept of data value
chains (c.f. [7]) and their stages of data generation, data
acquisition, data curation, data preprocessing, data analysis
and data exploitation are discussed [7].
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Data acquisition can be classified as manual, semi-automatic
and automatic based on the implemented degree of automa-
tion [8].

Frequently, the term data analytics is used to describe an
interdisciplinary approach and its implementation for retriev-
ing knowledge to solve complex challenges [9]. Generally, data
analytics can be categorized into business intelligence and ad-
vanced analytics [9]. The former category includes descriptive
and diagnostic analytics, while the latter category comprises
predictive and prescriptive analytics [9]. In this context, vari-
ous techniques are described, such as data mining [10], pro-
cess mining [11], visual analytics [12] and knowledge extrac-
tion [13].

As far as traceability is considered, numerous approaches
to data analytics along with their underlying data schemes have
been published [1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
However, best practices of data acquisition and the issues of
data quality are rarely considered. Though, the quality of gained
insights through data analytics may depend significantly on the
quality of the analyzed data. In fact, data quality does have man-
ifold facets [26]. Here, this gap should be narrowed as we dis-
cuss a framework for the efficient acquisition of tracking data
while focusing on data management and keeping the potential
of data analytics in mind.

3. Motivation

Traceability is often a legal requirement and involves the
tracking and tracing of workpieces. Tracking “describes the
identification, acquisition, and storage of upstream informa-
tion” [27] for any given workpiece. In contrast, tracing enables
“the extraction of this saved information downstream its life
cycle of a workpiece at a later stage in the value chain” [27].
Often, the traceability data is complemented with quality mon-
itoring data. Here, we mostly focus on tracking information.

Commonly, radio-frequency identification (RFID) is applied
in order to track the timed flow of RFID-tagged workpieces
through a manufacturing system. Typically, a gate-based or
waypoint-discrete approach is considered for data acquisition,
i.e. data is gathered when entering or exiting a certain zone,
station or any waypoint. Alternatively, a time-discrete approach
of tracking can be considered where localization systems cycli-
cally capture the time and the location of a workpiece within a
factory.

Additionally, process quality data can be collected when
starting or completing a processing cycle at a certain sta-
tion [28] (e.g. drilling, machining). The gathered data may then
be stored on the RFID tag itself (data on tag) or in a dedicated
database along with an identification attribute (e.g. electronic
product code) of the related RFID tag (data on network) [29].
Typically, the data-on-network storage regime is preferred as it
allows for the analysis of a centralized data set.

Alternatively, text or code recognition (e.g. Data Matrix,
Quick-Response (QR) code) may be utilized to identify marked
workpieces (e.g. laser engraving, laser tempering, dot peen

marking), while feature recognition (e.g. shape, dimension,
weight) can be used to identify unmarked workpieces.

Typically, the scope of tracking is determined by single
workpieces or batches of workpieces that are tracked either di-
rectly or indirectly. In case of direct tracking, identifying tags
or features are bound to single workpieces. In contrast, with in-
direct tracking various means of workpiece transportation (e.g.
workpiece fixtures, containers) are identified and, thus, infor-
mation related to the contained workpieces can be persisted.

However, processes for the acquisition of tracking data may
be physically constrained by the manufacturing environment,
e.g. dimension, shape, material of workpieces or fixtures as
well as environment-induced potential of interferences within
certain frequency bands. Therefore, certain manufacturing sites
may require a combination of various technologies, techniques
and scopes of traceability paired with methodologies for data
integration.

Additionally, the specifics of identification technologies
could affect data quality. For example, an impeded line of
sight (e.g. dirt, obstacles) or interference can cause missing
data. Furthermore, accidental bulk scanning of RFID tags with-
out adequate signal post-processing may lead to redundant data.

Somewhat independent of the implemented technologies for
workpiece identification, organizational challenges can cause
additional issues of data quality. Therefore, human error should
be expected when implementing or performing [8] data acqui-
sition processes. Additional challenges may arise from continu-
ous improvement processes and changing requirements result-
ing in product alterations, manufacturing systems and logistics,
i.e. issues of flexibility, modularity and scalability should be
considered.

The potential of data analytics and the ability to generate
valuable insights should be considered as well. In fact, the anal-
ysis of tracking data can reveal valuable knowledge about op-
eration times [22, 24], idle times [23] as well as lead times [18]
and even more properties [1].

The presented aspects, to some degree, not only illustrate
the complexity, costs and expenditure of time but also potential
benefits related to the implementation of tracking data acqui-
sition processes. Therefore, we provide a framework and share
best practices for the acquisition and management of traceabil-
ity data to overcome certain organizational challenges.

For reasons of simplicity and somewhat independent of the
various implementation technologies, we solely focus on the
direct, waypoint-discrete tracking of single workpieces along
with data-on-network storage. However, our research may be
transferred to scenarios of indirect tracking accordingly.

4. Methodology

In the following, we present our methodology for data ac-
quisition and discuss inherent issues of data quality. Therefore,
we start by describing the considered use case from the automo-
tive industry. Subsequently, the procedure for data acquisition
as well as the underlying data scheme are outlined and tech-
niques for ensuring data integrity are proposed.
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Fig. 1. Overview of a high-volume production line at an automotive company

4.1. Use case

We base our discussion on the acquisition of traceability
data on a high-volume production line of an automotive com-
pany (Fig. 1). There, any raw part is incrementally refined along
a flow shop with multiple groups of stations at a defined takt
time. Within a group, every station can execute the same man-
ufacturing operations and, thus, every station is interchange-
able with every other station from that group. The material
flow between groups is decoupled by means of first-in, first-
out buffers (queues). Every workpiece, independent of its type,
must be processed at one station from each group in the se-
quence of the indicated material flow. The automotive com-
pany operates many production lines comparable to the one de-
scribed here. Consequently, the continuous improvement pro-
cesses of the company may significantly benefit from transfer-
able, scalable and efficient data acquisition techniques.

4.2. Data acquisition

In consideration of the previously introduced use case, we
suggest the acquisition of tracking data on completion of a pro-
cessing cycle for each station as depicted in Fig. 2. In doing so,
a waypoint-discrete data acquisition scheme is implemented.
We prefer a waypoint-discrete tracking regime over a time-
discrete tracking regime, as in many cases existing data acquisi-
tion processes are designed with respect to station-oriented pro-
cess control and quality assurance. Consequently, most compa-
nies inherently follow a waypoint-discrete scheme to data ac-
quisition, which can be adapted to support workpiece identi-

[ Data acquisition on completion
\

of the processing cycle

® Workpiece —» Material flow

[) Workpiece tracking data ——» Information flow

Fig. 2. Data acquisition based on [1]

fication and tracking. Additionally, time-discrete data is often
algorithmically processed to find a waypoint-discrete approxi-
mation [23, 30].

Frequently, it is mandatory to acquire data at the completion
of a processing cycle, since process monitoring data (e.g. pres-
sure or temperature measurements) may only be fully available
at that point of time. In contrast, we do not necessarily have to
acquire data at the start of a processing cycle. This is due to the
fact that cycle times and virtual start of a processing cycle can
be retrieved implicitly from data solely collected at the comple-
tion of a processing cycle [1]. We also argue that it is not neces-
sary to collect data dedicated to buffers, as buffer capacity and
load may be implicitly determined from data solely collected at
the completion of a processing cycle, too [1]. The guaranteed
accuracy of the implicitly retrieved properties should be suffi-
cient in many cases. However, the achievable accuracy may be
discussed under some circumstances [1].

The discussed procedure is generally suitable for automatic
and manual data acquisition, although one should take into ac-
count human error when manually scanning workpieces. With
respect to the introduced use case, a set of workpieces are of-
ten processed before any of them is being scanned. Conse-
quently, acquired data may not adequately represent the sequen-
tial execution of manufacturing tasks and it may be hard to
determine an adequate approximation of the processing cycle
time (c.f. [1]).

4.3. Data scheme

The tracking data set may be formalized as a series of events
with various attributes (1). The definition can be understood as
a workpiece of some type being fully processed at a certain sta-
tion and time (Table 1). We discuss each attribute and common
issues of data management and quality individually in the fol-
lowing.

Event := { Workpiece, Type, Station, Time } (1)

4.3.1. Workpiece

The workpiece is represented by a coherent (alpha-numeric)
identification code. In many cases, RFID tags already come
with a globally unique electronic product code that can be
scanned. So, the reuse of this code may be suitable. However,
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Table 1. Exemplary entries of acquired tracking data

Workpiece Type Station Time
B023D F4 C/1 2021-01-07 08:04:08
F4683 F4 F/1 2021-01-07 08:04:19
E49F2 F4 A/l 2021-01-07 08:04:26
123C0 B2 A/l 2021-01-07 08:04:27
70A14 F4 C/1 2021-01-07 08:04:38

as RFID tag initialization is outsourced, certain informational
and procedural dependencies on the supplier of the RFID tags
are created. This method may preferably be used when RFID
is the only identification technology utilized, as the code would
need to be replicated for the various implemented identification
technologies in an additional work effort most likely even be-
forehand of any processing. However, using RFID only, while
achieving neglectable benefits in many cases, may cause an
unnecessary restriction and, thus, affect flexibility of the data
acquisition system as well as manufacturing system. Alterna-
tively, a data acquisition system for the storage of traceability
data can generate a company-wide unique identification code
for workpieces that can be stored on any writable RFID tag or
encoded as a Data Matrix or QR code accordingly.

Frequently, buying businesses request a certain scheme of
product identification based on their individual logistic and as-
sembly processes. Derived requirements for workpiece iden-
tification may concern not only the utilized identification and
marking technologies but also the encoding of data attributes.
These specifications often vary across multiple buying com-
panies. Additionally, it effectively is impossible to foresee
changes in future buyer-specific requirements. We therefore ar-
gue against the integration of these buyer-specific requirements
into a company’s workpiece identification scheme. Instead, we
propose a two-code strategy, where a primary code enables
the company’s internal workpiece identification and an optional
secondary code may fulfill the buyer-specific product identifica-
tion requirements. The workpiece may be distinctively marked
with the secondary code at the final stage of production in order
to avoid an organizational conflict with the primary code.

Consecutive numbering of workpieces according to their
first arrival at the production line is beneficial for data visu-
alization and analytics (Fig. 3). In doing so, the dispatching
of workpieces, the output of various groups as well as any al-
teration in the chain workpieces caused by manufacturing dis-
turbances is inherently apparent. Please note that we can de-
rive a consecutive numbering of workpieces if not already exis-
tent. Therefore, we first need to determine the starting point of
the production line, e.g. the first station in flow, and then filter
the series of events (c.f. Eq. 1) to match the specified stations
and sort them based on the time of their process completion.
When iterating over the remaining and sorted series of events,
we can map the initial workpiece identifier (without consec-
utive numbering) to a new incrementally increased sequential
workpiece identifier (achieving consecutive numbering). When
applying post-processing for the generation of sequential work-
piece identifiers, new identifiers may be generated according to
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Fig. 3. Tracking of workpieces with consecutive numbering across various
groups within a manufacturing system

one’s liking considering different scopes determined by the re-
spective time frame or production line and segment. In doing so,
human comprehension may be facilitated when applying multi
scope visual analytics.

4.3.2. Type

Considering the type of workpieces in tracking data al-
lows for type-specific data analytics, e.g. the identification of
scheduling strategies. We recommend using an already exist-
ing type identification attribute based on existing engineering
documentation and data management.

4.3.3. Station

We recommend a commonly-practiced hierarchical naming
scheme according to the doublet pattern group/station, where
a certain station is related to a certain group according to the
similar manufacturing tasks in the direction of material flow.
Here, for reasons of simplicity, we propose the doublet pattern
group/station as in B/l where the group is determined alpha-
betically according to sequence of manufacturing operations
within the material flow while the station is identified numer-
ically within that particular group. However, the pattern may be
extended hierarchically to account for various production lines
and different manufacturing sites to site/line/group/station ac-
cording to the anticipated scope and level of detail.

Please note, it may be beneficial to apply a naming scheme
that allows for extending the manufacturing line with additional
sites, lines, groups and stations while optionally maintaining
implicit ordering, e.g. according to material flow or position.

4.3.4. Time

We suggest representing date and time according to
ISO 8601 [31], where the lexicographical order can be used
for chronological sorting. In most cases, the consideration of
time with second precision should be sufficient for use cases in
manufacturing.

When working with date and time, various time zones
and occasional switching between standard time and daylight-
saving time should be considered with respect to the location of
any considered manufacturing site and the possibility of global
remote data access. We therefore suggest the acquisition of
tracking data according to coordinated universal time (UTC)
and adjusting the presentation of data and analytical findings
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for the contextually determined time zone on demand. Thus,
time data management with respect to the acquisition of track-
ing data is streamlined while providing a context-aware user
experience when presenting data and analytical findings.

Additionally, (redundant) time synchronization services may
be utilized to occasionally adjust for timing drift of data acqui-
sition hardware and storage services. We would like to point out
the disadvantage of manual scanning, as the timing of scanning
workpieces and data acquisition may not adequately represent
the planned modus operandi of manufacturing. Additionally,
data may be acquired redundantly or not at all. However, this
disadvantage may be neglectable if adequately taken into con-
sideration when interpreting data and analytical findings. Still,
we recommend the implementation of some sort of automatic
data acquisition system for each station.

4.4. Data integrity

Given the introduced data specification, we briefly describe
some approaches for ensuring data integrity. As mentioned be-
fore, we suggest naming of groups in an alphabetical order ac-
cording to their sequence within the material flow of a pro-
duction line. In fact, the tracking data events for every work-
piece sorted chronologically should reproduce the sequence of
groups within the material flow. We can leverage these indepen-
dent prerequisites to compare both and point out discrepancies
if existent.

We also can check for redundant entries in terms of the ac-
quired data indicating one workpiece passing one group within
the production line at least twice. However, redundant data may
be plausible when rework of workpieces within a group is sup-
ported. Every check may be run cyclically and automatically to
allow for early detection of data quality issues and their correc-
tion as well as the improvement of the causing data acquisition
processes.

5. Conclusion

We describe a framework for the efficient acquisition of
tracking data while keeping the possibilities of data analytics in
mind. The framework somewhat follows the paradigm of effi-
ciently creating more value from less data. Therefore, the com-
plexity implied by the acquisition of tracking data serves as the
motivation of our framework. The methodological elaboration
is supported by an industrial use case from the automotive in-
dustry. Subsequently, based on a waypoint-discrete scheme for
the acquisition of tracking data at the completion of a station’s
processing cycle, we discuss the data scheme and its attributes
while data quality and opportunities of data analytics are con-
sidered.

The framework facilitates data analytics and allows for im-
plicitly retrieving some approximation of properties of a man-
ufacturing system, i.e. the explicit acquisition of these proper-
ties is not necessary. Additionally, best practices are introduced,
e.g. supporting visual analytics or the handling of various time
zones in globalized manufacturing scenarios or remote data ac-

cess. Future work should more deeply examine the opportuni-
ties of data analytics for retrieving implicit knowledge (c.f. [1]),
automatic simulation model generation (c.f. [32]), streamlining
data acquisition and managing data quality. Findings may then
be transferred to different areas such as status message man-
agement (c.f. [33]), energy management (c.f. [34]) or even the
design of product-service systems (c.f. [35]).
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