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Abstract: Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound
(US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing num-
ber of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field
into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we
aimed to compare two of the most used and suitable SDT in vitro set-ups—“sealed well” and “transducer
in well”—in one systematic study. We assessed US pressure, intensity, and temperature distribution
in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell
lines of different origins, treated with two promising sonosensitizer candidates—carbon nanoparticle
C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward
cancer cells than berberine. The higher efficacy of sonodynamic treatment with a “transducer in well”
set-up than a “sealed well” set-up underlined its promising application for SDT in vitro studies. The
“transducer in well” set-up is recommended for in vitro US treatment investigations based on its US-field
homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited
as a promising combinative approach for cancer treatment.

Keywords: ultrasound; C60 fullerene; berberine; sonodynamic therapy; apoptosis

1. Introduction

Despite technological and therapeutic advances in cancer care, the number of cancer
patients is growing annually. A total of 17 million new cancer cases were diagnosed in 2016
and reached approximately 20 million in 2022, and cancer deaths increased from9 million
in 2016 to over 10 million in 2022 [1,2]. Therefore, cancer remains as the second leading
cause of death worldwide [3]. Conventional strategies such as chemotherapy, surgery, and
radiotherapy struggle with low target selectivity and harmful side effects [4–7]. The search
for more selective and efficient methods has focused on switchable therapeutics such as
sonodynamic therapy (SDT), which originated as a photodynamic therapy (PDT) branch.
Unlike PDT, where visible and NIR light is used, SDT uses high frequency ultrasound
(US) for a non-thermal, non-invasive, and local tumor ablation based on the toxicity
induction of specific chemical sensitizers (sonosensitizers). In that way, dual tumor tissue
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selectivity can be realized through the targeted accumulation of sonosensitizers in tumor
tissue and the US treatment of tumor tissue. SDT can be highly selective, minimizing
damage to healthy surrounding tissues and reducing side effects commonly associated
with traditional therapies [8]. As a non-invasive treatment, it does not require surgical
incisions or the removal of tumor tissue, resulting in reduced pain, shorter recovery time,
and lower infection risk [5]. Moreover, SDT-initiated reactive oxygen species (ROS) elicit
an immune response to target cancer cells [9,10]. SDT can be repeated as needed without
cumulative toxicity concerns [11,12]. In addition, SDT can be used with other treatment
modalities, including surgery or chemotherapy, and photodynamic, photothermal, or
radiation therapy, to achieve synergistic effectiveness, offering potential multi-pronged
cancer care [13]. Conventional US-based methods such as high-intensity focused ultrasound
(HIFU) therapy rely on focused energy to heat and destroy cancer cells. Ensuring precise
control over the extent and distribution of this heat within the tumor can be challenging
and can unintentionally damage healthy tissues surrounding the tumor [6]. In addition,
concerns of recurrence exist after HIFU treatment [14]. Nevertheless, the standard limitation
of all US treatment methods is the difficulty in penetrating through bone and air, which
can limit US treatment effectiveness towards some cancers such as osteosarcoma [15].

The principle of SDT is the sonosensitizing activity induction of particular molecules
during sonication. The distribution of US waves in liquid leads to the formation of tiny
vapor-filled bubbles, which cavitate and collapse. A rapid bubble implosion heats its
interior and produces an intense concentration of energy that results in light emission,
called sonoluminescence [16–18]. Then, sonoluminescence can induce the excitation of
sensitizers. After photon absorption, the sensitizer rises to a short-lived excited state, which
can be quenched by molecular oxygen to generate ROS [19,20]. Constant intensification
of ROS production leads to oxidative stress and apoptosis of treated cancer cells [21,22].
Oxidative stress also causes DNA damage and induces cell cycle arrest within the cancer
cell [23]. In addition, the SDT-induced ROS influence the extracellular matrix, blood vessels,
and immune cell activity within the tumor [9,11]. SDT-induced ROS trigger an immune
response against cancer cells. The damage caused by ROS can release tumor-associated
antigens that alert the immune system to the presence of a tumor [9,10,24]. This can
potentially lead to the activation of immune cells that target and destroy cancer cells.

A hematoporphyrin was found to be the first molecule to show cytotoxicity in-
crease towards mouse sarcoma 180 and ascites hepatoma 130 cells under the action of
1.92 MHz US [18,25,26]. The sonosensitizing activity was further discovered for other
organic molecules [25,27–29], as well as metal-containing [30–32] and carbon nanoparticles
such as nanotubes [33,34], nanoribbons [35], and fullerenes [36–39]. Nanoparticles offer
several advantages in comparison with organic molecules, including, but not limited to,
improved bioavailability, smaller efficient drug doses, less toxicity, and targeting of tumor
tissue [31,35,40].

The growing number of newly discovered sonosensitizers pushes the SDT field into
a need for systemic studies and reproducible in vitro experimental set-ups. Based on the
position of transducers and cell culture vessels (wells with cells), four main types of in vitro
US set-ups were defined by Hensel et al. [41]: (1) “well on transducer”—well is placed on
transducer and coupled by gel; (2) “well on water surface”—well is placed on the water
surface in US bath; (3) “sealed well”—well is submerged into US bath; and (4) “Transducer
in well”—transducer is directly submersed in well [41]. Table 1 summarizes the US in vitro
set-ups for investigating metal and carbon nanoparticles as sonosensitizers towards cancer
cells. If an original article lacked a US set-up description, it was excluded from Table 1.
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Table 1. SDT in vitro set-ups and treatment models.

US Exposure
Set-Up Sonosensitizers In Vitro Model US Treatment Year of

Publication Reference

“well on transduce”

Polypyrrole-coated carbon
nanotubes Melanoma C540

1 MHz
1.0 W/cm2

non defined
2020 [33]

Ferrite/carbon
nanocomposite Melanoma C540

1.0 MHz
1.0 W/cm2

60 s
2019 [30]

Fullerene covalently bonded
onto the surface of black
phosphorus nanosheets

Murine breast cancer 4T1
1.0 MHz
1.0 W/cm2

300 s
2021 [39]

TiO2 conjugated to
polyethylene glycol Glioblastoma U251

1.0 MHz
1.0 W/cm2

50 s
2011 [31]

“well, on the
water’s surface”

Polyhydroxy C60 Sarcoma 180
1.92 MHz
4.5 W/cm2

60 s
2013 [38]

C-doped TiO2 Murine breast cancer 4T1
1.0 MHz
1.8 W/cm2

90 s
2020 [32]

C60 aqueous solution Human cervix adenocarcinoma HeLa
1.0 MHz
5.4 W/cm2

60 s
2023 [36]

“sealed well”

Protohemin-conjugated
multiwalled carbon
nanotubes with carboxylic
groups

Hepatocellular carcinoma HepG-2
1.0 MHz
0.5 W/cm2

100 s
2016 [34]

Polyhydroxy C60 Human promyelocytic leukemia HL-60
1.93 MHz
6 W/cm2

180 s
2016 [37]

“transducer in
well”

Pegylated graphene
nanoribbons conjugated with
chlorin e6

Human ovarian cancer SKOV-3
1.0 MHz
0.8 W/cm2

30 s
2011 [35]

DEG (7,12-bis(1-(2-(2-
hydroxyethoxy)ethoxy)ethyl)-
3,8,13,17-
tetramethylporphyrin-2,18-
dipropionatomanganese)

Human lung cancers LU65A, HLC-1,
KNS-62; human gastric cancers MKN-1,
MKN-28, MKN-45, MKN-74; human
pancreatic cancers QGP-1 MIA PaCa-2;
human prostate cancer PC-3
A human liver cancer KIM-1Human
colon cancers HT-29, T-84, Caco-2;
human breast cancers SK-BR-3, MCF-7

1.0 MHz
1.0 W/cm2

120 s
2012 [29]

The “well on transducer” is often characterized by the uneven pressure distribution
over the cell layer [41]. One of the main disadvantages of the “well on water surface”
set-up is the possible high-temperature effect of the US due to considerable liquid–air
and plastic–air interfaces that can lead to low reproducibility of results [42]. The “sealed
well” is preferable for in vitro SDT experiments because of its minor US reflections and
negligible temperature effects. However, to avoid any possible external effects, a well with
cells must be free of air bubbles and reliably sealed [41]. The efficiency of the “transducer
in well” set-up depends on its variations in the transducer distance and the thickness of
a well’s bottom. Despite these variations, it is easy to implement in sterile conditions
and achieves high reproducibility [41,42]. One way to overcome the negative impact of
liquid–air and plastic–air interfaces for the “transducer in well” could be to position one
extra water tank below the well. However, the SDT in vitro studies often lack detailed US
set-up descriptions, making generated data difficult to reproduce, compare, and predict.

In the presented research, we aimed to compare two of the most commonly used SDT
in vitro set-ups—“sealed well” and “transducer in well”—in one systematic study. We
assessed the distribution of US pressure, intensity, and temperature in wells under US
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irradiation in “sealed well” and “transducer in well” set-ups. Moreover, we studied the
applicability of those set-ups for cellular effect analysis based on evaluating cell viability
and caspase 3/7 activity, ROS, and ATP levels in cancer cells of different origins treated
with two promising sonosensitizer candidates and 1 MHz US. The current study selected
one organic (berberine) and one nanomaterial (C60) sensitizer as test compounds. Natural
alkaloid berberine is a promising agent for cancer chemotherapy and PDT [43]. US energy
via sonoluminescence can be absorbed by berberine and C60, promoting the molecule
transition from its ground state to an excited state. The excited state can transfer its energy
to oxygen generating ROS [44,45], which points to berberine and C60 as potential sonosen-
sitizers for SDT. Other than sonosensitizing activity, berberine has proapoptotic effects by
inhibiting mitochondrial respiration and modulation of signaling pathways related to cell
proliferation [46]. Considerable attention is also devoted to C60 as a potential regulator of
oxidative balance in biological systems. Low toxicity [47,48] and excellent photosensitizing
activity [49,50] of C60 make it a promising photo- [36,49] and sonosensitizer [36]. The low
photobleaching, high quantum yield, photostability, and improved biocompatibility make
C60 a prospective molecule for cancer treatment applications [49,51,52].

2. Materials and Methods
2.1. Chemicals

Dulbecco’s modified Eagle’s medium (DMEM), Eagle’s minimum essential medium
(EMEM), phosphate-buffered saline (PBS), fetal bovine serum (FBS), penicillin/streptomycin,
l-glutamine, and trypsin were obtained from PAN-Biotech GmbH (Aidenbach, Germany).
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and dihydroethid-
ium (DHE) were obtained from Biomol GmbH (Hamburg, Germany). Trypan blue and
dimethylsulfoxide (DMSO) were obtained from Carl Roth GmbH + Co. KG (Karlsruhe,
Germany). Berberine was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA) and
dissolved in sterile distilled water. Caspase-Glo® 3/7 Assay Systems and Mitochondrial
ToxGlo™ Assay kits were obtained from Promega GmbH (Walldorf, Germany). The pris-
tine C60 aqueous colloid solution was prepared by C60 transfer from toluene to water using
continuous ultrasound sonication [53].

2.2. Ultrasound Exposure

A vacuum pump Savant UVS 400A SpeedVac (Thermo Fisher Scientific Inc., Berlin,
Germany) was used for degassing water for the US bath. Cancer cells were seeded and
incubated with sonosensitizers for 24 h using cell-based assays, as described below.

2.2.1. “Sealed Well” Set-Up

A plate holder was designed and 3D-printed by Oculyze GmbH (Wildau, Germany)
for positioning the 96-well plates inside the US bath. The well plate was placed 25 mm
above the US transducer. Every empty well was filled with filtered water. Afterward, the
plate was covered with parafilm and submerged upside down in the bath (Figure 1a). The
US generator 68.101, coupled with an MH2 transducer plate mounted on a water bath
(Kaijo, Tokyo, Japan), was used for US treatment. The area and the frequency of the US
transducer plate were 92.6 cm2 and 950 kHz (~1 MHz), respectively. The US transducer
was continuously driven at 100, 150, and 200 W. To compare the two set-ups, US energy
(J/cm2) was chosen as a unit of US dose. Thus, plates with cells were exposed to 60, 90,
and 130 J/cm2 of US dose.

2.2.2. “Transducer in Well” Set-Up

Figure 1b schematically shows the “transducer in well” set-up for the US exposure.
The US therapy unit DIGI (Strive Enterprises, Yamuna Nagar, India) was driven at 1 W/cm2

in continuous wave mode for 30, 60, and 90 s, equivalent to 30, 60, and 90 J/cm2 of US dose.
To realize the “sealed well” set-up, a tank was filled with filtered water and placed below
the Petri dish.
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Figure 1. Diagram of the ultrasound exposure equipment: “sealed well” set-up (a); “transducer in
well” set-up (b).

2.3. Sonoluminescence Detection

To detect and measure sonoluminescence, an experimental set-up was built. It consisted
of the photomultiplier tube (Hamamatsu Photonics, Shizuoka, Japan), connected with the
Voltcraft 6150c oscilloscope (Conrad Electronic, Hirschau, Germany) and the Thorn EMI
PM28B power supply (Thorn Lighting Ltd., Spennymoor, UK). To enhance the efficiency of
sonication and increase sonoluminescence intensity, the US bath was filled with degassed
distilled water for better sonication and sonoluminescence intensity [54]. The wells of the
plate were filled with experimental liquids: degassed distilled water, distilled water, PBS,
and DMEM. Then, the filled plate was placed on the plate holder in the US bath. A polyfoam
holder aligned the photomultiplier tube over one of the wells in the 24-well plate.

Sonoluminescence intensity was measured directly in the US “sealed well” set-up
described above. To mimic the properties of the “transducer in well” set-up, sonolumines-
cence measurements were performed in the tank filled with experimental liquid, and the
transducer was submersed in the filled tank. This set-up is shown schematically in Figure 2.
The set-up was enclosed with aluminum foil to prevent external light from reaching the
photomultiplier tube, and measurements were conducted in a dark room.
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Figure 2. Diagram of the sonoluminescence “transducer in well” set-up.

The data acquired are represented as the average peak-to-peak voltage (Vpp) over
a 120 s interval, which quantifies the complete voltage range between the positive and
negative peaks in the detected voltage waveform on the photomultiplier tube.

2.4. Ultrasound Pressure and Intensity Distribution

For the measurements, a sound field scanner “AIMS III” (Onda Corporation, Sunny-
vale, CA, USA), consisting of a water tank equipped with a 3-axis scanner and a “Pico-Scope
5244A” digital storage oscilloscope (DSO) (Pico Technology Limited, St Neots, UK), and an
“Imotec” needle hydrophone (Imotec Montagetechnik GmbH, Hausham, Germany) incl.
preamplifier (NTR) were used.
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The needle hydrophone, including the preamplifier, was calibrated utilizing an “HGL-
0200” calibrated capsule hydrophone (Onda Corporation, Sunnyvale, CA, USA) incl. “AH-
2010” preamplifier (Onda Corporation, Sunnyvale, CA, USA). The transducers were driven
by generators in continuous wave (cw) mode. Burst mode was not possible for both set-ups,
and only the phase of the cw-driving signal could be used for triggering the DSO.

The hydrophone was submerged into the tank above the well plate for the “sealed
well” set-up and below the well plate for the “transducer in well” set-up. The sensitive
tip of the hydrophone was placed on the required positions in the sound field utilizing
the 3-axis scanner. The front/back axis of the scanner was assigned to the x-direction, the
left/right axis to the y-direction, and the up/down axis to the z-direction.

The following output parameters were measured at particular points in a sound field:

p+: peak compressional acoustic pressure (MPa);
p−: peak rarefactional acoustic pressure (MP);
ppp: peak-to-peak acoustic pressure (MPa);

Ita: temporal average intensity (W/m2) (the values of the temporal average intensity
Ita are calculated for an assumed cw (continues wave) excitation by dividing the squared
amplitude of the pressure wave with 2 and Z (Z = ρc, the acoustic impedance of the
propagation medium water)):

Ita =
p2
+

2pc

2.5. Temperature Measurement

The temperature profiles of the plates and Petri dishes were visualized with a Fluke
Ti100 infrared (IR) camera (Fluke Corporation, Everett, WA, USA) after sonication in both
set-ups with the parameters described above. Obtained pictures were processed and
analyzed with Smart View Classic 4.4 (Fluke Corporation, Everett, WA, USA).

2.6. Cell Culture

The human cervix adenocarcinoma cell line (HeLa) was generously provided by Dr. Müller
(Division of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin,
Berlin, Germany). The Lewis lung carcinoma cell line (LLC) was obtained from (Tebu-Bio
GmbH, Offenbach, Germany). The adenocarcinoma human alveolar basal epithelial cell line
(A549) and the rat hepatoma cell line (H4llE) were obtained from Hölzel Diagnostika Handels
GmbH (Cologne, Germany). HeLa, LLC, and A549 cells were maintained in DMEM. EMEM
was used to maintain the H4llE cells. Both cell culture media were supplemented with 10% FBS,
1% penicillin/streptomycin, and 2 mM glutamine. Cells were cultured in 25 cm2 flasks at 37 ◦C
with 5% CO2 in a humidified incubator binder (Tuttlingen, Germany). A trypsin solution (1:10
in PBS) was used to detach adherent cells. The viable cells were counted upon 0.1% trypan blue
staining with a Roche Cedex XS analyzer (Basel, Switzerland).

2.7. Cell Viability

Cancer cells were seeded in 96-well plates at 2 × 104 cells per well and in Petri dishes
�= 35 mm at 1.5 × 105 cells per well (both from Sarstedt AG & Co. KG, Nümbrecht,
Germany). At 24 h, cells were transferred into 1% FBS DMEM medium containing 20 µM
C60 or 20 µM berberine. The control cells received treatment with an equal volume of sterile
water. After 24 h, treated cells were sonicated with the 1 MHz US with the respective US
set-up (Figure 1). To estimate cell viability, cells were incubated for 2 h at 37 ◦C in the
presence of 0.5 mg/mL MTT [55] 24 h after US treatment. The DMSO was used to dissolve
the diformazan crystals. The absorbance was measured at 570 nm using a Tecan Infinite
M200 Pro microplate reader (Tecan Trading AG, Männedorf, Switzerland). Phase contrast
microscopy was carried out with the Keyence BZ-9000 BIOREVO microscope (Keyence
Corporation, Osaka, Japan). Images were captured and processed with a BZ-II Viewer
(Keyence Corporation, Osaka, Japan).
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2.8. Intracellular Reactive Oxygen Species Generation

After US exposure, cells were trypsinized, calculated, and transported to a black
96-well plate containing 104 cells per well. To determine ROS production, dihydroethidium
(DHE) was applied. A DHE (10 mM) stock solution was prepared in DMSO, stored at
−20 ◦C, and diluted with PBS immediately before use. Cells (104/well) were treated as
indicated above and washed once with PBS at 1 h and 3 h of further incubation. DHE
(10 µM) was added, and the fluorescence (λex = 495 nm, λem = 585 nm) was recorded with
the Tecan Infinite M200 Pro microplate reader.

2.9. Intercellular ATP Content

Cells were treated as indicated in the cell viability section. After US exposure, cells
were trypsinized, calculated, and transported to a white 96-well plate transferred in 50 µL
glucose-free DMEM in a concentration of 104 cells per well. Then, cellular ATP levels
were estimated with the mitochondrial ToxGlo™ assay kit (Promega GmbH, Walldorf,
Germany) according to the manufacturer’s instructions. The plates were equilibrated to
room temperature for 10 min, and 50 µL of the ATP detection reagent was added to each
well. The ATP detection reagent consisted of ATP detection containing luciferin, ATPase
inhibitors, and thermostable luciferase. After shaking at 600 rpm for 1 min, the Tecan
Infinite M200 Pro microplate reader was used to measure the luminescence intensity.

2.10. Caspase 3/7 Activity

LLC and HeLa cells were treated as described in the cell viability section. After US
exposure, cells were trypsinized, calculated, and transported to a white 96-well plate
containing 104 cells per well. The activity of caspases 3/7 was determined during a 4 h
period after light exposure using the Caspase-Glo® 3/7 activity assay kit (Promega GmbH,
Walldorf, Germany) according to the manufacturer’s instructions. The plates were removed
from the incubator and allowed to equilibrate to room temperature for 30 min. After
treatment, an equal volume of Caspase-Glo 3/7 reagent was added, followed by gentle
mixing with a plate shaker at 300 rpm for 1 min. The plate was then incubated at room
temperature for 30 min. The luminescence of each sample was measured with the Tecan
Infinite M200 Pro microplate reader.

2.11. Statistics

Each experiment was conducted with at least four replicates. Data analysis utilized
GraphPad Prism 7 (GraphPad Software Inc., San Diego, CA, USA) and STATISTICA 12
(StatSoft GmbH, Hamburg, Germany). Paired Student’s t-tests were used. The threshold
for statistical significance was established at p < 0.01.

3. Results and Discussion
3.1. Sonoluminescence Intensity

The optical measurements were conducted using a photomultiplier tube connected to
the oscilloscope to assess sonoluminescence intensity. To follow the effect of the chemical
composition of the media, the sonoluminescence was measured in degassed distilled water,
distilled water, phosphate buffered saline (PBS), and cell culture Dulbecco’s modified Eagle
medium (DMEM). The Vpp (peak-to-peak voltage) signal intensity value corresponded to
the light reaching the photomultiplier tube. The measurements were conducted in a water
bath with 0–5.4 W/cm2 output power from the US generator (“sealed well” set-up) and
0–3 W/cm2 output power from the US therapy unit (“transducer in well” set-up). The
results were normalized using the corresponding Vpp measurements obtained when the
shutter of the photomultiplier window was closed and the US was turned on.

The observed rise in the Vpp signal confirmed the presence of sonoluminescence
during the propagation of 1 MHz US through liquids in both set-ups (Figure 3). In the
“sealed well” set-up, the detected sonoluminescence level increased with the higher output
power from the US generator in all tested media. The assessed Vpp evidenced the highest
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sonoluminescence in the degassed distilled water. The difference in the reduced sonolu-
minescence level in distilled water, PBS, and DMEM was negligible. A similar tendency
was observed in the tank with the submersed transducer at the “transducer in well” set-up.
The results agree with our previous study [36] and correlate with other publications [56].
Dissolved gases can become trapped within the bubble during its formation. These trapped
gases can affect the dynamics of the bubble’s collapse and significantly alter the condi-
tions required for sonoluminescence to occur [57,58]. Therefore, it was shown that the
sonoluminescence intensity in degassed distilled water was considerably higher than in
more complex chemical buffers and media (Figure 3). The level of sonoluminescence in the
“transducer in well” set-up was substantially higher than in the “sealed well” set-up. In
conclusion, the detected sonoluminescence, which occurred during 1 MHz US propagation
in the DMEM, can be used for cell-based assays in both set-ups.
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3.2. Ultrasound Pressure and Intensity Distribution

A hydrophone converts sound vibrations into electrical energy for measurements of
sound pressure and temporal average intensity; this directly describe the power and distri-
bution of applied US energy over the well bottom. To check how the US propagated inside
the cell culture vessels, sound pressure and temporal average intensity were visualized
using the hydrophone in the well plate in a “sealed well” set-up and in a Petri dish in the
“transducer in well”. The sound pressure and temporal intensity over the well bottom
were estimated to be 1.1, 1.6, and 2.2 W/cm2 for the “sealed well” set-up and 1.0 and
3.0 W/cm2 of generator output power for the “transducer in well” set-up. Sound pressure
and intensity increased in proportion to output power increase.

The average sound pressure and average temporal intensity over the well bottom for
both set-ups were estimated and are presented in Table 2.
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Table 2. Sound pressure and temporal average intensity.

Set-Up Generator Output
Power, W/cm2

Average Sound
Pressure, kPa

Average Temporal
Intensity, W/cm2

“sealed well”

1.1 179 1.1

1.6 220 1.7

2.2 258 2.3

“transducer in well”
1.0 450 7.0

3.0 520 9.2

The results showed that sound pressure and temporal average intensity were higher
on 271 kPa and 5.9 W/cm2, respectively, in the “transducer in well” than in the “sealed
well” set-up, which could be linked to a shorter distance between the transducer and well
bottom—10 mm versus 25 mm, respectively. Obtained images (Figure 4) revealed uneven
sound pressure and intensity distribution in a “sealed well” set-up, possibly caused by a
complex well-plate structure.
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selected well of 96-well plate, 1 MHz transducer at 150 W, “sealed well”; for chosen Petri dish, 1 MHz
transducer at 1 W/cm2 “transducer in well” set-up.

Well plates and Petri dishes, common cell culture vessels for in vitro research, were
selected to test “sealed well” and “transducer in well” set-ups based on transducer size. The
differences in the detected US pressure and intensity distributions among set-ups pointed
to better applicability of the “transducer in well” set-up due to the higher homogeneity
of delivered US in the bottom of the cell culture vessel, where cells grow. On the other
hand, the set-up designs made hydrophone positioning strictly at the cell-culture vessel
bottom with intact bottom plastics impossible, which could introduce some uncertainties.
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Moderate variation of the growth medium has a negligible effect on the sound pressure and
intensity over the well bottom [41,42]. Similar measurements were performed for different
set-ups [41,59,60]; however, due to varying methods of irradiation, measurement, and
set-up parameters, such data are hard to compare. To increase the reproducibility of sono-
dynamic in vitro research, more common parameters such as US frequency (Hz), power
units (W/cm2), propagation mode, duty cycle (%), pressure, and intensity distribution,
distance between transducer and well bottom (mm), should be defined.

3.3. Temperature Estimation

US energy can be converted into temperature through acoustic heating. The absorbed
energy increases the kinetic energy of the particles, leading to an overall temperature rise
in the liquid [61,62]. If the temperature exceeds 37 ◦C, cells undergo destructive changes.
Therefore, the IR camera was used to exclude the possible thermal effect of the US. IR
thermography images of the plate and Petri dish, filled with distilled water, and exposed
to 1 MHz US in “sealed well” and “transducer in well” set-ups are shown in Figure 5a,b,
correspondingly. The temperature increase during cell culture vessel exposure to the
US was found in both set-ups. The detected maximum temperature in both set-ups did
not exceed 36.8 ◦C after 120 J/cm2 sonication, which indicates both set-ups’ applicability
for cell-based experiments. The wells in the homogenous temperature distribution were
selected for further studies with a “sealed well” set-up.
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Figure 5. IR-thermography images of the Petri dish after sonication in “transducer in well” set-up (a)
and the plates after sonication in “sealed well” set-up (b).

The temperature distribution in the Petri dish was even, whereas, in the 96-well plate,
inhomogeneity was observed. Uneven temperature distribution could result from the
well plate’s more complex plastic design. Other studies have shown that temperature
insignificantly increased by only 2–3 ◦C and did not rise above 37 ◦C during the sonication
of cells in different US set-ups [63–65]. The critical requirement of cell-based research was
met, with demonstrated temperatures kept below 37 ◦C.

3.4. Cell Viability

Cell cultures retain the basic properties of the tumors from which they are derived.
Thus, different cell lines have unique parameters of metabolism, gene expression, sensitivity,
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and treatment resistance, making them integral to in vitro cancer research models. HeLa,
LLC, A549, and H4llE were chosen as cell lines of different origins. HeLa and A549
originated from human tissue, while LLC and H4llE from mice and rats. HeLa cells are a
standard model because this cell line has been pivotal in numerous scientific discoveries [66].
A549 cells are characterized by strong resistance to oxidative stress [67,68]. Meanwhile,
LLC cells are tumorigenic and characterized by rapid proliferation [69]. H4llE cells often
metastasize to the lungs, bones, and regional lymph nodes [70].

To follow how physical characteristics of tested in vitro US treatment set-ups manifest
in their efficiency for sonodynamic treatment of cancer cells, the toxic effects towards
LLC, HeLa, H4llE, and A549 cells were evaluated in both set-ups after incubation with
C60 or berberine. First, cells were treated with either 20 µM C60 or 20 µM berberine for
24 h and then were exposed to 1 MHz US at 0–120 and 0–90 J/cm2 for the “sealed well”
and “transducer in well” set-ups, respectively. Then, 24 h after US exposure, cell viability
was estimated with MTT assay. The viability of the respective control cells without any
sonosensitizer and US treatment was considered 100%.

The viability analysis is presented for cancer cells treated in the US presence of sonosen-
sitizers using “sealed well” and “transducer in well” set-ups in Figures 6 and 7, respectively.
Control cells were incubated with equal sterile water and had no significant viability
changes after sonication with low and middle doses. However, the highest US doses above
90 J/cm2, which were applied in the experiments, decreased cell viability in both set-ups
to ≥67 ± 6%. US cytotoxicity depends on the specific parameters of the US exposure,
including intensity, frequency, duration, and mode of operation. US-induced streaming of
surrounding liquid and cavitation can directly damage cell membranes, leading to cytotoxic
effects [71,72].
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Figure 7. Viability of A549 (a), LLC (b), HeLa (c), and H4llE (d) cells incubated in the presence of
20 µM C60 or 20 µM berberine and treated with 1 MHz ultrasound (US) in the “transducer in well”
set-up; *—p ≤ 0.01 in comparison with the viability of cells, treated with the respective duration
of US.

All cell lines treated with tested sonosensitizers and US demonstrated a significant
decrease in cell viability (Figures 6 and 7). The highest ratio between the control and cells
incubated with sonosensitizer was observed after sonication with a middle dose of US
(90 and 60 J/cm2 in “sealed well” and “transducer in well” set-ups, respectively). Thus, the
US dose of 90 J/cm2 in the presence of 20 µM C60 decreased the cell viability to 58 ± 2%,
60 ± 6%, 54 ± 4%, and 56 ± 2% for A549, LLC, HeLa, and H4llE cells, respectively, in the
“sealed well” set-up. Meanwhile, berberine decreased the cell viability of A549, LLC, HeLa,
and H4llE cells to 65 ± 2%, 70 ± 2%, 64 ± 4%, and 76 ± 3%, respectively, exposed to US in
the same set-up (Figure 6).

The “transducer in well” set-up demonstrated a more efficient decrease in cancer
cell viability in combination with sonosensitizers at lower US power. Thus, A549, LLC,
HeLa, and H4llE cell viability was decreased to 59 ± 3%, 56 ± 2%, 52 ± 2%, and 47 ± 2%,
respectively, with the US dose of 60 J/cm2 in the presence of 20 µM C60, while sonicated
berberine in the “transducer in well” set-up decreased cell viability to 65 ± 5%, 65 ± 2%,
57 ± 2%, and 60 ± 4% for A549, LLC, HeLa, and H4llE cells, respectively (Figure 7). In
addition, morphological changes such as decreased cell density and apoptotic bodies were
observed with phase contrast microscopy after treatment with sonosensitizers and 60 J/cm2

US, whereas 60 J/cm2 US without sonosensitizer did not affect cells (Figure 8).
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bar is 100 µm.

Cells exposed to a combined treatment of 1 MHz US and 20 µM sonosensitizers
demonstrated a considerable viability decrease. C60 showed higher sonocytotoxicity against
all tested cell lines than berberine. In addition, HeLa and H4llE cells had higher sensitivity
to treatment with C60 and berberine than other cell lines. Nevertheless, the “transducer
in well” set-up demonstrated a higher cytotoxic effect towards A549, LLC, HeLa, and
H4llE cells treated with C60 and 60 J/cm2 by 6%, 9%, 5%, and 13%, respectively, than the
“sealed well” set-up. HeLa demonstrated higher sensitivity to the proposed treatment
among human cell lines. Meanwhile, lung cancer is the leading cause of death among other
types of tumor disease, and LLC has demonstrated significant sensitivity to sonodynamic
treatment [2]. Therefore, LLC and HeLa cells were selected for comparison of intracellular
effects as carcinoma models of different origins.

The data revealed C60’s and berberine’s ability to decrease cancer cell viability after
sonoexcitation with 1 MHz US in both set-ups. Meanwhile, C60 demonstrated higher cell
viability inhibition than berberine under US action. The obtained treatment cytotoxicity
tendencies correlated with sonoluminescence intensity data at tested US exposure set-ups
(Figures 6 and 7). The US dose increased results in higher sonoluminescence intensity
and cytotoxic effect towards treated cells, suggesting the sonoluminescence-dependent
induction of sonosensitizer’s cytotoxicity. The spectrum of sonoluminescence consists of
emission at 280, 310, and 340 nm [73,74]. C60 has three intense absorption bands, with
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maxima around 215, 265, and 350 nm [49,53]. Meanwhile, the absorption spectrum of
berberine exhibits three bands, with maxima around 250, 350, and 420 nm [43,75]. The
sonoluminescence spectrum matches the first long-waved maxima of C60 in a broader
range than berberine, suggesting that it could induce the cytotoxic photosensitizing activity
of C60 more efficiently. US without sonosensitizers showed no significant cytotoxic effect
on cells at a dose ≤60 J/cm2. The highest ratio of cell viability between treated cells and
corresponding control was observed at 60 J/cm2 in both set-ups. The “transducer in well”
set-up demonstrated higher efficacy at 6–13% for A549, LLC, HeLa, and H4llE cells than the
“sealed well” set-up. It was consistent with the US pressure and intensity distribution data,
which showed higher sound pressure and temporal average intensity in the “transducer in
well” than in the “sealed well” set-up.

The obtained results evidenced that 1 MHz US induced significant cytotoxic effects
of proposed sonosensitizers against cancer cells. The inhibition of cell viability under-
lined the potential for the application of the proposed US set-ups to test sonosensitizing
candidates for anticancer therapy. Similar experiments were performed by Tsuru et al.,
using a “transducer in well” set-up. Sixteen cell lines were treated with 7,12-bis(1-(2-(2-
hydroxyethoxy)ethoxy)ethyl)-3,8,13,17-tetramethylporphyrin-2,18-dipropionatomanganese
(DEG) and 1 MHz 1 W/cm2 US for 120 s. As a result, the cytotoxic effect varied from 52%
to 87% [29]. Meanwhile, after 180 s of 1.93 MHz 6 W/cm2 US sonication in a “sealed well”
set-up, the cell viability of human promyelocytic leukemia HL-60 treated with polyhydroxy
C60 decreased to 56% [37]. Because of minor reflections and no undesired parameter vari-
ations, the “sealed well” set-up was one of the preferable US therapy set-ups for in vitro
application [41].

Meanwhile, the main advantages of the “transducer in well” set-up include ease of
positioning the transducer directly in the well and reduced wave reflections [42]. Lee
et al. used human ovarian cancer SKOV-3 spheroids adhered to LP-9 normal mesothe-
lial cell monolayers and treated them with pegylated graphene nanoribbons conjugated
with chlorin e6. After 30 s of 1 MHz 0.8 W/cm2 US irradiation, complete cell death of
SKOV-3 spheroids was detected, while LP-9 cells were not significantly affected after US
irradiation [35]. Using a “transducer in well” set-up, Lee et al. showed many significant
effects with less US output power than Yumita et al. showed with a “sealed well” set-up.
However, comparing the research is complicated due to different models, cell lines, and
sonosensitizers. Although (for experiments with a “transducer in well” set-up”) sterile
conditions such as a laminar flow box are required, a “transducer in well” set-up can be
easily standardized and more reproducible in comparison to a “sealed well” set-up [42].

The “transducer in well” set-up can demonstrate higher efficacy and reproducibility
than the “sealed well” set-up. The US therapy unit provides a user-friendly cost-effective
treatment strategy for translational research with animal models, as in the “transducer in
well” set-up. Transducers of the US therapy unit could be aimed at the tumor location
during the treatment procedure. Therefore, the “transducer in well” set-up was chosen to
estimate apoptosis cell-death type induction.

3.5. Apoptosis Induction

To estimate further cellular effects, LLC and HeLa cells were incubated with 20 µM
C60 or 20 µM berberine for 24 h, then irradiated with 1 MHz, 1 W/cm2 US for 30, 60, and
90 s in the “transducer in well” set-up.

The efficient and continuous intracellular ROS production is critical for realizing the
sonosensitizer’s anticancer effect [35–37,49]. Therefore, ROS generation was estimated with
the ROS-sensitive fluorescence dye DHE. The ROS production was estimated 2 h after US
exposure. The US irradiation insignificantly affected ROS levels in treated HeLa and LLC
cells (Figure 9). After sonoexcitation of cells treated with 60 J/cm2 US and C60, ROS levels
reached 307 ± 20% and 158 ± 22% in HeLa and LLC cells, correspondingly. Berberine
demonstrated lower ROS generation, with 134 ± 14% and 130 ± 11% ROS level increases
in Hela and LLC cells, respectively.
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Figure 9. ROS level of Hela (a) and LLC (b) cells incubated in the presence of 20 µM C60 or 20 µM
berberine and treated with 1 MHz ultrasound (US) in the “transducer in well” set-up; *—p ≤ 0.01 in
comparison with the viability of cells, treated with the respective duration of US.

ROS level measurements revealed higher sonodynamic treatment efficacy toward
HeLa cells, as the ROS level of LLC cells was lower by 173% and 28% for US with C60
and berberine, respectively. The obtained data can be linked to increased activity of the
antioxidant system in lung cells related to the nuclear factor erythroid 2-related factor 2
(NRF2) [67,68,76].

ROS level increase leads to the loss of mitochondrial membrane integrity and cy-
tochrome c release for further apoptosome formation. In comparison, apoptosome is an
Apaf-1-containing complex that catalyzes the activation of caspases 3/7 [77]. Therefore, the
ATP level and caspase 3/7 activity were investigated as markers of apoptotic cell death.

The ATP level was assessed as a principal marker of mitochondrial activity. The ATP
level was measured 4 h after US treatment. Neither C60, berberine, nor US affected the
ATP level in the cancer cells. In contrast, the sonication at 60 J/cm2 of HeLa and LLC
cells treated with 20 µM C60 caused a decrease in the ATP level to 44 ± 2% and 26 ± 1%,
respectively (Figure 10). Meanwhile, berberine induced the ATP level to drop to 55 ± 5%
and 38 ± 5% in HeLa and LLC cells, respectively, after sonication at 60 J/cm2.

The decrease in ATP levels evidenced the mitochondrial toxicity of the sonodynamic
treatment of cancer cells. As apoptosis is an ATP-dependent process, a lack of ATP could
lead to unprogrammed necrotic cell death and an inflammatory process. Apoptosis is
the most favorable process of programmed, ATP-dependent, and autonomous cellular
dismantling that avoids eliciting inflammation [77,78]. Therefore, as a total ATP drop was
not evidenced, apoptotic cell death could be executed.

Activated caspase 3/7 executes apoptosis [77]. Therefore, the proapoptotic ability of
the combinative treatment of C60 and berberine with 1 MHz, 1 W/cm2 US towards cancer
cells was studied by evaluating the caspase 3/7 activity as a primary marker of apoptosis.
Caspase 3/7 activity in treated cancer cells was estimated 4 h after sonication with 1 MHz,
1 W/cm2 US. It was shown that US did not affect caspase 3/7 activity. Meanwhile, the sono-
dynamic treatment with C60 and 60 J/cm2 US increased caspase 3/7 activity to 326 ± 23% and
307 ± 24% in Hela and LLC cells, respectively (Figure 11). Berberine demonstrated lower
caspase 3/7 activity induction under US action, reaching 136 ± 12% and 138 ± 18% in Hela
and LLC cells, respectively.
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Since the employment of fullerenes, as well as SDT itself, for cancer treatment is still
at the early stages of development, high attention should be paid to an identification of its
possible toxicity and safety.

Our previous studies were focused on the evaluation of possible effects of C60 aqueous
colloid solution on normal cells such as human primary keratinocytes hMSC cells, nondif-
ferentiated rat phencocytoma PC-12 neuronallike cells, normal human mammary epithelial
MCF10A cells, baby hamster kidney BHK-21 cells, and human embryonic kidney HEK293
cells. Thus, Tolkachov M. et al. showed that 6, 12, 18, and 24 µg/mL C60 did not affect the
cell viability of hMSC cells for up to 24 h of incubation [79]. Prylutska S. et al. described the
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absence of the cytotoxic activity of C60 in a concentration range of 3.6–144 mg/mL against
HEK293 cells at 24 h [80]. In addition, toxicity against MCF10A, PC-12, hMSC, and BHK-21
cells were described by Levi N. et al., Larner S. et al., Scrivens W. et al., and Liu S. et al.,
accordingly [81–84]. Summarizing the literature and our previous data, we conclude that
the proposed pristine C60 aqueous colloid solution could be defined as nontoxic at the used
concentrations towards normal cells.

Concerning the herbal alkaloid berberine, safety concerns should be evaluated as well.
Published articles report that the safe dose of berberine in vivo for oral administration in mice
is 20.8 g/kg of body weight, while intravenously it is 0.38 µg/mL [85]. Cytotoxic concentration
of berberine towards normal cells varies from 47 to 293 µM [86], which is at least two times
more than the used concentration in this research (20 µM), suggesting its applicability.

Several studies have reported SDT to be safe for normal cells and tissues. Lagneaux
et al. showed that leukemia cells were damaged by 1.8 MHz 0.22 W/cm2 US, while normal
hematopoietic cells remained unaffected [87]. Other published data reporting that US
had no effect towards normal endothelial cell lines, while tumor cells were significantly
affected [88]. Ohmura et al. demonstrated that the normal rat brain tissue was unaffected
under long-term US with an intensity of 10 W/cm2 [89].

Our previous research evidenced the selective toxicity of C60-based SDT towards
cancer cells. The treatment of normal human embryonic lung HEL 299 cells with 1 MHz
US in the presence of C60 led to no significant decrease in the cells’ viability. Meanwhile,
60 s US treatment of HeLa cells in the presence of 20 µM C60 decreased cell viability to
59 ± 5% [36]. Also, US (1.86 MHz, 1.5 W/cm2, 300 s) treatment with porphyrinato pal-
ladium tetrachloride had no effect on the viability of human primary dermal fibroblast
HDF 106-05 cells, while it led to a dramatic decrease in human colon cancer cell HT-29
viability [90]. Lee et al. demonstrated significant toxicity of SDT with pegylated graphene
nanoribbons conjugated with chlorin e6 towards human ovarian cancer SKOV-3 spheroids.
Meanwhile, an LP-9 normal mesothelial cell monolayer was not significantly affected after
similar SDT treatment [35]. Therefore, we can assume that STD with sonosensitizers has
selective toxicity against cancer cells, whereas the effect on normal cells is expected to
be negligible.

The potential for using fullerene- or herbal alkaloid-based sonosensitizers in cancer
SDT treatment protocols is substantial. Promising studies that have emerged in the last
years have tested its validity and safety. The pharmacodynamics and pharmacokinetics
of any new drug formulation should certainly be defined both in vitro and in vivo for an
effective assessment of possible human health risks. Further research on the safety profile
and treatment efficacy of the proposed treatment is ongoing.

4. Conclusions

The obtained data evidenced a toxicity of the tested sonodynamic treatment of LLC
and HeLa cells with 1 MHz US and C60 or berberine via oxidative stress and apoptosis
induction. Combining 1 W/cm2 US with C60 and berberine provided a promising platform
for a synergetic approach to cancer treatment. Obtained data on ROS and ATP levels and
caspase 3/7 activity underlined a suitable application of the “transducer in well” set-up
for sonodynamic cancer therapy evaluation in vitro and pointed to the perspective of its
application for further cancer SDT development.
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