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Abstract: The identification of biomarkers is crucial for cancer diagnosis, understanding the underly-
ing biological mechanisms, and developing targeted therapies. In this study, we propose a machine
learning approach to predict ovarian cancer patients’ outcomes and platinum resistance status using
publicly available gene expression data. Six classical machine-learning algorithms are compared on
their predictive performance. Those with the highest score are analyzed by their feature importance
using the SHAP algorithm. We were able to select multiple genes that correlated with the outcome
and platinum resistance status of the patients and validated those using Kaplan–Meier plots. In
comparison to similar approaches, the performance of the models was higher, and different genes
using feature importance analysis were identified. The most promising identified genes that could be
used as biomarkers are TMEFF2, ACSM3, SLC4A1, and ALDH4A1.
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1. Introduction

Ovarian cancer is the most lethal gynecologic malignancy, with a five-year survival
rate of 49% for all stages of the cancer [1]. Ovarian cancer is very aggressive and often
recurs after subsequent treatments. Most patients will acquire resistance through treatment
consisting of carboplatin-based chemotherapy as well as PARP inhibitors [2,3].

Ovarian cancer is frequently diagnosed at advanced FIGO stages, which leads to
overall poor survival rates. The symptoms are generally non-specific, and therefore early
detection methods, genetic screening, and multiple treatment options are needed to improve
the outcomes of patients with ovarian cancer [4,5].

Recent studies have demonstrated that biological parameters like mRNA gene expres-
sion can be linked to and predict the outcome of cancer patients [6–8]. For that matter,
statistical methods have been used, as well as machine learning methods [9]. Studies have
shown that machine learning models achieve high performance in predicting potential
biomarkers, the stage of cancer, platinum sensitivity, relapse time, as well as overall survival
(OS) in ovarian cancer using gene expression profiles, image data, copy number variations,
and more [10–14].

In a previous study by Spentzos et al. [15], the SPLASH algorithm was used for
the initial discovery of candidate biomarkers from mRNA gene expression analysis and
weighted voting and k nearest neighbor for training and leave-one-out cross-validation
for predictive accuracy. In another study by Hartmann et al. [11], a supervised machine-
learning approach using the support vector machine algorithm was applied to mRNA
gene expression to identify biomarkers associated with early recurrences in ovarian cancer.
Yang et al. [16] used microRNA expression data and differential gene expression analysis
between a complete response and noncomplete response to identify miRNAs differentially
associated with clinical response to chemotherapy.
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In previous studies by the Cancer Genome Atlas Research Network [17], a univariate
Cox regression model was used to identify 193-genes signature predictive of overall survival
in high-grade serous ovarian cancer, and this model was refined to 100-genes signature in
subsequent studies [18] using ssGSEA scores of tumor samples from multiple independent
gene expression data sets and a multiple covariate model that includes molecular subtypes.

Millstein et al. [12] used the Cox proportional hazards regression adjusted for molecu-
lar subtype from six microarray gene expression studies, totaling 1455 participants, and
identified 200 candidate genes. They included additional 313 genes based on the literature
and published data, and candidate gene expression was determined by Nanostring in
4071 samples from 16 studies and selected elastic net regularized regression model from
evaluated four models for further training and validation to arrive at 101-genes prognostic
signature. Finally, in Zhang et al. [19] studies, a network-based Cox proportional hazard
model was applied to three independent data sets to identify biomarkers associated with
patient outcomes in ovarian cancer.

In this study, we use differential gene expression analysis to identify initial biomarkers
associated with outcome and apply SHAP (Shapley additive explanations) algorithm for
feature extraction, which has so far been used only once in ovarian cancer data for platinum
sensitivity and to our knowledge, not on outcome prediction [20,21]. We analyze one of
the largest publicly available gene expression data sets for ovarian cancer to predict the
outcome of patients with ovarian cancer and find candidate biomarkers associated with
differential outcomes or responses to chemotherapy. Figure 1 provides an overview of
the structure of the approach. A combination of bioinformatics analysis and machine
learning methods is used to identify relationships between biological components, disease
progression, and patient outcomes.
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Figure 1. The schematic shows the overall project structure. The study consists of 585 patients, but
biological and clinical data from some patients are not available, and they are excluded. Patients
are put into two very distinct categories: for example, good or bad outcome groups or resistant or
sensitive groups. After the group classification, patients are distributed into three datasets: 50%
training data, 25% testing data, and 25% validation data to avoid overfitting the data. The performance
of the models is determined with a one-time test on the validation data set. Patients and their features
are used as the input for the machine learning models to predict the class of each patient. When the
performance of the models is sufficient, algorithms from the field of explainable artificial intelligence
will be applied to detect which biological features contribute the most to the decision of the model.
Those features likely have the most biological impact on patient outcomes.
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2. Materials and Methods
2.1. Materials

The data from the Cancer Genome Atlas (TCGA) [17,22] are used in this study. They
consist of 585 ovarian cancer patients. The unnormalized gene expression counts from
the mRNA sequencing data from National Cancer Institute Genomic Data Common
(GDC) are used for differential gene expression analysis with DESeq2 [23]. The clinical
data of the patients are used for good or bad outcomes and platinum resistance or
sensitive classifications.

The outcome and platinum response status were not available for some patients in
this study. To address this, two approaches were taken. In the first approach, patients were
filtered based on the availability of mRNA sequencing data and their classification as either
having a good or bad outcome. In the second approach, patients were required to have
both mRNA sequencing data and platinum response status available. After filtering, the
remaining patient data were randomly divided into training, testing, and independent
validation datasets. The training dataset was utilized to train the machine learning models,
whereas the testing dataset was used to test the performance of these models in multiple
trials. Finally, the validation dataset was employed to evaluate the performance of the
models on data that were not previously used for training or testing.

2.1.1. Data on the Outcome of the Patients

To identify potential biomarkers for ovarian cancer, clear differentiation between
patients with good and bad outcomes following treatment is essential. As such, patients
were classified as having a bad outcome if they had died within two years after treatment,
while those who survived for five years or more were classified as having a good outcome.
These specific timeframes were selected to facilitate clear separation between the patient
groups, enabling more distinct differential gene expression analysis. The study cohort
included a total of 113 patients, of which 55 were classified as having a good outcome and
58 as having a bad outcome (Figure 2). More details on the clinical and biological variables
can be found here [24].
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considered to have a bad outcome. The second group consists of patients with longer OS and consists
of 119 patients. They have lived five years and longer after treatment and are considered to have a
good outcome. The third group consists of all patients in between the two groups and makes up the
biggest portion with 345. Those patients were excluded from the initial studies. The thresholds were
chosen to have two groups that were very distinct from one another to make changes and differences
in their gene expression profile easier to detect.

2.1.2. Data on the Platinum Response

To identify genes that could predict platinum response in ovarian cancer, the classifi-
cation provided by the TCGA study was used. In total, there are 152 patients. And 109 of
those are sensitive, and 43 are resistant.

2.2. Methods
2.2.1. Machine Learning Methods

The machine learning methods have been all trained with 50% of the data selected as
a training set and then frequently tested on 25% of the data selected as a test set. When the
performance reaches the desired value, it is tested once on the remaining 25% to evaluate
how well the method performs on unseen data. All of the methods have been trained
as binary classifiers to identify the correct class by their gene expression profile. The
models have been tested with the normalized data and data from the principal component
analysis. The training of the models has been done in different Jupyter Notebooks on
the “Cancer Genomics Cloud” provided by Seven Bridges. For each machine learning
model, the f1-score, accuracy, sensitivity, and specificity have been calculated to determine
their predictive performance. The confusion matrix of the classifiers is used to assess
the performance, and scatterplots are used to compare the different metrics across the
models. The machine learning methods used in this study are K-means clustering [25,26],
Naïve Bayes [27], logistic regression [28,29], supported vector machines [30,31], Random
Forest [32,33], and XBGoost [34]. All the methods used were integrated via the sklearn
library in Python. For the K-means Clustering method and the Naïve Bayes Classifier,
the standard hyperparameters have been used as a reference. For the four other methods,
optimization has been achieved using grid search, inputting different hyperparameter sets
to find the best-performing model.

2.2.2. SHAP

To determine which genes can be used as biomarkers, the XAI method SHAP is
used [20]. All genes add information to the machine learning model that helps predict the
outcome or platinum response status of each patient. To estimate which genes contribute the
most information, the algorithm utilizes the mathematics from game theory to determine
the local and global significance of the genes [35]. The most important metric here is the
Shapley value which is described as the difference by including or excluding the gene in
a coalition. At first, all Shapley values for each gene are determined by calculating the
marginal contribution of each gene to different feature coalitions. The Shapley value for
each gene represents the average contribution of a gene across all coalitions. The values are
then weighted according to the number of formed coalitions to account for the different
combinations of features that can occur. The weighted values are then aggregated to give a
comprehensive contribution of each gene to the model’s prediction [20,36].

2.2.3. Bioinformatics Algorithms

The original gene expression data consists of 20,429 genes. Most of them are likely, not
relevant in the search for biomarkers because they are not differentially expressed between
the two classes. To filter out those genes, we used DESeq2 available in R [23]. In the volcano
plot in Figure 3 the significance of the genes is depicted. Figure 3a shows the differentially
expressed genes between the patients with good and bad outcome and Figure 3b between
the patients that are platinum sensitive or resistant. Unnormalized gene counts are used
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for that purpose. The counts are normalized using the geometrical mean across all samples
for each gene. The gene count is divided by this mean to estimate the size factors using
the median of the ratios in each sample. Those accommodate for library size and RNA
composition bias. Subsequent steps estimate gene-wise dispersion and shrink estimates
to accurate model counts. In the last step, the counts are used to fit a negative binomial
model and use the Wald test for hypothesis testing [37]. Afterward, the log2fold shrinkage
method apeglm is used to determine which genes have significant changes between the
two groups. The p-adjusted value is used to select the genes that are significantly expressed
between the two groups. A p-adjusted value of 0.01 is used for the outcome studies and
0.05 for the platinum response studies.
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a log2FoldChange between +2 and −2. The red dots represent genes that have an adjusted p-value of
<0.01 and a log2FoldChange >2 or <−2. The blue dots are all genes that have an adjusted p-value of
>0.01. (b) The volcano plot depicted shows the differentially expressed genes between the patients
that are sensitive or resistant to platinum-based chemotherapy. The dots in green represent genes that
have an adjusted p-value of <0.05 and a log2FoldChange between +2 and −2. The red dots represent
genes that have an adjusted p-value of <0.05 and a log2FoldChang >2 or <−2. The blue dots are all
genes that have an adjusted p-value > 0.05.

For the outcome studies, genes upregulated in patients with a good outcome have a
log2foldchange above zero, and the ones upregulated in patients with a bad outcome have
a log2foldchange lower than zero. For the platinum response studies, genes upregulated
in platinum-sensitive patients have a log2foldchange above zero, and the ones that are
upregulated in platinum-resistant patients have a log2foldchange lower than zero. The
selected gene lists are further analyzed to determine their biological implications for ovarian
cancer. Metascape has been used for gene set enrichment analysis, pathway analysis, and
functional gene annotation. It is a web-based portal to provide those analyses in a combined
tool leveraging 40 independent knowledge bases for the assessment [38].

2.2.4. Statistical Methods

After conducting the differential gene expression analysis, the gene count data under-
went normalization before utilization in machine-learning algorithms. Considering that
the ovarian cancer patient data was generated in batches, it was necessary to normalize
the samples both within each gene and across the samples themselves. Two potential
normalization methods were considered: the widely used z-normalization and the TMM
normalization [39]. The comparative evaluation revealed that the TMM normalization
method resulted in improved performance of the machine learning models.

Despite the normalization process, outliers persisted in the data. To address this issue,
winsorization was applied. Specifically, the top 2.5% of the mRNA expression values in
both groups were replaced with the next highest value. This adjustment was made after
observing that these outliers exerted undue influence on the determination of important
features, as indicated by feature abstraction using SHAP.

For the platinum response studies, SMOTE [40] was used on the training dataset to
balance the sample size of each group. This step was necessary because the initial training
dataset is highly imbalanced in favor of the platinum-sensitive group. The machine learning
methods do not perform well because the prediction is based more on the frequent class
instead of the gene expression values. The SMOTE algorithm draws a random sample
from the minority class, and the k-nearest neighbors to that observation are identified. One
of them is picked, and the vector between both observations is identified. The vector is
multiplied by a number between zero and one and then added to the data point that was
originally picked. With this approach, the machine learning models are trained with similar
data as the original data points and do not lean to the majority class while the integrity of
the data stays intact [40,41]. The distributions of the classes for the patients with good and
bad outcome can be seen Figure 4 and for the resistancy status of the patients in Figure 5.

Afterward, all data points for both groups and datasets are scaled between zero
and one because some methods, like SVM, perform better with scaling. On the resulting
datasets, a PCA is performed since Random Forest and XGBoost classifiers worked better
in the approach than without it. This is essentially just for the assessment of the best
performer since it is very difficult to transform the principal components later back to the
original features [42,43].
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total of 109 patients are considered to be sensitive, and 43 patients are considered to be resistant.
The distribution between the two classes is unbalanced. Oversampling is used to adjust that in the
training data. In the bar plots on the right, the distribution of the classes is shown between the
training data, test data, and validation data.
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3. Results
3.1. Performance of Machine-Learning Models
3.1.1. Performance of Machine-Learning Models for Patient Outcome

Six different machine-learning methods were used to predict the outcome of ovarian
cancer patients (Figure 6). The performance and accuracy is evaluated by the f1-score,
accuracy, specificity and sensitivity of the model on the validation dataset (Figure 7). The
best-performing model is the logistic regression model, with 4 misclassifications out of
29 observations. The performance of the other models was slightly lower. The worst-
performing model is the K-means-clustering model. For the selection of the genes, the
models have been tested on the differentially expressed genes with a p-adjusted value of
0.1, 0.05, and 0.01. The gene dataset with a cutoff of 0.01 consisting of 149 genes was the
best-performing one.
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for the concordance between true labels and predicted labels, the more accurate and trustworthy
the model is. F1-scores that evaluate the performance of the model are K-means Clustering: 0.71,
Naïve Bayes: 0.77, Logistic Regression: 0.88, Supported Vector Machine: 0.85, Random Forest: 0.84,
XGBoost: 0.88. The logistic regression- and the XGBoost model receive the highest f1-scores with
4 misclassifications from 29 observations. For higher interpretability, the logistic regression model is
used for further analysis.
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metrics in all other categories. The worst-performing model is the K-means clustering method in
terms of the assessed four metrics.

3.1.2. Candidate Genes

The SHAP Algorithm has been performed on the logistic regression model to evaluate
which genes have the highest impact on the outcome of the model. The genes with the
highest impact on the model are depicted in Figure 8. The top 20 genes with the highest
Shapley values can be found in Figure A1. Those genes were then separated into the ones
that were upregulated in the good outcome group and those that were upregulated in the
bad outcome group. Upregulated in this context means the overall expression of that gene
is higher in one group of patients than in the other. In Figure 9, the Kaplan–Meier plots are
depicted from six genes with high Shapley values and low adjusted p-values [44]. The first
two are upregulated in the group of patients with bad outcomes, and the other four are
upregulated in the group of patients with good outcomes.
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3.2. Platinum Resistance Prediction of Ovarian Cancer Patients
3.2.1. Performance of Machine-Learning Models for Platinum Response

The same six machine learning methods have been used to predict whether a patient
is platinum-sensitive or resistant (Figure 10). The performance and accuracy is evaluated
by the f1-score, accuracy, specificity and sensitivity of the model on the validation dataset
(Figure 11). The random forest model is the one with the highest f1-score of 0.91 and two
misclassifications from 38 observations. The logistic regression model has an f1-score of
0.89 and two misclassifications. The random forest model used the data from the PCA
and is, therefore, more difficult to interpret. For the feature analysis with SHAP, the
logistic regression model is used instead. The K-means clustering model receives the worst
performance score. For the selection of the genes, the models have been tested on the
differentially expressed genes with a p-adjusted value of <0.1 and <0.05. The gene dataset
with a cutoff of 0.05 consisting of 172 genes was the best-performing one.
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Figure 10. Confusion matrices for the different machine learning methods used in this study. The
higher the number of concordances between true labels and predicted labels, the more accurate and
trustworthy the model is. The f1-scores for the models are K-means Clustering: 0.5, Naïve Bayes: 0.67,
Logistic Regression: 0.89, Supported Vector Machine: 0.89, Random Forest: 0.91, XGBoost: 0.91. The
random forest and XGBoost models are the ones with the highest f1-score and two misclassifications
from 38 observations. For higher interpretability, the logistic regression model is used for further
analysis with a similar f1-score.
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Figure 11. Barplots highlight the metrics: f1-score, accuracy, sensitivity, and specificity for the models
predicting the platinum sensitivity of ovarian cancer patients. The model with the highest overall
metrics is the Logistic Regression model. Apart from the f1-score, the XGBoost model matches those
metrics in all other categories. The worst-performing model is the K-means clustering method in
terms of the assessed four metrics.

3.2.2. Candidate Genes

For the selection of genes, the SHAP algorithm has been performed on the logistic
regression model to evaluate which genes have the highest impact on the prediction of
whether the patient is platinum-sensitive or resistant. The genes with the highest impact on
the model are depicted in Figure 12. The top 20 genes with the highest Shapley values can be
found in Figure A2. Those genes were then separated into the ones that are upregulated in
the patient group that is platinum-sensitive and those that are upregulated in the platinum-
resistant group. In Figure 13, the Kaplan–Meier plots are depicted from six genes with high
Shapley values and low adjusted p-values. The first two are upregulated in the group of
patients with bad outcomes, and the other four are upregulated in the group of patients
with good outcomes.
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Figure 13. Kaplan–Meier plots for progression-free survival (PFS) of the most relevant genes for
the logistic regression model. The genes: ALDH4A1, MITD1, and SLC4A1 (SW) are upregulated in
patients with platinum resistance. The genes: CAMK1G, GPR15, and PPFIA2 are upregulated in the
patients that are platinum sensitive.
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4. Discussion
4.1. Outcome Prediction for Patients with Ovarian Cancer

For the outcome prediction based on the gene expression profile, it can be demon-
strated that high performance is achieved with common machine learning methods. Apart
from the K-means clustering method, all machine learning models had a decent prediction
performance. As shown in Figure 6, the models were able to predict good and bad outcomes
very well. This is probably due to the data preprocessing steps and filtering of the genes
based on their differential expression. With 149 genes from originally 20,429, the data size
has decreased significantly, and also, the genes with no or low information value have been
removed. Furthermore, the separation of the patients between those that have a very short
survival of 2 years or less after their treatment and those with long survival of 5 years or
longer probably increased the differences in gene expression as well. In Kaplan–Meier plots
(Figure 9), it was possible to identify genes that are significant for the OS of ovarian cancer
patients using the SHAP algorithm. TMEFF2 is the gene with the highest median Shapley
value. It has been shown that high expression of TMEFF2 in endometrial cancer is corre-
lated with advanced cancer stage, poor differentiation, and lymph node metastasis [45].
Expression is also correlated with the recurrence of the tumor after successful therapy [46].
ADIPOR2 is in the top 20 of the selected genes by SHAP and is correlated, as shown in the
Kaplan–Meier plot (Figure 8), with shorter OS survival when highly expressed. It has been
shown in chicken ovarian cancer cell lines that ADIPOR2 protein expression is higher in
cancerous ovaries than in normal ovaries [47]. ADIPOR2 expression is positively associated
with proliferation and lethality in prostate cancer [48]. ACSM3 is number four of the
median Shapley values. High expression of this gene, on the other hand, is correlated with
inhibited cell proliferation, migration, and invasion of ovarian cancer cells. Overexpression
of the gene even led to suppression in cell migration [49]. Moreover, in high-grade serous
ovarian carcinoma (HGSOC), ACSM3 can suppress tumor growth in vitro and in vivo [50].
Even though the biological implications of ALPPL2 remains unclear, high expression of
the gene is correlated with good outcome in patients, as shown in Figure 8, and it has been
reported as a true tumor-specific antigen [51]. For GMPPB, the increased expression is
correlated with favorable outcomes. There is little information about its role in cancer, but
two studies identified the gene as a predictive marker in ovarian cancer as well [52,53]. The
last gene shown is C2orf88 which is upregulated in patients with longer OS. Regarding the
biological function C2orf88, it is only predicted that it enables protein kinase A regulatory
subunit binding activity [54]. But it is a prognostic factor for ovarian cancer patients.

Furthermore, the pathway and annotation analysis in Appendix B Table A1 shows
TNFRSF8 and TIGAR in multiple pathways. For the pathway analysis, genes with a
SHAP value up to 0.01 have been considered. The highly expressed genes from the bad
outcome group have been used in the analysis. The TNFRSF8 and TIGAR are associated
with pathways for positive regulation of the apoptotic process and programmed cell
death, which is interesting since both were shown in studies to be associated with bad
outcomes in patients. TNFRSF8 upregulation has been linked to several downregulated
genes in pathways for cell death, cell-mediated immune response, and inflammatory
response [55]. It has also been exploited as a therapeutic target using monoclonal
antibody monotherapy [56]. For TIGAR, it has been shown that its higher expression is
associated with poor overall survival in ovarian cancer as well as the knockdown of the
gene enhances sensitivity to the PARP inhibitors in cancer cells [57]. PARP Inhibitors are
used to treat advanced BRCA-mutated ovarian cancer in adults [58]. The results of the
pathway analysis of the upregulated genes in patients with good outcomes did not show
any significant results.

The two most promising genes to function as a biomarker and as a prognostic factor
are TMEFF2 and ACSM3 due to their high significance and known biological functions.
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4.2. Prediction of Platinum Response Status

It was possible to create multiple well-performing machine-learning models to predict
whether a patient is platinum-sensitive or resistant. The highest score reached the random
forest model with an f1-score of 0.91. The principal components from the PCA have
been used as input. In the studies reported by Nasimian et al. [21], they used a similar
approach and trained a deep learning model with a much bigger patient cohort with
2616 samples. The best performance of their model in predicting the platinum resistance
status of patients had an f1-score of 83.1. The higher performance of the random forest
model used here could be due to the different data preprocessing or the smaller sample
size [21]. In Figure 13 the Kaplan–Meier plots of three genes that are upregulated in
patients with platinum sensitivity and three genes that are upregulated in patients with
resistance are depicted. In comparison to the outcome prediction, the plots in Figure 13
show the PFS of ovarian cancer patients instead. The reason for it is that patients that have
a recurrence within 6 months after treatment are considered resistant, and patients that
have no recurrences or one after 6 months are considered sensitive. Therefore, the PFS is a
better fit to identify genes that are associated with platinum response. SLC4A1 (SW) has
the highest median Shapley value, and its increased expression is correlated with low PFS.
The gene is upregulated in patients that are resistant to platinum. As stated in another
paper, the gene is an independent prognostic factor for poor OS in grade 3 or 4 serous
ovarian cancer [59]. The protein AE1 is a chloride/bicarbonate transporter that is encoded
by SLC4A1. AEs are important in regulating intracellular pH [60]. Alterations in pH are
frequently altered in different types of cancer, like ovarian cancer [61,62]. ALDH4A1 has
the fourth-highest median Shapley value, and its high expression of it is highly correlated
with platinum resistance and poor PFS. The gene has been associated by other studies with
chemoresistance and might mediate carboplatin resistance [63,64]. MITD1 is the last one
of the platinum-resistant group, and the high expression of this gene is associated with
low PFS [65]. The protein coded by MITD1 is recruited by ESCRT-III to midbodies and
participates afterward in cytokinesis abscission [66]. Alterations in MITD1 expression may
affect ESCRT-III function in cytokinesis abscission, aneuploidy, and response to platinum.
High expression of CAMK1G is associated with longer PFS survival, and it is upregulated
in patients that are platinum sensitive. The gene belongs to the protein kinase I family,
and these enzymes control a wide range of functions in cancer and might be potential
therapeutic targets [67]. GPR15 has the same prognostic attribution as CAMK1G. GPR15
expression is higher in normal tissue than in tumors in colon and lung adenocarcinomas
and has the potential, with its natural ligand, to inhibit cancer cell growth [68]. High gene
expression of PPFIA2 is highly correlated with longer PFS in ovarian cancer patients. Not
too much research has been performed to identify the correlation between PPFIA2 and
cancer types but the protein it encodes binds to calcium/calmodulin-dependent kinases [69].
It has already been suggested that Ca2+ signaling is important in cancer cell function so
there might be a correlation between Ca2+ pathways and acquiring platinum resistance.

The pathway analysis for the higher expressed genes in the resistant patients showed
enhancement of cell–cell adhesion and cell–cell adhesion via plasma–membrane adhesion
molecules, as can be seen in Appendix B Table A2. The p-value < 0.01 cutoff has resulted
in 20 genes upregulated in the resistant patients. The two genes in the named pathways
are NLGN1 and PCDHB15. Studies show that NLGN1 is highly expressed in clusters of
aggressive migrating single tumor cells and promotes trans-endothelial migration [70]. For
PCDHB15, a similar aggressive behavior was identified. It has been shown that overexpres-
sion in melanoma leads to invasiveness and aggregation of metastatic melanoma in vitro
and forming lung metastasis in vivo [71]. Taken together, we suggest that both genes alter
the biological process of cell–cell adhesion and the process of plasma membrane adhesion
molecules [72]. Multiple papers show that cell–cell adhesion and adhesion molecules play
a vital role in cancer. Many cell adhesion molecules act as tumor suppressors and, when
altered, can promote the proliferation and migration of cancer cells [73–75]. Potentially, the
increased migration leads to higher chemotherapy resistance since the therapy targets cells
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with high proliferation, and according to the “go” or “grow” hypothesis, proliferation and
migration spatiotemporally exclude one another [76]. Further experimental investigation is
needed to prove that hypothesis.

5. Conclusions

It has been demonstrated in this approach that it is possible to predict the outcome and
resistance status of ovarian cancer patients and identify biologically relevant genes. The
most promising potential biomarkers are TMEFF2, ACSM3, SLC4A1, and ALDH4A1. Their
SHAP median values were high; they had a strong correlation with OS or PFS, and their
biological functions affect cancer. In addition to that, the pathway analysis, in combination
with the SHAP median values, suggests that NLGN1, PCDHB15, TIGAR, and TNFRSF8
are potential biomarkers of ovarian cancer.

Author Contributions: Conceptualization, V.S., P.B. and J.C.; data curation, V.S.; formal analysis,
V.S.; funding acquisition, J.C.; investigation, V.S. and J.C.; methodology, V.S., P.B. and J.C.; project
administration, J.C.; resources, J.C.; software, V.S. and J.C.; supervision, P.B. and J.C.; validation, V.S.
and J.C.; visualization, V.S.; writing—original draft, V.S.; writing—review and editing, V.S., P.B. and
J.C. All authors have read and agreed to the published version of the manuscript..

Funding: This research received no external funding.

Data Availability Statement: For the analysis, the publicly available ovarian cancer data by the
TCGA has been used. For further questions on how to obtain the data, please contact the authors.

Acknowledgments: We acknowledge Alice Barr for providing gynecological/oncological expertise.

Conflicts of Interest: The authors declare no conflict of interest, financial or otherwise.

Appendix A

Algorithms 2023, 16, x FOR PEER REVIEW 17 of 22 
 

5. Conclusions 
It has been demonstrated in this approach that it is possible to predict the outcome 

and resistance status of ovarian cancer patients and identify biologically relevant genes. 
The most promising potential biomarkers are TMEFF2, ACSM3, SLC4A1, and 
ALDH4A1. Their SHAP median values were high; they had a strong correlation with OS 
or PFS, and their biological functions affect cancer. In addition to that, the pathway anal-
ysis, in combination with the SHAP median values, suggests that NLGN1, PCDHB15, 
TIGAR, and TNFRSF8 are potential biomarkers of ovarian cancer. 

Author Contributions: Conceptualization, V.S., P.B. and J.C.; data curation, V.S.; formal analysis, 
V.S.; funding acquisition, J.C.; investigation, V.S. and J.C.; methodology, V.S., P.B. and J.C.; project 
administration, J.C.; resources, J.C.; software, V.S. and J.C.; supervision, P.B. and J.C.; validation, 
V.S. and J.C.; visualization, V.S.; writing—original draft, V.S.; writing—review and editing, V.S., 
P.B. and J.C. All authors have read and agreed to the published version of the manuscript.. 

Funding: This research received no external funding. 

Data Availability Statement: For the analysis, the publicly available ovarian cancer data by the 
TCGA has been used. For further questions on how to obtain the data, please contact the authors. 

Acknowledgments: We acknowledge Alice Barr for providing gynecological/oncological exper-
tise. 

Conflicts of Interest: The authors declare no conflict of interest, financial or otherwise. 

Appendix A 

 
Figure A1. The bar plot shows the top 20 genes based on the mean SHAP value of the logistic re-
gression model of the ovarian cancer outcome prediction. 
Figure A1. The bar plot shows the top 20 genes based on the mean SHAP value of the logistic
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Table A1. Pathway enrichment analysis of the upregulated genes in the patients having bad outcomes
with SHAP values of 0.01 or higher.

Category GO Description Hits
GO Biological Processes GO:0042886 amide transport NTRK2|S100A8|SLC1A6

Immunologic Signatures M5353 GSE37416 0H vs. 48H F TULARENSIS LVS
NEUTROPHIL DN TNFRSF8|CATSPERG|ADIPOR2

GO Biological Processes GO:0042060 wound healing S100A8|TMEFF2|ADIPOR2
GO Biological Processes GO:0099537 trans-synaptic signaling NTRK2|SLC1A6|LIN7A
GO Biological Processes GO:0048514 blood vessel morphogenesis NTRK2|ANGPTL4|ADIPOR2
GO Biological Processes GO:0009611 response to wounding S100A8|TMEFF2|ADIPOR2
GO Biological Processes GO:0099536 synaptic signaling NTRK2|SLC1A6|LIN7A
GO Biological Processes GO:0001568 blood vessel development NTRK2|ANGPTL4|ADIPOR2
GO Biological Processes GO:0046903 secretion NTRK2|S100A8|LIN7A
GO Biological Processes GO:0001944 vasculature development NTRK2|ANGPTL4|ADIPOR2
GO Biological Processes GO:0043065 positive regulation of apoptotic process TNFRSF8|S100A8|TIGAR
GO Biological Processes GO:0043068 positive regulation of programmed cell death TNFRSF8|S100A8|TIGAR
GO Biological Processes GO:0010942 positive regulation of cell death TNFRSF8|S100A8|TIGAR
GO Biological Processes GO:0030855 epithelial cell differentiation CDSN|CASP14|TIGAR
GO Biological Processes GO:0035239 tube morphogenesis NTRK2|ANGPTL4|ADIPOR2

Reactome Gene Sets R-HSA-382551 Transport of small molecules APOC4|SLC1A6|ANGPTL4
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Table A2. Pathway enrichment analysis of the upregulated genes in the patients that are platinum-
resistant with SHAP value of 0.01 or higher.

Category GO Description Hits

GO Biological Processes GO:0098742 cell–cell adhesion via
plasma–membrane adhesion molecules

NLGN1|PCDHB15|
PCDHB7

GO Biological Processes GO:0098609 cell–cell adhesion NLGN1|PCDHB15|
PCDHB7
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