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Abstract: Most research on fairness in Machine Learning assumes the relationship between fairness
and accuracy to be a trade-off, with an increase in fairness leading to an unavoidable loss of accuracy.
In this study, several approaches for fair Machine Learning are studied to experimentally analyze
the relationship between accuracy and group fairness. The results indicated that group fairness and
accuracy may even benefit each other, which emphasizes the importance of selecting appropriate
measures for performance evaluation. This work provides a foundation for further studies on the
adequate objectives of Machine Learning in the context of fair automated decision making.
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1. Introduction

Automated decision making based on Machine Learning (ML) has become an integral
part of human lives, applied in several areas like credit lending, hiring, risk assessment or
health care [1]. ML algorithms are adopted to make decisions on behalf of humans, which
rely on past data rather than human judgement. They rely on statistical concepts and are,
therefore, assumed to achieve more accurate and fair decisions compared to human assess-
ment. However, decisions made by machines are actually not free of discrimination [2].
Therefore, achieving fair outcomes in addition to correct predictions from the ML model
is essential.

There is no consensus in research on the compatibility of these two terms. According
to [3], the majority of research claims that an increase in fairness comes at an unavoidable
loss of accuracy [4–8]. In addition, [9] further explored “impossibility theorems” of several
fairness metrics and accuracy. In contrast, some researchers highlight that the assumed
trade-off is not necessarily a given [8,10–15]. Based on the contradicting findings, this work
is dedicated to the following research question: What is the relationship between accuracy
and fairness in the context of automated decision making?

In our study, we operationalize the term accuracy by various established formal
metrics, such as Accuracy (ACC), Balanced Accuracy (BACC) score and F1 score, to assess
the correctness of outcomes [16]. Fairness in the context of ML has no universal formal
definition [17]. A lot of the metrics proposed by research claim to make fairness accessible
by measuring the difference in outcomes between individuals or groups with respect to
their protected features, such as race or gender [18,19]. For fairness, this study focused on
group fairness metrics, Statistical Parity Difference (SPD) and Average Odds Difference
(AOD), to assess the disparities between privileged and unprivileged groups based on their
protected features [20], such as race or gender [18,19].

To answer the research question, several approaches are examined: first of all, baseline
classifiers are trained on the two predefined data sets, Correctional Offender Management
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Profiling for Alternative Sanctions (COMPAS) and Law School Admissions Council’s Na-
tional Bar Passage Study (LAW), to ensure comparability among the analyzed approaches.
A Logistic Regression Classifier (LRC) is optimized with respect to the two objectives. First,
accuracy is maximized to analyze the effect on fairness. Ref. [12] highlights that optimizing
a model with respect to accuracy decreases the numbers of errors made by the model and,
hence, increases fairness in outcomes.

Second, by applying the popular pre-processing strategy Reweighing (RW), fairness is
improved by mitigating biases [21].

In addition, general ML practices expected to increase accuracy are studied with
respect to their effects on fairness in terms of the following: the size of the feature set and
of the training set. Ref. [11] argued that the number of features used to make a decision has
a positive impact on fairness, whereas the effect achieved by increasing the training set size
is negative due to inherent data biases. This study verifies the effects of these practices on
the studied datasets.

Finally, the data augmentation technique proposed by [10] is replicated to explore the
accuracy–fairness relationship. Ref. [10] showed that augmenting synthetic data, represent-
ing an ideal world, to diminish the effect of the protected feature on the label, increases
fairness and accuracy, simultaneously.

The remaining sections of this paper are organized as follows: Sections 2–5 address
the fundamentals related to fairness in ML to establish a baseline, covering the relevance of
extending the objective of ML, how to define and measure fairness in the context of ML and
how to account for biases arising throughout the ML pipeline. Furthermore, this Section 5
deals with the assumed trade-off between accuracy and fairness and presents different
approaches that challenge this assumption. In Section 6, the methodology of the analysis
is defined, including the selection of data sets, feature pre-processing, and the model and
metrics selection to assess fairness and accuracy of outcomes, as well as approaches applied
to enhance fairness in ML and their impacts on accuracy. Section 7 describes and evaluates
the results and findings for each experiment performed. Finally, this work concludes by
presenting the key findings, limitations and further research suggestions.

2. Fairness in Machine Learning
2.1. Relevance of Fairness in Automated Decision Making

Supervised learning models are trained on past data to recognize inlaying patterns
and to make future predictions [22]. Based on these models, final decisions are made in
sensitive areas of human life, such as whether a person will receive the requested credit, be
classified as a repeat offender, be hired for a job, or be diagnosed with a particular disease.

According to the law, those decisions—made automatically by a model based on
numbers, or by human judgement—need to be free of discrimination [12]. However,
several real world examples emphasize that this requirement is not always met, whether or
not sensitive traits are included in the decision making process.

One of the most common known examples is COMPAS, a decision support tool used
to estimate the probability of a criminal defendant recommitting a crime by assigning risk
scores. Ref. [23] analyzed that the possibility of black defendants being misclassified as
risky were more than twice as high compared to white defendants. Therefore, the system
invented by Northpointe discriminates on an ethical basis, as race, displaying the protected
feature, is not directly included in the analysis. The feature affects the outcome through
proxies. Another example is represented by publicly accessible face recognition services
developed by Microsoft, Face++ or IBM [24]. Ref. [25] observed that the accuracy for
white-skinned males is much greater than for black-skinned females. Consequently, the
applied algorithms discriminate not only on an ethical basis, but, additionally, also do so
with respect to the gender of an individual.

With AI affecting such sensible areas of human life, and in the context of its evolv-
ing future importance, the inclusion of fairness to the ML objective becomes even more
important [18]. As [16] points out, the problem needs to be redefined because FML is not
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only about “mathematical correctness” and maximizing a model’s performance, but also
about the integration of “human values” to the ML pipeline to guarantee fair automated
decisions. Consequently, to achieve fair decision-making, the objective needs to incorporate
both accuracy and fairness.

2.2. Fairness and Group Fairness Measures

There is no universal definition for fairness in ML [17]. According to [18], for example,
a decision can be claimed to be fair if it is made in the “absence of any prejudice or favoritism
toward an individual or a group based on their inherent or acquired characteristics”.

In general, fairness in ML can be analyzed at the level of the group and of the individ-
ual. Group fairness accounts for differences in treatment between groups based on their
protected features S [26,27], whereas individual fairness requires each individual to be
treated equally, meaning that individuals described by the same features X, including the
protected features S, need to be assigned to the same class [28]. In the context of automated
decision making, sensible traits, such as gender, age or race [19], are referred to as protected
features S.

Table 1 summarizes some popular group fairness metrics based on [17,18,20], including
their statistical measures and fairness criteria. All of the metrics are based on the statistical
concept of the confusion matrix [17], which are presented in table 2. This work focused on
group fairness metrics, Statistical Parity Difference (SPD) and Average Odds Difference
(AOD), to assess the disparities between privileged and unprivileged groups based on their
protected features [20], such as race or gender [18,19]. Ref. [20] defined three criteria to
measure group fairness: independence, separation and sufficiency. Measures built on the
criterion of independence (ŷ ⊥⊥ S) focus on the predictions made by the model, whereas all
other metrics listed rely additionally on the ground-truth labels [17]. All fairness measures
are considered to be context-dependent [18] and some impossible to fulfil simultaneously
because different measures reflect different perspectives of the stakeholders [16].

Consequently, the selection of fairness measures is of great importance to analyze the
relationship between accuracy and fairness.

Table 1. Definitions of Group Fairness (adapted from [17,18,20]).

Measure Definition Statistical
Measures Criterion

Statistical Parity [28] P(ŷ = 1|S = 0) = P(ŷ = 1|S = 1) ŷ Independence

Conditional Statistical Parity [4]
P(ŷ = 1|S = 1, Y = 1) = P(ŷ = 1|S = 0, Y = 1)
P(ŷ = 1|S = 1, Y = 0) = P(ŷ = 1|S = 0, Y = 0)

ŷ Independence

Equalized Odds [29]
P(ŷ = 1|S = 1, Y = 1) = P(ŷ = 1|S = 0, Y = 1)
P(ŷ = 1|S = 1, Y = 0) = P(ŷ = 1|S = 0, Y = 0)

ŷ, Y Separation

Equalized Opportunity [29]
P(ŷ = 1|S = 1, Y = 1) = P(ŷ = 1|S = 0, Y = 1)
P(ŷ = 0|S = 1, Y = 0) = P(ŷ = 0|S = 0, Y = 0)

ŷ, Y Separation

Predictive Parity [30]
P(Y = 1|S = 1, ŷ = 1) = P(Y = 1|S = 0, ŷ = 1)
P(Y = 0|S = 1, ŷ = 1) = P(Y = 0|S = 0, ŷ = 1)

ŷ, Y Sufficiency

Table 2. Confusion Matrix adapted from [17].

True Positive True Negative

Predicted Positive
True Positive (TP)
TPR = TP

TP+FN

False Positive (FP)
FPR = FP

FP+TN

Predicted Negative
False Negative (FN)

FNR = FN
FN+TP

True Negative (TN)

TNR = TN
TN+FP
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Individuals form groups based on their protected features S. In FML those groups
are referred to as the privileged (S = 1) and unprivileged groups (S = 0), with the latter
one being the one at disadvantage due to discrimination. To achieve Statistical Parity,
the probability of members of the privileged and unprivileged groups being assigned
to the positive predicted class needs to be equal [28], implying that the decision made
was independent of the group membership with respect to individual traits displayed by
the protected feature S. Formally, Statistical Parity of a binary classification problem is
summarized by the following equation:

P(ŷ = 1|S = 0) = P(ŷ = 1|S = 1) (1)

The definition of Conditional Statistical Parity adds a set of legitimate factors L to
the concept of Statistical Parity [4,18]. For example, in the context of credit lending, as
described by [17], additional features directly affecting the decision, such as requested loan,
age or employment, are included in the analysis. Formally, this indicates:

P(ŷ = 1|S = 1, L = l) = P(ŷ = 1|S = 0, L = l) (2)

While the definitions of Statistical Parity fulfil the criterion of Independence, Equalized
Odds and Equalized Opportunity apply to the concept of Separation (ŷ ⊥⊥ S|Y). Separation
assumes the protected feature to be correlated with the target variable Y [20] and the
prediction ŷ to be conditionally independent of S. On the one hand, Equalized Odds
requires equal True Positive Rates (TPR) and equal False Positive Rates (FPR) for both
groups [29].

P(ŷ = 1|S = 1, Y = 1) = P(ŷ = 1|S = 0, Y = 1)

P(ŷ = 1|S = 1, Y = 0) = P(ŷ = 1|S = 0, Y = 0)
(3)

On the other hand, Equalized Opportunity is defined by the TP or FN error rate
balance, representing the idea that all individuals, independent of their group membership,
have an equal possibility of being assigned to the positive predicted class [29]. Hence,
members of the privileged and unprivileged groups are defined as have matching TPR or
False Negative Rates (FNR).

P(ŷ = 1|S = 1, Y = 1) = P(ŷ = 1|S = 0, Y = 1)

P(ŷ = 0|S = 1, Y = 0) = P(ŷ = 0|S = 0, Y = 0)
(4)

The definition of Predictive Parity fulfils the third fairness criterion, namely Sufficiency
(Y ⊥⊥ S|ŷ). To achieve Sufficiency the protected feature S is assumed to be conditionally
independent of the true class Y given the predicted class assignment ŷ. The idea behind it
indicates that the protected feature is covered by the prediction of the target variable [20].
Therefore, Predictive Parity is fulfilled if both groups have equal positive predicted values. This
implies that the positive predictions should be equal for all values of the protected feature [30].

P(Y = 1|S = 1, ŷ = 1) = P(Y = 1|S = 0, ŷ = 1)

P(Y = 0|S = 1, ŷ = 1) = P(Y = 0|S = 0, ŷ = 1)
(5)

2.3. Individual Fairness

Individual fairness considers each individual independently, instead of assuming a
decision to be fair on a group level. Fairness Through Awareness makes use of distances to
estimate the similarity between individuals. The main idea is that similar individuals are
treated equivalently based on their sets of features X, including the protected features S [28].
In opposition, Fairness Through Unawareness does not include the protected features S
in the analysis. Hence, individuals with the same set of features X are assigned to the
same target class [31]. However, the effect of the protected feature might be captured by
other features from the considered feature set [23]. Moreover, causal analysis is used to
explore the relationship between the whole data set, including X, S and Y. According
to [32] “a decision is fair towards an individual if it is the same in (a) the actual world
and (b) a counterfactual world where the individual belonged to a different demographic
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group”—implying Counterfactual Fairness. Therefore, in the sense of causal graphs the
predicted class needs to be independent of a predecessor of the protected feature [17]. An
overview of the above-mentioned individual fairness measures can be found in Table 3.

Table 3. Definitions of Individual Fairness adapted from [17,18,20].

Measure Paper Concept

Fairness Through Awareness [28] Similarity
Fairness Through Unawareness [31,32] Similarity

Counterfactual Fairness [32] Causality

3. Sources of Bias in the Machine Learning Pipeline

Discrimination means putting certain individuals or groups of individuals at a disad-
vantage based on their sensitive traits [18]. In the context of ML, this implies that models
are biased in the way that certain individuals are assigned to a negative class (ŷ = 0)
based on their sensitive features S, such as gender, age or race [19]. The protected features
serve as an input for the model, which represents a “collection of decision rules” [2], to
classify an instance as good or bad, creditworthy or not, or to assess the probability of a
criminal relapsing. For binary classification problems, discrimination comes with a polar
target variable. The predictions are polar in the sense that one outcome is more beneficial
compared to the other outcome [2].

Discrimination is often associated with biased data. This assumption treats data like a
static and independent entity and discards the underlying procedures. Data collection is a
continuous process reflecting historical patterns, and human norms and judgements, as
well as the purpose of usage [33].

3.1. Sources of Bias in the Data Collection Phase

Each stage of the ML pipeline, including data collection, model development, evalua-
tion or even model deployment, involves decisions [33] which lead to final outcomes, and,
therefore, could be a potential source of bias. There has been a great amount of research in
recent years on developing strategies to enhance fairness in outcomes [21,34,35]. Ref. [20]
categorized the categories as data pre-processing, model in-processing and outcome post-
processing. In [7] it is claimed that the first stage, namely data collection, is the origin of
the trade-off. Therefore, this work concentrates on the data collection process to explore
the relationship between accuracy and fairness. A basic principle of ML states: garbage in,
garbage out [36,37]—which relates to bad quality data leading to undesirable outcomes.
This stage involves sampling the group of interest and selecting and measuring charac-
teristics and labels [33]. Representation bias, or sampling bias, is based on the definition
of the target population. Even if the data is perfectly measured, certain individuals or
groups may be unintentionally disadvantaged because they are underrepresented, whereas
measurement bias refers to the selection of characteristics and their measurement [33].
In addition, characteristics within the selected group of characteristics may be interrelated
and hide their true effects on the outcome [38]. Furthermore, historical bias occurs when
data from the past are used to make predictions about the present and future [3,33]. Finally,
decisions that affect a person’s life, such as attitudes, health care, or lending, are based on
human judgment and, therefore, may not correspond to the ground truth, although ML
models assume that a data set’s labels reflect the ground truth [2,3,38].

3.2. Model Development

The model development summarizes the model training and leads to the final decision.
Bias can be introduced by using a “one-size-fits-all model” referred to as aggregation
bias [33]. Although the data set might contain different groups, the model does not
depict these variations in the underlying conditional distributions and, hence, leads to
inappropriate predictions [39]. Moreover, during the training process hyperparameters
are chosen to maximize a certain objective. However, the defined objective might not be
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suitable for the problem [33], so that, for fairness in ML, optimizing the model with respect
to accuracy is insufficient. In addition, algorithmic processing bias deals with biases that
emerge when accounting for fairness. By implementing mitigation strategies to account for
fairness during model development, bias is again introduced in the sense that the model is
not objective but, instead, tries to account for differences between groups or individuals
with respect to their sensitive features S [40].

3.3. Model Evaluation

Furthermore, bias is introduced assessing model performance. One source is presented
by the choice of metrics used to evaluate a model. The context of application needs to be
considered critically, since a model achieving great accuracy does not necessarily indicate
that the model performs well in reality [33]. For example, in the context of healthcare, FN
come at greater costs than FP. Additionally, evaluation bias arises due to benchmarking,
because the data used to measure performance does not display the target group [39].

3.4. Model Deployment

The last step of the ML pipeline is defined by model deployment. Deployment bias
describes the problem occurring if the purpose of the model does not match its applica-
tion [33]. The “framing trap”, defined by [41], captures this problem of mismatch, wherein
a model trained for risk assessment might as well be used to predict if an individual will
show up in court [33]. Moreover, the outputs produced by the model need to be interpreted
adequately. Interpretation bias emerges because predictions are built on probabilities per-
formed by the model [42]. For the example of COMPAS, the court is prepared with risk
assessment scores [23] which they need to interpret by themselves and, consequently, user
judgement is introduced. Non-transparency of outcomes refers to the “black-box problem”
described in Section 2.1, whereby the rules of a ML model leading to a prediction are not
transparent for the user and, therefore, might be incomprehensible [42]. Automation bias
supports the assumption that automated decision making magnifies discrimination [3].
As already indicated by the non-transparency of outcomes bias, the user does not know the
underlying assumptions and does not know about potential hidden biases. Hence, the user
assumes that the model makes the right decision. As a result, the user does not critically
analyze the predictions made by the model [42].

4. Bias Mitigation Strategies

Strategies to account for discrimination in automated decision making can be classified
along the pipeline as follows: (1) pre-processing or data-based mitigation; (2) in-processing
or model-based mitigation; (3) post-processing mitigation methods [20]. Pre-processing
mitigation strategies correspond to the stage of data collection in the ML pipeline and
are used to ensure that the predefined protected feature does not impact the outcome
negatively by modifying the feature space [20]. The biases inherent in the data itself are
removed before model training to account for fair outcomes [22]. Bias mitigation at the stage
of model development includes diverse approaches. In-processing mitigation strategies
are modifications of model development, e.g., changing the loss function, adjusting the
learning algorithm itself or compositional and adversarial approaches [22]. However, since
these approaches are only suitable for certain optimization problems [20], in-processing
mitigation strategies come with less generality. Post-processing mitigation approaches
occur at the stage of model evaluation. They are applied on potentially biased, trained
classifiers to ensure fairness with respect to the sensitive traits of an individual [22]. Post-
processing is independent of the modeling process and, hence, applies to any black-box
classifier. Additionally, the models do not need to be trained again, since post-processing
mitigation only affects the outcomes and represents the only possibility to control for
fairness if access to the ML pipeline is not given [20].

In this work, we focused on the Reweighing (RW) approach [21], one of the most
popular pre-processing mitigation strategies. With Reweighing (RW), each sample of the
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data set, representing an individual, is assigned a weight based on their ground-truth label
Y and predefined protected feature S. The main idea constitutes re-balancing the data set
with respect to the protected feature to ensure fairness in outcomes [21].

4.1. Pre-Processing Strategies

Pre-processing strategies correspond to the stage of data collection in the ML pipeline
and are used to ensure that the predefined protected feature does not impact the outcome
negatively by modifying the feature space [20]. The biases inherent in the data itself are
removed before model training to account for fair outcomes [22].

Probably the most popular pre-processing mitigation strategy is Reweighing (RW).
The technique was invented by [21] and, instead of altering the data by changing the
ground-truth labels, as done for Massaging [43], each sample of the data set, representing
an individual, is assigned a weight based on the ground-truth label Y and predefined
protected feature S. The main idea constitutes re-balancing the data set with respect to the
protected feature to ensure fairness in outcomes [21].

Instead of re-sampling or re-labeling the data, representation learning is applied to
mitigate biases arising at the beginning of the ML pipeline [22]. Optimized Pre-processing
makes use of a probabilistic framework to generate a randomized mapping of the training
and test sets that controls for discrimination. To conclude, the data set D = (Xi, Si, Yi)
is transformed into a new data set D̃ = (Si, X̂i, Ŷi). The randomized mapping needs to
fulfil the following properties: First, the effect of the protected feature on the transformed
mapping of the outcome is limited; Second, large changes are suppressed by distortion
constraints; Third, statistical distribution of the mapping needs to be close to the real
distribution to preserve utility [44]. Another approach falling into this category is the
so-called Disparate Impact Remover. In contrast to Optimized Pre-processing, it affects
only the feature set X, instead of X and the ground-truth label Y, leading to a new data set
D̃ = (Si, X̂i, Yi) [45].

The approach of Learning Fair Representations [34] is built on the work by [28], who
explored probabilistic mapping that fulfils individual and group fairness simultaneously.
The main idea of [34] is to achieve a set of intermediate representations that fulfil two criteria:
first, the representation reflects the acquired data as well as possible and, second, the
representation is not able to assess if an instance originally belonged to the protected group.
To summarize, the mapping is designed to keep all information, excepting group affiliation,
based on the protected feature. In addition, the algorithm comes with hyperparameters to
optimize outcomes with respect to fairness and accuracy [34].

The methods described cover only a subsection of pre-processing mitigation strategies
to improve fairness in ML. Further relevant techniques include a Variational Fair Autoen-
coder [46], Rule Protection [47], Adversarial Learned Fair Representations [48] and others,
summarized by [22].

The analytical part of this work focused on pre-processing mitigation strategies, be-
cause label bias, in particular, plays a critical role when it comes to model performance,
which is often avoided in research [3]. Moreover, bias arising at the stage of data collection
affects the entire ML pipeline and by correcting for bias in the first stage flexibility for
further steps is maintained [20,44].

4.2. In-Processing and Post-Processing Strategies

Nevertheless, to provide a general overview and understanding of bias mitigation
throughout the ML pipeline, in-processing and post-processing are described broadly in
the following. Moreover, the advantages and disadvantages of each strategy are discussed.

In-processing mitigation strategies are modifications of model development, which
represent the second step of the ML pipeline, as illustrated by Figure 1. While one of the
advantages of pre-processing is retaining flexibility along the ML pipeline, this illustrates
a disadvantage of in-processing strategies. At the same time, modifying the model leads
to less generality, since those approaches are only suitable for certain optimization prob-
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lems [20]. Bias mitigation at the stage of model development includes diverse approaches,
such as changing the loss function, adjusting the learning algorithm itself or compositional
and adversarial approaches [22].

Figure 1. Potential biases of the ML pipeline.

Approaches falling into the category of post-processing mitigation occur at the stage
of model evaluation. They are applied on a potentially biased, trained classifier to ensure
fairness with respect to the sensitive traits of an individual [22]. On the one hand, adapting
the outcomes might lead to a reduction of utility. On the other hand, post-processing is
independent of the modeling process itself and hence applies to any black-box classifier.
Additionally, the models do not need to be trained again, since post-processing mitigation
only affects the outcomes and it represents the only possibility to control for fairness if
access to the ML pipeline is not given [20].

5. Accuracy and Fairness

In ML, accuracy is defined as the objective of the classification task [16]. Accuracy met-
rics are applied to measure model performance by comparing the “label alignment” of the
predictions made by the model, trained on a subset of the data set, to the ground-truth labels
of the test set [3]. Due to label bias, the concept of accuracy in FML is challenged. Although
label bias is a common and known problem, only a few works deal with this problem of
discrimination when evaluating model performance based on the assumed ground-truth
labels [13]. As explained in Section 3.1, the ground-truth labels might be discriminating.
If the ground-truth labels are wrong, this, consequently, leads to inaccurate decisions [3].
Based on the assumption that the ground-truth labels are fair, predictions become unfair,
as emphasized by the examples given in Section 2.1. Since automated decision making
influences human life, fairness needs to be granted to avoid systematic discrimination.

Fairness metrics measure the difference in decisions between groups or individuals
based on the protected features included in the modeling process [3]. To achieve group
fairness, the decision made, illustrated by the prediction ŷ, needs to be independent of
the sensitive feature S, summarized by the Independence criterion [20] representing the
“we’re all equal worldview” [7]. The sensitive traits of an individual do not reflect his or
her performance capability. Consequently, the individual’s protected features should not
have an effect an the assigned class labels [13]. Therefore, the objective function should not
only focus on the performance of an algorithm measured by accuracy metrics, but put fair
accuracy in the center of the objective.

5.1. The Trade-Off Assumption between Accuracy and Fairness

The great majority of research on the topic of FML assumes a trade-off between accu-
racy and fairness [3–7]. It is claimed that enhancing fairness in automated decision making
leads to an unavoidable loss of accuracy [3], also referred to as the “cost of fairness” [4].
The authors in Ref. [7] argued that the data collection stage is the source of the assumed
trade-off. Consequently, their analysis of the relationship between accuracy and fairness
concentrated on pre-processing strategies. The authors in [5] state that accuracy and fair-
ness can only be maximized simultaneously if the target variable is fully independent of
the protected feature. Yet, due to noisier mappings, this is not achievable in reality [13].
Pre-processing techniques are used to account for noisier mappings. If only the training
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set is cleaned for label bias, the performance of the model is still evaluated on the poten-
tially discriminating ground-truth labels, which comes at the cost of accuracy and leads
to biased measurements [13]. The study in [49], in the specific application area of credit
scoring, investigates the profit implications of fairness and also discusses the assumed
trade-off between fairness and accuracy in that particular domain. Our study investigated
two different application domains and also further analyzed the trade-off from different
perspectives and well-known ML practices.

5.2. State-of-the-Art Approaches

In contrast to the trade-off assumption, some researchers argue that a negative rela-
tionship is often taken for granted without being verified and highlight that the assumed
trade-off is not necessarily a given [3,8,10–14].

Although fairness and accuracy are assumed to be in opposition to each other, [12]
explains that maximizing accuracy simultaneously enhances fairness, stating that increas-
ing accuracy leads to a decrease in errors produced by the model, represented by False
Negatives (FN) and False Positives (FP), and, consequently, has a positive effect on the
fairness in outcomes. Moreover, collecting more features to improve the description of
an individual is claimed to increase fairness and accuracy, referred to by the term active
fairness [50]. Ref. [11] analyzed the effect of feature set and training set size on fairness.
Their approach built on two principles: feature set size defining the “knowledge level” and
training set size defining the level of experience, both of which are commonly known to
enhance accuracy of predictions. They found that enlarging the number of features used
for model training improves fairness, whereas increasing the size of the training set has no
significant effect, or even a negative impact, on fairness in outcomes. Their explanation is
that, by introducing more biased data points, the model is able to depict those patterns more
accurately which, consequently, leads to greater unfairness. [10] augment the most realistic
points of a synthetic data set to the original data set to account for the problem of label
bias. The findings emphasized that fairness can be enhanced without causing a significant
loss of accuracy and that increasing one fairness metric simultaneously increases other
metrics. This approach does not rely on mitigation strategies to enhance fairness, which
decreases its complexity and also leads to greater transparency of the modeling process.
Other approaches to account for the assumed trade-off between fairness and accuracy
include post-processing strategies, such as the confidence-based approach proposed by [14].
They consider the problem of label bias and explore a way to optimize the trade-off by
using shifted decision boundaries, based on the theory of margins. The method does not
negate the assumed trade-off, but makes it accessible by regularizing the decisions made
by the model. The labels corresponding to small signed confidences are reversed. Based
on the theory of margins, flipping labels does not have a major impact on accuracy. Their
approach can be applied to any ML algorithm which outputs display confidence measures,
such as boosting or logistic regression. The authors in [15] make use of group-specific
thresholds to adjust the TPR among individuals. Their results emphasize that fairness can
be achieved by a minor decrease in accuracy.

6. Data and Methodology

The following experiments were carried out:

1. Optimized modeling: Does maximizing accuracy simultaneously lead to an in-
crease in fairness? Enhancing accuracy with respect to ACC and BACC is expected to
decrease the corresponding error rate and, consequently, to simultaneously increase
fairness [12].

2. Discrimination threshold: Does adapting the threshold of classification in the in-
terest of maximizing accuracy improve fairness? The LRC is optimized with respect
to the F1 score. Adapting the threshold of classification is expected to increase accuracy.
Furthermore, balancing the samples representing the privileged and unprivileged
groups might simultaneously increase fairness.
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3. Bias mitigation: How does the objective of maximizing fairness impact accuracy?
To analyze the effect of bias mitigation on accuracy and fairness, the popular mitiga-
tion strategy RW was performed. According to the research, assuming the trade-off
between accuracy and fairness to be unavoidable, accuracy is expected to decrease if
fairness is maximized.

4. Feature set size: Does the number of features used to make a decision influence
accuracy and fairness? Increasing the feature set size, corresponding to greater
knowledge being available about an individual, is expected to increase accuracy and
fairness [11].

5. Training set size: Does the quantity of available training data influence accuracy
and fairness? Increasing the training set size is expected to increase accuracy but to
also negatively impact fairness, according to [11].

6. Data augmentation: How do accuracy and fairness change if synthetic data points
are augmented to the data set? The addition of realistic, synthetic data points to
account for different labels with respect to the unprivileged and privileged groups is
assumed to increase fairness and accuracy simultaneously [10].

Our work replicates the data simulation approach, based on [10] and the impact of
training set and feature set size, as proposed by [11], as well as the pre-processing mitigation
strategy, namely RW [21]. The same fairness and accuracy measures are applied to enhance
comparability across the applied approaches used to increase fairness in ML and to explore
the relationship between fairness and accuracy.

6.1. Data Set Selection

The following analyses were based on two datasets: COMPAS [23] and LAW [51].
The prediction task for COMPAS is to assess whether an individual will become recidivist
within two years after imprisonment. For LAW, an individual is classified as to whether
he or she will pass the bar exam or fail the bar exam. COMPAS is a system invented by
Northpointe to assess the risk of recidivism and the data set was published in 2016 by
ProRepublica. This data set contains a total of 52 features. However, only the variables
listed in Table A1 in Appendix A were used for further analysis. Figure 2 illustrates the
distribution of individuals assigned to be re-offenders within the considered time period per
group. The pie charts in Figure 2 emphasize that African-American individuals predicted
to become recidivist made up more than half of the total group and exceeded the share
obtained for Caucasians.

(a) (b)

Figure 2. Label distribution according to protected feature. (a) COMPAS; (b) LAW.

The other data set, LAW (http://www.seaphe.org/databases.php, accessed on 12
May 2022), is an educational data set used in FML. This data was collected via surveying
more than 20,000 law students from 167 different law schools in the United States in
1991 [51]. Figure 2 illustrates that the majority of students passed the bar exam. However,
the share of non-white students (S = 0) failing the bar exam was more than four times
greater compared to white students (S = 1). The group of non-white students summarized

http://www.seaphe.org/databases.php
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individuals belonging to race groups described as Black, Hispanic, Asian and others.
The total ratio of Whites compared to Non-Whites amounted to 17,524 (84.10%): 3313
(15.89%) summarizing a total of 20,836 observations. Consequently, for this data set (in
contradiction to COMPAS) the unprivileged group was underrepresented. Moreover, the
ratio of the positive and negative target class was imbalanced: 17,524 (84.10%): 3313 (15.9%).
Although the amount of samples belonging to the negative class (Y = 0), representing
failure of the bar exam, was minor compared to positive samples, the majority of negative
class labels corresponded to the unprivileged group.

6.2. Data Pre-Processing

For comparability, both data sets were pre-processed equivalently. As for encoding of
variables, for LAW the favorable label indicated passing the bar exam, while for COMPAS
the admired outcome was not being classified as recidivist. To ensure uniform encoding,
the positive outcome corresponded to Y = 1, whereas the negative class was defined by
Y = 0. For LAW, the favorable label indicates passing the bar exam. Equivalently, the
unprivileged group is identified by S = 0 and the privileged group is represented by S = 1.
For COMPAS, only individuals belonging to the African-American and Caucasian races
were kept and binary encoded, since both the considered groups made up the majority of
the data set. As the majority of data points of LAW belonged to white individuals, all other
variations of the protected feature race were summarized by Non-Whites. Additionally, all
categorical features were one-hot encoded.

Next, all rows containing missing values were dropped. Additionally, the features
were selected based on the AIF360 open-source toolkit [35] for COMPAS and on Google
Research (https://github.com/google-research/google-research/blob/master/group_agn
ostic_fairness/data_utils/CreateLawSchoolDatasetFiles.ipynb, accessed on 12 May 2022)
for LAW:

COMPAS: {race, sex, age, juv_felt_count (Juvenile felony count), juv_mids_count (Juvenile misde-
meanor count), juv_other_count (Juvenile other defenses count), priors_count (Prior offenses count),
c_charge_degree (Charge degree of original crime), two_year_recid (Rearrested within two years)};
LAW: {race, gender, lsat (The student’s LSAT score), ugpa (The student’s undergraduate GPA),
zfygpa (The first year law school GPA), DOB_yr (Year of birth), zgpa_felt_count (The cumulative
law school GPA), family_income (The student’s family income bracket), part_time (Working full- or
part-time), cluster_tier (Tier of school), weighted_lsat_ugpa (Weighted LSAT and UGPA score),
pass_bar (Passed bar exam on first try)}.

To use the fairness measures provided by the AIF360 toolkit, the data needed to be
transformed in a certain way. The target feature set y not only included the ground-truth
labels, but additionally the protected feature. For both feature sets X and y, the protected
feature was set as index, to enable the use of fairness metrics and mitigation strategies
provided by the toolkit. After setting the protected feature as index, it was dropped for
the target set y and additionally maintained for X. Finally, some ML algorithms required
scaled data to achieve reasonable results. The StandardScaler() function was applied on
the training sets before training and test sets were transformed accordingly.

6.3. Model Selection

To account for the black-box problem, the basic classifier LRC was applied to the
considered data sets. Based on the collected features the LRC estimated the probability of
an individual belonging to the positive or negative class [52]. RFC combines multiple single
decision trees. The classifier is expected to increase accuracy due to averaging over these
multiple single learners and, consequently, decreasing variability [53]. The GBC is applied
to optimize the differentiable loss functions of the single trees to “boost” accuracy [54].
For the following analysis only the performance results for the LRC were documented, due
to its popularity and the low calculation costs compared to the other two classifiers [52].
The classifier was optimized to maximize accuracy. Hence, a grid search was performed to
select the best hyperparameters with respect to ACC and BACC. Due to data imbalance

https://github.com/google-research/google-research/blob/master/group_agnostic_fairness/data_utils/CreateLawSchoolDatasetFiles.ipynb
https://github.com/google-research/google-research/blob/master/group_agnostic_fairness/data_utils/CreateLawSchoolDatasetFiles.ipynb
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and the validation set only reflecting a small subset of the whole data set, the optimal
hyperparameters were evaluated on repeated stratified 5-fold Cross Validation (CV).

Moreover, due to the nature of a binary classification task, the classification threshold
τ plays an important role in model evaluation—especially in the presence of imbalanced
data sets. By default, the threshold was set to τ = 0.5. However, this might not always
reflect the best interpretation of the estimated probabilities. The discrimination function
prepared by Yellowbrick (https://github.com/DistrictDataLabs/yellowbrick/blob/mai
n/docs/api/classifier/threshold.rst, accessed on 12 May 2022) was used to determine the
optimal thresholds for COMPAS and LAW. In the interests of finding the optimal cut-off
threshold τ to maximize accuracy measured by errors, while at the same time accounting
for stability of performance and data imbalance, the provided function was carried out
using stratified 10-fold CV.

6.4. Fairness Measures

The choice of metrics to evaluate model performance with respect to fairness is a
critical decision in model evaluation, because different fairness metrics lead to different
results [35]. To evaluate fairness with respect to the disparate representations, SPD was
applied. SPD is defined by the following formula [35]:

SPD = P(ŷ = 1|S = b)− P(ŷ = 1|S = a) (6)

Additionally, AOD was used to analyze fairness, based on the disparate errors of the
system, to achieve Sufficiency. AOD was estimated based on Equation (7).

AOD = [FPR(S = 0)− FPR(S = 1)] + [TPR(S = 0)− TPR(S = 1)] (7)

For both metrics, a value closer to zero indicated more fairness and represented less
bias. If the measurements displayed a negative value, this indicated that the privileged
group was at an advantage, whereas, for a value greater than zero, the unprivileged group
was benefiting [35].

6.5. Accuracy Measures

To assess the correctness of predictions made by the trained classifier, and to consider
disparate errors, the following metrics were applied. First, Accuracy (ACC) measured
the correctness of the predictions compared to the ground-truth labels. The ground-truth
labels were assumed to be reliable. Second, Balanced Accuracy (BACC) was applied to
account for the imbalance of the LAW data set. BACC was defined by the average of the
sum of sensitivity (TPR) and specificity (TNR). If the labels of a data set were balanced,
the results achieved by ACC and BACC should be similar. The F1 score summarizes
both perspectives and, consequently, is often referred to as the “harmonic mean between
precision and recall” [55].

6.6. Performance Stability

Ref. [56] showed that performing a single train–test split to evaluate a model’s per-
formance is insufficient, due to the instability of model performance. According to their
findings, the performance evaluated on fairness metrics, in particular, appeared to vary a
lot for various train–test splits. They recommend using a moderate number of train–test
splits to account for performance instability. In our study, instead of randomly splitting
the data into training and test sets several times, for k-fold CV the data was split once into
ten folds (k = 10) with one fold representing a hold-out set, referred to as the test set to
evaluate the model’s performance. K-fold CV ensures that each available data point is used
for training and testing, while for repeated k-fold CV this is not necessarily so, especially
in the case of data imbalance. Due to the given target class imbalance for the considered
data sets, stratified 10-fold CV was applied. Stratifying samples ensures that each fold is
representative and reflects the underlying distribution of the considered data set [57].

https://github.com/DistrictDataLabs/yellowbrick/blob/main/docs/api/classifier/threshold.rst
https://github.com/DistrictDataLabs/yellowbrick/blob/main/docs/api/classifier/threshold.rst
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6.7. Reweighing

The objective of this stage was to maximize fairness. To analyze the impact of RW
on fairness and accuracy, the analysis was divided into two stages. First, based on the
scikit-learn compatible API reference of AIF360 (https://aif360.readthedocs.io/en/stable/,
accessed on 12 May 2022), each sample was rebalanced according to its protected feature
and target class, producing four different weights for COMPAS and LAW. The compatible
version did not enable altering of the test set. Consequently, only the sample weights of the
training set were transformed and evaluated applying stratified 10-fold CV. The perfor-
mance was evaluated on all predefined accuracy and fairness metrics to enable comparison
to the baseline results.

However, [10] recommend reporting the achieved performance results for an altered
training set evaluated on a hold-out test set, as well as on an entirely processed data set,
including adapted training and test data. Therefore, for the second stage, the RW function
prepared by the old API was used to pre-process the training and test sets. Since the
transformed sample weights were lost, if the transformed data sets were converted back to
a pandas data frames and the old API was not compatible with common meta-programming
tools provided by scikit-learn, such as CV [58], the data was split ten times into training
and test sets to account for stability during performance evaluation on the rebalanced
training and test sets. The results were compared to baseline results of a LRC assessed by
equivalent splits.

6.8. Feature and Training Set Size

A general practice in ML to maximize accuracy is to increase the feature set size or to
expand the training data used for a model’s development [59]. Ref. [11] analyzed the effect
of feature and training set sizes on fairness. They claim that feature set size has a positive
impact on fairness, while increasing the size of the training set leads to the opposite effect.
Furthermore, for the authors balancing the data with respect to the members belonging
to the unprivileged or privileged group or by applying bias mitigation strategies, means
accuracy and fairness do not need to be conflicting regarding enlarged training data.

In our study, first, the feature set size was analyzed by performing stratified 10-fold
CV on sets of augmented features and averaging the performance of the LRC. The protected
feature needs to be included in the feature set at any time, to enable the use of fairness
measures. For both data sets the smallest considered feature set size amounted to three
features, including the protected feature.

Second, the impact of enlarged training data on fairness was studied. For this purpose,
the data sets were split into training in test sets, with the training sets ranging in size
between 10–90%. At least ten percent of the data were kept for model training or evaluation.
The average impact on accuracy and fairness measured by the corresponding metrics was
reported on ten random train–test splits. Furthermore, based on the recommendations
of [11], the same procedure was applied after reweighing the training data to account for
inherent biases.

6.9. Data Augmentation

The approach of data augmentation used in this work was based on [10]. By deriving
synthetic data and adding the most realistic synthetic data points to the original data sets,
the authors examined whether fairness could be enhanced by holding accuracy constant.

As part of the data augmentation, the synthetic dataset was first generated as a copy
of the original dataset with reversed values for the protected feature race. Individuals
belonging to the privileged group were defined by S = 0 and the unprivileged group by
S = 1. All other features X and the labels Y were equivalent to the original data set. Second,
K-means was used to estimate the clusters of the original data sets, based on their protected
features and labels. Consequently, “a set of cluster centers are defined for every protected

https://aif360.readthedocs.io/en/stable/
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feature value and every label value” [10], described by S and Y. Third, the synthetic data
points were sorted according to their realism scores, (8) [10] as defined by the formula:

RealismScore =
1

max{d(c1, p)}, max{d(c2, p)}, ..., max{d(cj, p)} (8)

Here, we estimated the distance between each synthetic data point p and the prede-
fined cluster centers c = {c1, c2, ..., ck} based on the original data set. Fourth, after sorting
the synthetic data set the j most realistic data points, with j ranging from 0–100 percent,
were augmented to the original data set. Finally, the performance was measured in two dif-
ferent ways. First, accuracy and fairness were evaluated on test sets, including augmented
data. Second, the test sets were unaltered to preserve the real world distribution, while the
model was trained on augmented training sets.

7. Results
7.1. Baseline Results

The first step of the analysis deals with basic classifiers to provide baseline performance
results, which are compared in the following analysis to studied approaches to explore the
relationship between accuracy and fairness. The results displayed in Table 4 illustrate the
average performance results of the LRC reported for stratified 10-fold CV.

Table 4. LRC baseline results. Performance was evaluated using stratified 10-fold CV. For SPD and
AOD, values closer to zero indicate more fairness.

ACC BACC F1 SPD AOD

COMPAS 0.675 0.669 0.713 −0.261 −0.230
LAW 0.952 0.566 0.975 −0.061 −0.125

Whereas ACC and BACC were quite similar for COMPAS, the accuracy measures
differed a lot regarding the LAW data set, due to significant class imbalance. The BACC
value of 0.566 indicates that the LRC was not able to accurately predict outcomes with
respect to the imbalanced target classes. Furthermore, SPD and AOD show that the
predictions made for COMPAS were biased and, therefore, unfair. The negative value for
SPD indicates that the probability for the privileged group to be assigned to the positive
class on average exceeded the probability estimated for the unprivileged group. For LAW
the results for SPD and AOD differed in their magnitudes. While the model appeared to
be quite fair regarding the probabilities of Whites and Non-Whites being assigned to the
positive class, the AOD value evidenced greater unfairness. Whereas SPD measured the
equality of distributions, AOD was calculated based on the difference of the FPR and the
TPR for the privileged and unprivileged groups. Therefore, the data imbalance of the LAW
data set appeared to negatively influence fairness in outcomes. Unfairness in the case of
LAW seemed to be due to representational bias of the data at hand. These discrepancies
highlight the importance of the definition and selection of appropriate fairness metrics with
respect to the problem formulation.

In addition, Figure 3 displays the results for RFC and GBC representing the predefined
accuracy measure ACC on the y-axis and fairness on the x-axis. Each cross applies to one of
the classifiers, illustrating the variations in accuracy and fairness. The horizontal lines mark
the standard deviations for the fairness metrics and the vertical lines refer to the standard
deviations achieved for ACC. The centers of the intersections, represented by dots, define
the mean performance values for stratified 10-fold CV. To ensure comparability, the axes
for LAW and COMPAS were set to the same sizes.
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(a) (b)

Figure 3. Stability of fairness and accuracy for RFC and GBC. Performance was evaluated using stratified
10-fold CV. For SPD and AOD, values closer to zero indicate more fairness. (a) COMPAS; (b) LAW.

Accuracy and fairness measured by ACC and SPD appeared to be more stable for the
LAW data set compared to COMPAS, which could be due to more accurate results with an
ACC score of 0.95. For both data sets, the results achieved by SPD and AOD differed for
variations in training and test data, as illustrated by the standard deviations. These findings
are in line with those of [56]. Fairness measures are more sensitive regarding variations in
the input data, compared to measures assessing the correctness of predictions.

Although the pre-processing and modeling steps were equivalent for both data sets,
the results differed a lot, which is emphasized by the use of colors in Figure 3. The results
achieved by the RFC are illustrated by blues, whereas the outcomes for GBC are displayed
by shades of pink. Moreover, the bright colors represent the results for AOD. For COMPAS
both predefined fairness metrics performed quite similarly with respect to the considered
classifier. However, with respect to accuracy, the GBC outperformed the RFC, while
the latter achieved better outcomes with respect to fairness. For the LAW data set the
results created a different picture. The difference of performance was based on the fairness
measures rather than the applied classifiers. Additionally, SPD performance results seemed
to be more stable, compared to AOD, as indicated by smaller standard deviations.

7.2. Optimized Modeling

The second stage deals with the optimization of the LRC using a grid search. The ob-
jective of this stage is to maximize accuracy measured by ACC and BACC. As [12] states,
maximizing model performance should simultaneously lead to an increase in fairness. The
best hyperparameters determined by a grid search for the LRC were defined as follows:
COMPAS: {C = 0.1, class_weight = none, penalty = l1, solver = saga} to maximize ACC
and BACC, LAW: {C = 0.1, class_weight = none, penalty = l1, solver = saga} to maxi-
mize ACC, LAW: {C = 0.01, class_weight = balanced, penalty = l1, solver = liblinear} to
maximize BACC. Table 5 illustrates LRC results for tuned hyperparameters.

Table 5. LRC results for tuned hyperparameters. Performance was evaluated using stratified 10-fold
CV. For SPD and AOD, values closer to zero indicate more fairness. The percentages in brackets
display the differences compared to the baseline results, as presented by Table 4.

Objective ACC BACC F1 SPD AOD

COMPAS ACC + BACC 0.675 (=) 0.669 (=) 0.714 (+0.14%) −0.259 (+0.77%) −0.228 (+0.87%)

LAW ACC 0.952 (=) 0.562 (−0.71%) 0.975 (=) −0.056 (+8.2%5) −0.117 (+6.4%)
BACC 0.793 (−16.7%) 0.813 (+43.64%) 0.879 (−9.85%) −0.410 (−572.13%) −0.288 (−130.4%)

For COMPAS, the hyperparameters to maximize ACC and BACC were equivalent.
In this case, maximizing accuracy slightly improved fairness. Due to data imbalance
for LAW the optimal hyperparameters differed with respect to the considered metrics of
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accuracy. These results illustrate that the interpretation of accuracy was as equally crucial
as the definition of fairness. Whereas maximizing for ACC increased fairness by 6–8%,
optimizing the classifier with respect to BACC led to a major loss of fairness. In particular,
SPD decreased significantly. Instead of improving fairness in outcomes, it led to even
greater unfairness due to the enlarged disparities between the unprivileged and privileged
groups. The difference between the two groups increased due to disregarding the protected
feature race, which was assumed to have a significant impact on class assignment.

To conclude, for balanced data, maximizing ACC or BACC potentially increases
fairness. For imbalanced data sets, maximizing BACC might have a negative impact on
fairness, since maximizing model performance with respect to BACC does not account for
the impact of the protected attribute on the target class. Therefore, the choice of accuracy
and fairness metrics plays a key role in analyzing their relationship.

7.3. Discrimination Threshold

A further step is to maximize the F1 score by adapting the discrimination threshold τ of
classification. Balancing precision and recall is expected to increase fairness by prioritizing
errors, that comes at the cost of fairness. Table 6 shows the LRC performance results for
adapted discrimination thresholds.

Table 6. LRC performance results for adapted discrimination thresholds. Performance was evaluated us-
ing stratified 10-fold CV. For SPD and AOD, values closer to zero indicate more fairness. The percentages
in brackets display the differences compared to the baseline results as presented by Table 4.

τ ACC BACC F1 SPD AOD

COMPAS 0.42 0.653 (−3.26%) 0.636 (−4.93%) 0.732 (+2.66%) −0.180 (+31.03%) −0.156 (+32.17%)

LAW 0.45 0.952 (=) 0.551 (−2.65%) 0.975 (=) −0.042 (+31.15%) −0.092 (+26.4%)

Compared to the results for basic modeling without tuning, adapting the classification
threshold τ accordingly led to better results regarding fairness. For both data sets, adjusting
the threshold of discrimination down led to an increase of fairness by 26–31% compared to
the baseline results. Setting the threshold lower shifted the cut in favor of the unprivileged
group. Therefore, adapting the classification threshold τ was identified to have a positive
impact on fairness.

How does the discrimination threshold τ impact accuracy? The F1 score was enhanced,
because the models were optimized with respect to the considered score. However, ACC
and BACC appeared to slightly decrease. The effect for COMPAS was greater, compared
to LAW, due to the already accurate baseline results achieved for LAW. The only metric
affected for LAW was BACC. Although modifying the threshold τ is known to be a
suitable approach to account for data imbalance, BACC decreased for LAW and COMPAS
compared to the baseline performance results. These findings indicate that adjusting
the discrimination threshold causes a loss of TPR and TNR, while enhancing fairness
in outcomes.

To summarize this stage of the analysis, adapting the discrimination threshold of
classification appears to be a suitable approach to maximize accuracy, while at the same
time enhancing fair outcomes. Maximizing accuracy measured by the F1 score leads to
an increase of fairness. Additionally, accuracy measured by ACC is not affected, or only
slightly decreases. Therefore, this stage already emphasizes that the relationship between
accuracy and fairness does not necessarily need to be a trade-off and, moreover, underlines
the importance of the selected metrics in evaluating performance.

7.4. Reweighing

The results displayed in Table 7 report the average results for the LRC on reweighed
training data with the test sets remaining unaltered. Compared to the baseline results
achieved by the LRC, fairness increased for both LAW and COMPAS and accuracy de-
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creased, with one exception, in that the BACC for LAW improved by 29%. Based on these
results, it can be deduced that RW not only increases fairness in outcomes, but, in the case
of imbalanced data, enhances model performance measured by BACC. Moreover, the loss
of accuracy is minor, as emphasized by the low percentages.

Table 7. LRC results after reweighing the training set. Performance was evaluated using stratified
10-fold CV. For SPD and AOD, values closer to zero indicate more fairness. The percentages in
brackets display the differences compared to the baseline results as presented by Table 4.

ACC BACC F1 SPD AOD

COMPAS 0.655 (−2.96%) 0.656 (−1.94%) 0.699 (−1.96%) 0.043
(+116.48%)

0.076
(+133.04%)

LAW 0.950 (−0.21%) 0.731 (+29.15%) 0.974 (−0.1%) −0.005
(+91.8%)

0.014
(+111.2%)

However, the results reported in Table 7 are potentially biased, since the test sets were
not modified accordingly. To ensure comparability Table 8 additionally displays the change
compared to a baseline LRC after reweighing both training and test sets.

Table 8. LRC results after reweighing the training and test set. Performance was evaluated on ten re-
peated train-test splits. For SPD and AOD. values closer to zero indicate more fairness. The percentages
in brackets display the differences compared to a baseline LRC evaluated on equal train-test splits.

ACC BACC F1 SPD AOD

COMPAS 0.658 (−2.08%) 0.651 (−2.11%) 0.700 (−1.82%) 0.094
(+135.47%)

0.093
(+139.57%)

LAW 0.0.951 (−0.11%) 0.535 (−4.46%) 0.975 (=) 0.001
(+101.72%)

0.015
(+113.16%)

The results achieved by transforming the entire data sets did not differ much from
before. Nevertheless, for LAW accuracy measured by BACC decreased, whereas adjusting
only the training data positively impacted BACC. These differences were due to the fact that
the stratified option for splitting was not available for the provided functions by the AIF360
toolkit and, hence, the effect of the unbalanced class labels was even stronger compared
to results by stratified 10-fold CV. To conclude, reweighing the binary target classes with
respect to the protected feature contributes to fair outcomes. However, accuracy slightly
decreases. The negative impact on accuracy is minor compared to the increase of fairness
in outcomes.

7.5. Feature Set Size

Based on [11], feature set size can be defined as knowledge available about an individ-
ual, with each feature presenting his or her characteristics. The more features involved, the
more information available about an individual, enhancing the probability of assessing the
individual’s ability correctly.

Figure 4 illustrates the behavior for accuracy and fairness for different counts of
features. The order of the features in each set corresponds to the original order of the data
sets, as given in the data pre-processing part under Section 6. For COMPAS, increasing the
number of features enhanced both fairness and accuracy. In particular, the seventh feature,
defined as priors_count, led to a significant increase in fairness and accuracy. In contrast,
increasing the size of the feature set caused a loss of fairness for LAW. The loss in fairness
remained almost constant from a feature set size of seven. Consequently, the first seven
features, illustrating the performance scores of students, appeared to be biased. The bias
was related to the protected feature whereby previous student performances evaluated
by teachers are potentially subject to discrimination. The predefined accuracy measures
slightly changed throughout different feature set sizes for LAW. Since some of the features
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appeared to be more biased than others, based on the previous findings, the order of
features additionally needed to be examined critically to identify whether the positive
effect highlighted by [11] was due to the size of the sets or whether it was related to
certain features.

(a) (b)

Figure 4. Performance results for LRC on different feature set sizes. Model performance was
evaluated using stratified 10-fold CV. For SPD and AOD, values closer to zero indicate more fairness.
(a) COMPAS; (b) LAW.

The new feature order for COMPAS is as follows: {1. race, 2. priors_count, 3. sex,
4. juv_other_count, 5. juv_misd_count, 6. c_charge_degree_M, 7. juv_fel_count, 8. age }; and
for LAW: {1. race, 2–6. family_income, 7. part_time, 8–13. cluster_tier, 14. weighted_lsat_ugpa,
15. sex, 16. lsat, 17. ugpa, 18. zfygpa, 19. DOB_yr, 20. zgpa}.

The protected feature race was always set to be the first feature to make sure it was
included throughout the iterative process. If priors_count, representing the number of
prior crimes an individual committed in the past, was included in the first set of features
studied for COMPAS, fairness was not further improved with increasing feature set size,
as illustrated by Figure 5. The results for LAW also supported these findings: fairness
decreased with the introduction of student performance variables like weighted_lsat_ugpa.
Based on these findings, it can be concluded that the impact on fairness and accuracy is not
related to the size of the feature sets, but rather to the information certain features add to
the model. For example, in the COMPAS dataset, the feature “priors_count” significantly
increases fairness, whereas in the LAW dataset, the feature “weighted_lsat_ugpa” decreases
fairness. These features demonstrate high importance in their corresponding dataset, and,
therefore, have a significant impact on model fairness. However, such important features
are data-set specific and their exact impact needs to be studied in future work.

(a) (b)

Figure 5. Performance results for LRC on various feature set sizes of different orders. Model
performance was evaluated using stratified 10-fold CV. For SPD and AOD, values closer to zero
indicate more fairness. (a) COMPAS; (b) LAW.
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7.6. Training Set Size

In general, accuracy is expected to increase when more training data is used. However,
if the training data is biased, the model becomes even better in depicting discriminating
patterns. Therefore, the effect of training set size on fairness is expected to be negative, as
claimed by [11]. Figure 6 represents the behavior of accuracy and fairness according to the
size of the training set.

The results differed for both considered data sets. For COMPAS, adding more data
points to the training set led to a small decrease in fairness, while accuracy was kept constant.
On the other side, for LAW increasing training data appeared to have no significant effect
on the analyzed instances. For both data sets considered, accuracy was not improved for
enlarged training data.

(a) (b)

Figure 6. Performance results for LRC on differently sized training sets. Model performance was
evaluated using the average of ten stratified train–test splits. For SPD and AOD, values closer to zero
indicate more fairness. (a) COMPAS; (b) LAW.

7.7. Data Augmentation

Ref. [10] claimed that adding realistic synthetic data points to the original set balances
the protected feature classes and leads to a significant increase in fairness, while accuracy
remains constant. The graphs displayed in Figure 7 illustrate the behavior of accuracy
and fairness for percentage-wise added synthetic data. The start of the x-axis indicates no
synthetic data points added to the original data set and the counterpart corresponds to
100% of data augmentation, meaning that the whole synthetic data set was added to the
original data.

(a) (b)

Figure 7. Performance results for the LRC on augmented data. Synthetic data points are added to the
training and test sets for evaluation. Performance was evaluated using stratified 10-fold CV. For SPD
and AOD, values closer to zero indicate more fairness. (a) COMPAS; (b) LAW.

By reversing the protected feature labels for the synthetic data sets and adding the most
realistic data points to the original data sets, the model can be trained on larger training
data where the racial groups are balanced. This additionally explains the result that fairness
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maximization was reached for 100% data augmentation [10]. Accuracy was rather constant
during the process. Table 9 displays the results compared to the baseline LRC.

Table 9. Performance results for LRC on augmented data, performing stratified 10-fold CV. For SPD
and AOD, values closer to zero indicate more fairness. The results correspond to maximal fairness
achieved by data augmentation based on [10]. The percentages in brackets display the differences
compared to the baseline results as presented by Table 4.

Data ACC BACC F1 SPD AOD

COMPAS Train + Test 0.676 (+0.15%) 0.676 (+1.05%) 0.714 (+0.14%) 0.001 (+100.38%) 0.002 (+100.87%)
Train 0.674 (−0.15%) 0.673 (+0.60%) 0.704 (−1.26%) −0.225 (+13.79%) −0.193 (+16.09%)

LAW Train + Test 0.952 (=) 0.768 (+35.69%) 0.975 (=) 0.000 (+100%) −0.003 (+97.6%)
Train 0.952 (=) 0.762 (+34.63%) 0.975 (=) −0.059 (+3.28%) −0.116 (+7.2%)

Compared to the baseline performance results, data augmentation increased accuracy,
especially for BACC from LAW when augmenting with 100% of the synthetic data points.
Due to the flipping of the protected features and keeping the class labels unaltered, the
groups were balanced. Consequently, the model had more data to be trained on to make
more accurate predictions. However, since the test sets in ML were used for evaluation and,
therefore, kept unaltered by default, synthetic data points were only added to the training
sets as follows, while the test sets remained untouched.

For COMPAS, the training sets were enlarged by the entire synthetic data set, whereas
for LAW 40% of the synthetic data points were added to maximize fairness. For both data
sets, accuracy, measured by ACC, and the F1 score were not affected or slightly decreased
by adding synthetic data points to the training sets and evaluating the model on unaltered
test data. Yet the described method had a positive impact on BACC, especially with respect
to LAW. This effect can be explained by balancing the privileged and unprivileged groups.
The considered measures for fairness became less negative, but the difference compared to
the baseline results was only small. In summary, performing data augmentation provides
promising results with respect to fairness and accuracy. In both contexts analyzed, fairness
is enhanced significantly without decreasing accuracy. If the test data is unaltered, the
results do not differ significantly from the baseline results achieved by the LRC. However, the
described approach accounts for imbalanced data increasing BACC significantly for LAW.

8. Discussion

Based on the majority of research, enhancing fairness always leads to a loss of accu-
racy [4]. More drastically, some researchers consider this trade-off to be unavoidable [3].
However, as [12] states, increasing accuracy might as well improve fairness due to minimiz-
ing the number of errors produced by the model. The results achieved by tuning the LRC
support this statement. Optimizing the LRC with respect to ACC and BACC for balanced
data led to an increase in fairness measured by SPD and AOD of about 1%. Modifying the
classification threshold with respect to ACC for imbalanced data even led to an increase of
the SPD score of 8%. In contrast, adjusting the considered classifier with respect to BACC
appeared to have a major negative effect on fairness. Therefore, increasing accuracy for
balanced data sets can be assumed to positively impact fairness in outcomes, whereas
the impact on imbalanced data needs to be further investigated. Furthermore, adapting
the classification threshold to maximize accuracy, measured by the F1 score, improved
fairness significantly. For both data sets considered, the values achieved for SPD and AOD
increased by, on average, 30%. However, accuracy measured by ACC and BACC decreased
by 2–5%. To conclude, adapting the discrimination threshold appears to improve fairness.

The considered pre-processing mitigation in this study was RW. When training data
was reweighed, based on protected features and labels, while the test set remained un-
changed, there was a small decrease in accuracy, but a significant improvement in fairness.
Specifically, SPD and AOD increased by 91–133%, while the loss of accuracy amounted to
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0.1–3%. That is, reweighing the samples with respect to the protected feature and target
class labels improves fairness significantly, whereas the loss of accuracy is only minor.

Furthermore, general ML practices, such as the size of the feature and training set,
were analyzed. Changing the order of features added to the iterative process of evaluating
different feature set sizes in displaying disparate behaviors of fairness and accuracy. There-
fore, more features used do not intrinsically cause an increase in fairness and accuracy.
Increasing the number of training samples did not appear to impact accuracy regarding
COMPAS and LAW, either. In contrast, the approach of data augmentation, as proposed
by [10], increases fairness and accuracy. Additionally, the findings of our work support
the recommendation from [56] to evaluate model performance on several training and test
sets to ensure performance stability. The results regarding fairness metrics are sensitive
towards input variations.

As the various approaches emphasize, fairness and accuracy may even benefit each
other. Furthermore, the results stress that the loss of accuracy is minor compared to the
significant increase of fairness for the considered pre-processing mitigation strategy and
the approach of data augmentation. To account for biases, new biases could be created
by adding more data or reweighing samples to ensure fairness in outcomes. The results
also indicate that the approaches used to improve fairness do not necessarily lead to a
loss of accuracy, but the difference in distributions between the training and test sets
does. Limitations evolved during our analysis due to the choice of data sets, setting of
model training and performance evaluation. The majority of results illustrate the average
performance results for stratified 10-fold CV. Changing this setting might lead to disparate
findings. All approaches explored were tested on one balanced and one imbalanced data
set. They further apply to the stage of data collection and focus on either data balancing
by RW, feature selection or enlarging the size of the data set. In addition, the only bias
mitigation pre-processing strategy included in the analysis was the RW approach invented
by [21].

Further research may be aimed at filling all these gaps, by involving other data
sets, exploring other stages of the ML pipeline, in addition to examining other fairness
definitions [17] and related measures [16]. Other measures can also be used to define
the “cost of fairness” [4]. This is also true for classifiers and performance stability. Even
though various approaches were employed to analyze the relationship between accuracy
and fairness, the approaches were limited because they only referred to the first stage of the
ML pipeline. All approaches explored focused on data balancing by RW, feature selection
or enlarging the size of the data set, and applied to the stage of data collection. In addition,
the bias mitigation pre-processing strategy included in the analysis was the RW approach
invented by [21]. To maximize accuracy and simultaneously study the effect on fairness,
optimization was performed before modeling by setting hyperparameters with respect to
the predefined accuracy metrics. However, the relationship of accuracy and fairness is not
limited to this stage of the ML pipeline.

Moreover, as emphasized throughout this work, the definitions of fairness and ac-
curacy play a major role when assessing their relationship. Depending on the selection
of performance measures the results can vary significantly. Fairness in the context of ML
has no universal definition [17]. The selection needs to be made with respect to: (1) the
context of the analysis and (2) the given characteristics of the data set. [16] recommends
reporting on at least two fairness measures. Furthermore, the approaches were tested on
one balanced and one imbalanced data set. In particular, the findings for the imbalanced
data set should be verified on further examples to enhance external validity.

9. Conclusions

Several strategies can be used to improve the fairness of ML models. First, increasing
the accuracy of models for balanced data sets can have a positive impact on fairness. Second,
adjusting the classification threshold to maximize accuracy, as measured by the F1 score,
can also improve fairness to a large extent. In addition, it was shown that bias mitigation
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techniques, such as reweighing samples with respect to protected characteristics and target
class designations, can significantly improve fairness with minimal loss of accuracy. Finally,
data augmentation is another approach that can be used to improve fairness.

Our findings also underscore the fact that there is no universal definition for either
fairness or accuracy, and both need further investigation in different application domains.
It is not only the choice of fairness metrics that matters, but also the definition of model
correctness. Instead of focusing on the “cost of fairness” [4], further studies should stress
the role of simultaneously choosing a definition of accuracy. Furthermore, studies on
human preferences of metrics across cultural contexts and understanding of all metrics
are necessary.
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Appendix A

Table A1. COMPAS data set features adapted from [60].

Feature Name Type Value Description

race Binary {African-American, Caucasian} Race
sex Binary {Male, Female} Gender
age Numerical [18–96] Age in years

juv_felt_count Numerical [0–20] Juvenile felony count
juv_mids_count Numerical [0–13] Juvenile misdemeanor count
juv_other_count Numerical [0–17] Juvenile other offenses count

priors_count Numerical [0–38] Prior offenses count
c_charge_degree Binary {F, M} Charge degree of original crime
two_year_recid Binary {0, 1} Rearrested within two years

Table A2. LAW data set features adapted from [60].

Feature Name Type Value Description

race Binary {Non-White, White} Race
gender Binary {Female, Male} Gender

lsat Numerical [11–48] The student’s LSAT score
ugpa Numerical [1.5–4] The student’s undergraduate GPA

zfygpa Numerical [−3.35–3.48] The first year law school GPA
DOB_yr Numerical [10–71] Year of birth

zgpa_felt_count Numerical [−6.44–4.01] The cumulative law school GPA
family_income Categorical 5 The student’s family income bracket

part_time Binary {0,1} Working full- or part-time
cluster_tier Categorical 6 Tier of school

weighted_lsat_ugpa Numerical [288.95–1000] Weighted LSAT and UGPA score
pass_bar Binary {0, 1} Passed bar exam on first try
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