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a b s t r a c t

Extensive pastoral livestock systems in Central Europe provide multiple ecosystem services and support
biodiversity in agricultural landscapes but their viability is challenged by livestock depredation (LD) asso-
ciated with the recovery of wolf populations. Variation in the spatial distribution of LD depends on a suite
of factors, most of which are unavailable at the appropriate scales. To assess if LD patterns can be pre-
dicted sufficiently with land use data alone at the scale of one federal state in Germany, we employed
a machine-learning-supported resource selection approach. The model used LD monitoring data, and
publicly available land use data to describe the landscape configuration at LD and control sites (resolution
4 km * 4 km). We used SHapley Additive exPlanations to assess the importance and effects of landscape
configuration and cross-validation to evaluate the model performance. Our model predicted the spatial
distribution of LD events with a mean accuracy of 74%. The most influential land use features included
grassland, farmland and forest. The risk of livestock depredation was high if these three landscape fea-
tures co-occurred with a specific proportion. A high share of grassland, combined with a moderate pro-
portion of forest and farmland, increased LD risk. We then used the model to predict the LD risk in five
regions; the resulting risk maps showed high congruence with observed LD events. While of correlative
nature and lacking specific information on wolf and livestock distribution and husbandry practices, our
pragmatic modelling approach can guide spatial prioritisation of damage prevention or mitigation prac-
tices to improve livestock-wolf coexistence in agricultural landscapes.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

The recolonisation of wolves in Central Europe poses severe
challenges to grazing livestock farmers. To identify the role of land
use context on the occurrence of livestock depredation by wolves
and develop risk maps, we used a machine-learning-based mod-
elling approach. The trained model predicted wolf attacks with
an accuracy of over 70%, showing that landscape context plays a
considerable role for the occurrence of livestock depredation.
Using readily available data, our modelling approach delivers risk
maps that can assist in planning livestock husbandry practices
and can help authorities to allocate preventative and compen-
satory measures in different areas.
Introduction

Pastoral livestock systems in Europe are valued for providing a
suite of ecosystem services and supporting biodiversity (Dean
et al., 2021), but their persistence and viability are challenged by
the recolonisation and expansion of legally protected carnivores
(König et al., 2020). This is particularly the case for wolves (Canis
lupus), the most widespread large carnivore in Central Europe
(Chapron et al., 2014). Livestock depredation (LD) by wolves
includes mostly sheep but also other ruminants, such as goat, cat-
tle and farmed deer (Pimenta et al., 2017) and causes animal stress
(Janczarek et al., 2021) as well as serious concerns, economic costs,
and negative attitudes among livestock herders and parts of the
general public (Arbieu et al., 2019).

How sustainable coexistence of wolves and pastoral livestock
system can be achieved is part of an ongoing societal learning
and negotiation process (Kiffner et al., 2019). Reducing LD is
arguably-one of the most important tasks for facilitating a
more sustainable coexistence of people, livestock and wolves
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(Van Eeden et al., 2018). To achieve this overarching goal, identify-
ing the effect of land use characteristics on LD could yield valuable
information for livestock herders, politics and administration
(Marucco and McIntire, 2010). Identifying such spatial associations
could support a more focussed planning and implementation of
prevention, support and compensatory measures, and thus ensure
a more cost-effective use of public funds.

Predicting the LD risk by large carnivores would ideally be
based on mechanistic models, which focus on the causality of
input–output relationships. However, their use is constrained by
the scarcity of relevant data at the appropriate scale. On the one
hand, such models require information on the spatial distribution
of wolves (Marucco and McIntire, 2010), which could itself be
influenced by the distribution and density of wild prey (Janeiro-
Otero et al., 2020). Wolves typically occupy large home range sizes
(200 km2 territory size on average in Germany, https://www.dbbw.
de) and have a wide habitat niche (Mancinelli et al., 2018). For
example, habitat suitability models for wolves in Europe suggest
that wolves mostly prefer forests, meadows and wetlands, and typ-
ically avoid anthropogenic landscape features such as roads, settle-
ments and cropland (Jędrzejewski et al., 2008). Even though
wolves seem to avoid anthropogenic structures, they clearly use
these landscape features occasionally. Several studies reported that
wolves use bridges, roads, pipelines, and other linear features as
travel corridors (e.g. Plaschke et al., 2021). On the other hand, LD
is conditional on the availability of different livestock species and
this precondition is ideally incorporated in risk models (Kuiper
et al., 2021). Additional factors to be considered in LD risk mod-
elling include the presence and type of practices to prevent depre-
dation, as well as landscape features that mediate hunting success
by large carnivores (Gable et al., 2021).

However, the full suite of these data is typically not available at
scales useful for planning livestock prevention methods, e.g. for an
entire state or landscape of several thousand square kilometres.
For example, ruminant livestock management (especially of sheep)
often combines keeping animals in fixed paddocks during the win-
ter time, and rotational grazing with movable fencing during the
vegetation period. Particularly in the latter case, the distribution
of small livestock is dynamic and thus difficult to monitor and pre-
dict. Similarly, while wolves are monitored in Germany, movement
data of wolves are only available for a few individuals. Currently,
the most widely available data sources originate from monitoring
programs that focus on LD events (Khorozyan and Heurich,
2022). This monitoring typically includes systematic recording of
the location of the lethal interactions between wolves and live-
stock. Although the data collected through these efforts are not
covering all the above-described information, they are standard-
ised, regularly updated and have a large spatio-temporal coverage.

In this paper, we make use of these readily available LD moni-
toring data, link them to open-source spatial datasets, and employ
state-of-the art machine-learning models to predict the LD risk.
Our intention is not to improve or reveal a clear mechanistic
understanding of this risk (Kuiper et al., 2021), as it will be unclear
whether the identified associations between LD and specific land-
scape features are primarily due to wolf-related or livestock-
related variables.

However, our data-driven approach can be used to plough
through the available data of inputs and outputs and predict the
LD risk without focusing on the underlying causalities. This allows
us to explore which land use configuration is currently facilitating
LD by wolves across wider areas. Finally, we use our model to
develop risk maps, which in turn can inform decisions on appropri-
ate livestock management actions, and thus can contribute to a
more sustainable coexistence between wolves and ruminant live-
stock husbandry in central Europe.
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Material and methods

Case study region

As a case study area for our research (Fig. 1), we chose the fed-
eral state of Brandenburg, Germany with a total area of
29 654 km2, half of which is used for agriculture (48.6%), followed
by cover of forests (34.8%), settlements, roads, water bodies and
other vegetation (combined 16.6%) (Statistik, 2022).

Brandenburg is located in the centre of Europe, and until the
Middle Ages, the wolf population was relatively large and stable.
With the expansion of deforestation and livestock husbandry, LD
by wolves was considered a major problem resulting in organised
wolf eradication programmes, which eventually led to the local
extinction of wolves by the end of the 18th century (Ludwig,
2017). During the 19th and 20th centuries, reports suggest occa-
sional occurrences of wolves immigrating to Germany from East-
ern Europe. However, these wolves were persecuted and
typically killed. Since Germany’s reunification in 1990, the wolf is
under legal protection (EEC, 1992). In 2000, wolves started repro-
ducing in Saxony, and in 2007, the first territorial wolves in Bran-
denburg were documented (Reinhardt et al., 2019; Schade, 2010).
Since their recolonisation, Brandenburg’s wolf population grew
quickly and expanded along a South-East – North-West gradient,
while some parts of Brandenburg are not yet colonised (DBBW,
2020). Concurrent with the expansion of the wolf population, the
frequency of LD events increased (LfU, 2021), and state authorities
initiated systematic monitoring of LD events, provided funding for
livestock protection (e.g. for fencing, livestock guarding dogs and
operating costs) and damage compensation. In 2020, annual
expenditures in Germany for herd protection amounted to €9.5
million, while compensation payments for livestock losses
amounted to €0.8 million (DBBW, 2020).

The increase in LD events caused by wolves (Khorozyan and
Heurich, 2022), however, poses new challenges for grazing live-
stock farms in Brandenburg (particularly shepherds and suckler
cow holders), thus potentially undermining political objectives
linked to the support and expansion of grazing-based livestock sys-
tems. Poor soils in most regions of Brandenburg, in combination
with low precipitation (on average 550 mm per year), provide
rather less advantageous conditions for crop production compared
to other German regions. Hence, livestock husbandry, particularly
of bovines, equines and sheep, is an important component of the
regional farm structure, the most important farm types are special-
ist grazing livestock (37.8%), specialist field crop (36.9%) and mixed
farms (20.7%).

Lack of profitability and altered marketing and consumption
patterns since Germany’s reunification in 1990 caused a consider-
able decrease in livestock numbers (particularly bovines) with a
current average ruminant livestock density of 0.3 units per ha
(own calculation based on Integrated Administration and Control
System data from 2017). The observed decline of grazing livestock
is threatening the maintenance of extensive grasslands and its
associated biodiversity (MLUL, 2014).

Maintaining and restoring grassland biodiversity via supporting
and expanding extensive grazing-based livestock systems is thus a
key political priority in Brandenburg. Additional benefits are new
farm income sources through meat production including novel
value chains, such as direct marketing and improving sustainabil-
ity through better linking meat production in rural and meat con-
sumption in urban areas, and EU-wide promotion of the ‘‘Farm to
Fork strategy”. From a socioeconomic and circular economy per-
spective, the low supply of locally produced grazing-fed, and thus
more sustainable, livestock is not desirable. For example, only ten
percent of the organic meat consumed by residents of Germany’s

https://www.dbbw.de
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Fig. 1. Map of the state of Brandenburg (bold grey lines), Germany, and its districts (grey lines), showing locations of confirmed livestock depredation by wolves. Each symbol
indicates one livestock depredation event (n = 1 094) in the period from 2007 (the first appearance of wolves in Brandenburg) until April 2021. The five 50 km � 50 km
regions for which we created risk maps are indicated as numbered boxes. Region 1 includes the district Dahme-Spreewald and the southwestern part of the district Oder-
Spree; region 2 is located in the district Potsdam-Mittelmark; region 3 coincides with the district Ostprignitz-Ruppin and a small part of Prignitz and Havelland; region 4
includes the district Uckermark, and region 5 is located in the district Märkisch-Oderland including the northern part of district Oder-Spree and a small part of southeastern
Berlin.
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capital Berlin, which is located in the centre of Brandenburg, is
actually produced in Brandenburg, while the rest originates from
other regions (Scholl, 2007). However, livestock owners, particu-
larly shepherds, are questioning the future of their farming system
given the extent of livestock losses due to wolves and a perceived
lack of sufficient political action to address this issue (NABU, 2022).

As a consequence, the recovery of the wolf population and the
desired expansion of grazing livestock systems are conflicting. In
addition to other socio-ecological stressors, the impacts of LD
may challenge the sustainability of this type of land use. Improved
knowledge on where LD events are more likely to occur could help
formulate more targeted measures and thus contribute to resolv-
ing this conflict and contribute to more sustainable wolf-
livestock coexistence.
Modelling methodology

To predict the LD risk by wolves, we used a resource selection
approach (i.e. comparing areas with LD and areas where no depre-
dation occurred) and employed machine-learning algorithms
(Wieland et al., 2021) to identify spatial correlates of the LD risk
(for an overall illustration of the methodology, see Fig. 2).

This approach involves five main steps:
3

– Data provisioning and preparation for model training
– Model training: Training of a classification model (XGBoost)
using LD events

– Evaluation of the training results using cross-validation (30% of
the dataset)

– Determination of land use feature importance based on the
(SHapley Additive explanations (SHAP)-Library (Lundberg and
Lee, 2017)

– Prediction of model results for specific regions and visualisation
through LD risk maps

Data provisioning and preparation

Geo-referenced monitoring data on livestock depredation
events were provided by the Brandenburg State Office for the Envi-
ronment. The dataset contained 1 100 LD events for the period
October 2007 to April 2021. The dataset included information on
the location (GPS coordinates), evidence for the cause of the event,
and the livestock species. For our analyses, we only considered
events where wolves were either confirmed or very likely to have
caused the death of the livestock; additionally, we excluded six
cases with missing or erroneous coordinates, resulting in 1 094
data points used for modelling.
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We obtained land use features from the OpenStreetMap (OSM)
project. These data are freely available, have a high resolution
(10 m * 10 m), and a high level of detail in terms of represented
land use features. We defined the influence area of the landscape
for an LD event with a cell size of 16 km2 (4 km * 4 km). We chose
this cell size to approximate the daily movement of wolves which
average 16 km per day (Wrangham et al., 1993: 14.3 km/day; Bryce
et al., 2022: 18 km/day). As our approach relates to an area extent,
we took the square root of this average daily movement rate to
define the cell size. The coordinates of the LD event determine
the centre of the influence area. The definition of the influence area
is a compromise: it should be large enough to include all important
landscape elements, but not too large to include unnecessary
elements.

The chosen modelling approach requires the presence and
pseudo-absence sites for the training. The presence sites are the
LD, and the pseudo-absence sites are sites without reported LD
events. Approximately, the same number of presence and
pseudo-absence sites should be provided for a training session.

The area of the state of Brandenburg (without the largest cities)
is 28 922 km2, thus containing 1 808 cells (28 922 km2 divided by
16 km2). The cell size of 4 km * 4 km represents a compromise
between important landscape elements and the bias caused by
overlaps. We loaded 1 094 presence sites as images (png) from
the OSM server. Subsequently, we randomly loaded pseudo-
absence sites with a minimum (empirical) site centre distance of
2 500 m from each presence site. We chose this distance-based rule
to minimise the likelihood that pseudo-absence sites coincide with
LD events. Since we cannot exclude the possibility that some LD
events were not reported, we refer to these sites as ‘‘pseudo-
absence”. For both, pseudo-absence and presence sites, we
extracted the proportion of land use variables. Initially, we
included all available land use features. However, during the
course of modelling, we omitted some features (e.g. building or
mining areas) as they were not influential. We based our final
models on the proportion of ten features: (1) cropland and fallow
crops; (2) grassland, meadow and paddock; (3) forest; (4) scrub-
land; (5) residential, industrial and commercial areas; (6) gardens,
parks, cemeteries, and sports fields; (7) farmyard; (8) lake; (9)
river; and (10) fallow areas.

We first created histograms showing the proportions of each
land use feature for both positive and negative sites (Fig. 2). It is
noticeable that the proportions of the various land use types differ
substantially between the positive and negative example maps. In
the positive examples, the embedding of field and grassland in the
forest stands out, whereas on the negative ones, there appears to
be no correlation and preponderance of specific land use features.

Model training, evaluation and validation

To compare land use characteristics of sites with LD to pseudo-
absence sites, we employed XGBoost (https://xgboost.readthedocs.
io/en/stable/index.html), a modern and powerful machine-
learning algorithm suitable for solving classification tasks
(Brownlee, 2016). Together with the scikit-learn library, which
includes tools for data preprocessing tools and calculation of eval-
uation metrics, XGBoost can be used to train and validate a model.

For this purpose, absence and pseudo-absence sites were ran-
domly divided into a training set (70%) and a validation set
(30%). Based on cross-validation and using specific validation
scores (TP = True positive; FP = False positive; TN = True negative;
FN = False negative), we calculated three key metrics to assess
model performance.

These were

Accuracy: AC = (TP + TN)/(TP + TN + FP + FN).
4

Precision: PR = TP/(TP + FP).
Recall: RC = TP/(TP + FN).

To illustrate the calculation of these parameters, assume the fol-
lowing exemplary confusion matrix of one model run (Table 1):

Applying the above formulae yields the following parameter
values:

Accuracy: 73.8%.
Precision: 74.5%.
Recall: 73.6%.

Accuracy is the most important parameter. Precision shows the
influence of the FP results on the classification, and Recall describes
the influence of the FN results on the classification. A decrease in
FP is accompanied by an increase in FN scores above a certain
training level.

Similar to other machine-learning algorithms, XGBoost models
are complex models, which are different to interpret without addi-
tional tools. We use here the SHAP software (https://github.com/
slundberg/shap), developed on the basis of cooperative game the-
ory (Lundberg and Lee, 2017), which allows for the quantification
of the feature importance in the training data.
Results

We used the waterfall visualisation, as part of the SHAP library,
to analyse the effect of each feature on the rating of the sites. The
waterfall visualisation is read from bottom to top. The blue arrows
point towards no LD risk, while the red arrows point towards LD
risk. If the result (top) is >0, LD risk is assumed to be high; if it is
<0, the LD risk is assumed to be low. Fig. 3 illustrates an example
for a map with (Fig. 3A) and without LD (Fig. 3B).

The trained model was applied to predict the LD risk in five
50 km � 50 km areas in Brandenburg (see Fig. 1). Region 1 includes
the district Dahme-Spreewald and the southwestern part of the
district Oder-Spree; region 2 covers the district Potsdam-
Mittelmark; region 3 is located in the district Ostprignitz-Ruppin
and a small part of Prignitz and Havelland; region 4 includes dis-
trict Uckermark; and region 5 covers the district Märkisch-
Oderland including the northern part of district Oder-Spree and a
small part of southeastern Berlin (Fig. 1). These five areas represent
different land use configurations and disparate wolf recolonisation
histories.

We projected the predictions into high-resolution maps of these
50 km � 50 km areas for visualisation. To contrast the model pre-
dictions with observed data, we also plotted the recorded locations
of LD events.

Fig. 4 summarises the mean impact of the included land use
parameters on the model output in descending order. Farmland,
grassland and forests had the highest impact on the magnitude
of the model output (>0.38), while lakes, residential areas and
farmstead-related features (farmyard, garden) as well as scrub
and fallow land had lower impacts (<0.2) (Fig. 4).

To evaluate the importance of land use features on the model
output magnitude, while also showing the original feature values,
SHAP uses a beeswarm summary plot (Fig. 5). Each instance of the
given model is represented by a single dot on each feature. The x
position of the dot is determined by the SHAP value of that feature,
and dots ‘‘pile up” along each feature row to show density. Colour
is used to display the original value of a feature, with red dots indi-
cating high feature values (e.g. a high grassland share), and blue
dots indicating low feature values (e.g. a low grassland share). In
our case, grassland, farmland and forest are the most important
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Fig. 2. Graphical overview of the methodology to model livestock depredation risk due to wolves in Brandenburg. The XGBoost algorithm compares the proportion of ten
main land use features between livestock depredation areas (three example sites out of the 1 094 cases in the top part) and randomly selected areas without livestock
depredation cases (three example sites in the bottom part). Land use features are colour-coded as follows: yellow – farmland and fallow crops, dark green – forest, light green
– meadows and grassland, grey – residential, industrial and commercial areas, blue – lake, lightblue – river, brown – farmyard.

Table 1
Exemplary confusion matrix of one model run for predicting depredation risk by
wolves.

Item Predicted Positive (PP) Predicted Negative (PN)

Actual Positive (P) True positive (TP)
245

False negative (FN)
88

Actual Negative (N) False positive (FP)
84

True negative (TN)
240
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features and high grassland values (red) are more likely associated
with LD events.

We tested dispersion of the key metrics of the models using the
feature set described in Fig. 2 for 30 runs (Table 2). Accuracy values
ranged from 0.70 to 0.79, with a mean value of 0.74. Based on the
statistics of key metrics as well as of the SHAP analysis, we chose
one model for validation in the five sub-regions of Brandenburg



Fig. 3. Waterfall graph from SHapley Additive exPlanations (SHAP), visualising the importance of land use features on the model for (A) selected positive sites (i.e. maps with
recorded livestock depredation) and (B) negative sites (i.e. sites without reported livestock depredation). The values beside the feature names are the proportions of each
feature. The size of the region shown in the sites is 4 km * 4 km.

Fig. 4. Average impact of the ten included land use features on a model to predict livestock depredation by wolves in Brandenburg, Germany as inferred by the SHapley
Additive exPlanations (SHAP) approach.

H.J. König, C. Kiffner, K. Kuhls et al. Animal 17 (2023) 100719
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Fig. 5. Feature importance of the included land use parameters (as inferred by the SHapley Additive exPlanations (SHAP) approach) for the model to predict livestock
depredation by wolves in Brandenburg, Germany. The beeswarm plot shows the impact of each feature including its values.

Table 2
Summary statistics of models predicting depredation risk by wolves in Brandenburg,
Germany; statistics were averaged over 30 model runs; size of data (number of
livestock predation points): n = 1 094.

Item Accuracy Precision Recall

Number of runs 30 30 30
Mean 0.74 0.72 0.78
SD 0.02 0.04 0.03
Min 0.7 0.65 0.72
Max 0.79 0.79 0.83
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(Fig. 1). The validation scores of the trained model were as follows:
accuracy = 75.8, precision = 74.2 and recall = 77.7.

Results of the fifth step (prediction), in which we applied the
trained model to the five sub-regions in Brandenburg (Fig. 1), are
shown in Fig. 6. The likelihood of LD is shown on the left side in
a raster of 1 km * 1 km (Fig. 6) on a scale from 0 (no risk) to 1 (high-
est risk).

The underlying OSM map of each area is shown in the central
panel. On the right panel, this map is overlaid with a heatmap
(bicubic interpolation from 1 km * 1 km to 30 m * 30 m). Light
(dark) areas indicate a high (low) LD risk. LD events are marked
as blue dots (middle and right panel). Simulation and observed
data showed a high degree of correspondence, thus confirming
the potential usefulness of our approach for the prediction of the
LD risk.
Discussion

Interpreting land use configuration – livestock depredation
associations

Given the suite of factors that can potentially influence LD by
wolves, the central question of the presented work was whether
there are patterns in these events that can be explained exclusively
by the surrounding land use features. Our study showed that the
LD risk by wolves was strongly associated with the co-
occurrence of distinct land use proportions of grassland, forest
and farmland.
7

The identified strong influence of forest is in line with expecta-
tions, as wolves prefer forests as key habitat (e.g. Jędrzejewski
et al., 2008); similarly, the presence of grasslands and farmsteads
in a landscape patch implies a higher availability of livestock as
potential prey. Consequently, LD appears to primarily occur at
the landscape interface, where suitable wolf habitat borders or
overlaps with areas where livestock is kept. These results suggest
that the occurrence of LD is driven by land uses that influence both
resource selection decisions by wolves (i.e. positive association
with forests) as well as the distribution of livestock (i.e. grassland
and farmland). This aligns well with research on other human-
wildlife conflict scenarios, suggesting that damage occurrence is
fundamentally influenced by principles of resource selection deci-
sions by both wildlife and humans (Bautista et al., 2021).

However, a more nuanced, functional interpretation of the iden-
tified co-occurrence is not possible given the interrelatedness of
livestock presence and wolf habitat use, which cannot be disentan-
gled with the currently used data. Considering that predictive abil-
ity does not imply causality, the importance of grasslands and
farmland in our models does necessarily suggest that wolves have
a tendency to hunt in the proximity of these land uses. In fact,
farmland or human infrastructure such as buildings are generally
avoided by wolves, as more detailed studies on wolf movement
have clearly demonstrated (e.g. Mancinelli et al., 2019).

Simulation results for the five sub-areas confirmed the strong
impact of the co-occurrence of these three key land use variables.
In the region ‘‘Uckermark” (region 4), LD was less likely to occur.
This region is dominated by large agricultural fields and features
little forest cover and little grassland. Therefore, from its structural
characteristics, it appears less suitable for animal husbandry. From
the wolf’s perspective, the landscape appears also less suitable due
to the relative scarcity of forest cover (e.g. Jędrzejewski et al.,
2008). In tandem, this landscape configuration results in a compar-
atively low LD risk. In contrast, region 3 (‘‘Havelland”) is a diverse,
structural rich landscape with a large share of grassland and for-
ests. Consequently, both observed and simulated data indicate high
depredation risk (Fig. 6).

In sum, the modelling results suggest that LD is more likely to
occur in diverse landscapes with a minimum of three co-
occurring landscape elements (forest, grassland, and farmsteads),



Fig. 6. Models of livestock depredation risk as applied for regions 1–5 (top to bottom) of 50 km � 50 km (Brandenburg state, Germany. Left panel: yellow (blue) areas are
areas with high (low) livestock depredation risk. Middle panel: OpenStreetMap (OSM)-map of each region. Right panel: simulation results shown as heatmaps overlaid with
the OSM map. Light areas mark regions of high livestock depredation risk. Livestock depredation events are marked by blue dots (middle and right panel).
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transboundary areas and smaller fields, while in cropland-
dominated landscapes with little grassland and forest cover, depre-
dation events are unlikely to occur.

Methodological aspects

Our approach used only a few, yet readily available input data
and achieved a moderate accuracy for predicting LD by wolves.
However, the obtained accuracy also means that every fourth pre-
diction is incorrect. Thus, landscape features are important, but
other factors which could not be considered here due to the men-
tioned data availability constraints are perhaps required for pre-
dicting depredation by wolves. The key advantages of the
presented methodology are that it makes use of available data,
and it is exclusively based on machine learning without requiring
the involvement of experts or other potentially costly work steps.
It can be efficiently applied and transferred to other regions if
training data (i.e. systematically collected LD data) are available.

Moreover, the results can be used in many ways. Not an obvi-
ous, but in our eyes, important use is the analysis of waterfall dia-
grams. In Fig. 3A, the model shows an LD site. The landscape
elements (grassland, farmland, forest, river) add up to values >0.
It is interesting to note that the first three of them occupy a large
proportion of the area, while the (positive) river accounts only
for a small proportion of the area. The landscape elements (fallow
and garden) add up to values <0. However, their area shares are 0,
i.e. their absence has a negative effect. Fig. 3B, shows a pseudo-
absence site. Here, the small area of forest has a negative effect
on LD risk. These different effects show that the model can repro-
duce nonlinear relationships. This nonlinear relationship is also
shown in Fig. 5 with respect to the training data. The waterfall dia-
grams, which can be created for any location, are suitable for relat-
ing the model output to the expert’s expectations. This allows
modellers to check and possibly correct their ideas against the
data.

A key prerequisite of a good model is a solid database of live-
stock predation events. Monitoring livestock predation events
has considerably improved over the years and represents a robust
database for the analyses presented in this paper. The available
monitoring protocol, however, is currently wolf-centred, e.g. it
does not, or not systematically, include additional variables that
might affect LD, such as herd size and composition or the type
and quality, of livestock protection and husbandry measures
applied by herders. Data on fine-scaled wolf and livestock distribu-
tion are also not available at the scale of a federal state.

Despite the lack of such data, our model provided reasonable
prediction accuracy. The achieved accuracy of 74% is likely suffi-
cient for the simulation shown, yet not ideal. Possibly, achieving
a higher accuracy is affected by the choice of pseudo-absence data,
which were generated by a random selection process. Especially
since the wolf population in Brandenburg was still expanding dur-
ing the time period of the study (DBBW, 2020), some of the
pseudo-unaffected sites would in reality be risky. In addition to
accuracy, precision and recall should also be considered. Precision
also includes the false positives and recall the false negatives.
Looking at both precision (72%) and recall (78%) indicates that
there are more false positives than false negatives (Beattie et al.,
2020). Thus, more risky areas are falsely identified as low-risk
areas than low-risk areas are falsely predicted as high risk. Again,
this can be explained by the expanding wolf population, and the
fact that not all areas of the state had been occupied by wolves dur-
ing the entire study period.

A possible source of bias is that land use may change over time,
yet we used maps from a single time step, which may not ade-
quately describe the land use at each time step. In particular, this
applies to earlier recorded depredation events. Potentially, this
9

could have contributed to a lower accuracy, yet the influence of
this factor is likely to be small.

The inclusion of additional factors in our model, such as more
detailed data regarding livestock densities (Kuiper et al., 2021),
e.g. from the Integrated Administration and Control System
(Uthes et al., 2020), data on wolf distribution or proxy data for
key wolf habitat such as protected areas or military training areas
(Reinhardt et al., 2019), barriers limiting wolf expansion such as
motorways without green bridges, or the type of forest and wildlife
management, could further improve the accuracy of the model. For
example, one could assume that the intensity of hunting activities
differs between privately and state-owned forests, resulting in
heterogeneous wild ungulate densities. In turn, changes in ungu-
late densities, the main prey for wolves in Germany, could influ-
ence LD patterns.

However, these additional data sources are either not available
at all or more difficult to obtain compared to the OSMmaps used in
our approach. Including them in our model would cause higher
costs and divert from our initial intention to base our modelling
on publicly available data.

Use for decision support

Our model produced risk maps illustrating the LD risk based on
available land use parameters, a useful tool for the rapid classifica-
tion of areas with high and low depredation risk. This information
can assist zonation-planning projects and help authorities decide
on the degree of preventative and compensatory measures
required in different areas. For example, livestock herders with
permanent grazing areas located in high-risk landscapes (dark
areas in Fig. 6) could be encouraged to adopt more effective pre-
vention measures (e.g. electric fence and livestock guarding dogs)
while in low-risk areas (white areas in Fig. 6), less cost-intensive
prevention measures (e.g. electric fence only) could suffice. Simi-
larly, livestock herders could be encouraged to move livestock,
especially mobile small stock such as sheep, to suitable and avail-
able pastures in low-risk areas. Such evidence-based, spatio-
temporal avoidance by livestock herders has been effective in
reducing carnivore depredation on livestock in other parts of the
world (Melzheimer et al., 2020). Coexisting with large carnivores
requires substantial learning and adaptations among key stake-
holders (König et al., 2021) and an integrated perspective rooted
in a socio-ecological-systems understanding and aimed at win–
win solutions (Gordon, 2018). To overcome the implementation
gap between knowledge of effective prevention methods and rele-
vant action, dedicated farm coaching workshops in areas with high
LD risk may be an effective means to increase the adoption of effec-
tive livestock prevention methods.
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