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Abstract 
Next Generation Sequencing technologies significantly impact the 
field of Antimicrobial Resistance (AMR) detection and monitoring, with 
immediate uses in diagnosis and risk assessment. For this application 
and in general, considerable challenges remain in demonstrating 
sufficient trust to act upon the meaningful information produced from 
raw data, partly because of the reliance on bioinformatics pipelines, 
which can produce different results and therefore lead to different 
interpretations. With the constant evolution of the field, it is difficult to 
identify, harmonise and recommend specific methods for large-scale 
implementations over time. In this article, we propose to address this 
challenge through establishing a transparent, performance-based, 
evaluation approach to provide flexibility in the bioinformatics tools of 
choice, while demonstrating proficiency in meeting common 
performance standards. The approach is two-fold: first, a community-
driven effort to establish and maintain “live” (dynamic) benchmarking 
platforms to provide relevant performance metrics, based on different 
use-cases, that would evolve together with the AMR field; second, 
agreed and defined datasets to allow the pipelines’ implementation, 
validation, and quality-control over time. Following previous 
discussions on the main challenges linked to this approach, we 
provide concrete recommendations and future steps, related to 
different aspects of the design of benchmarks, such as the selection 
and the characteristics of the datasets (quality, choice of pathogens 
and resistances, etc.), the evaluation criteria of the pipelines, and the 
way these resources should be deployed in the community.
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1. Introduction
The technological advances in Whole Genome Sequencing (WGS) 
and the increasing integration of Next Generation Sequencing 
(NGS) platforms in the arsenal of testing laboratories is having a 
profound impact on health sciences. Affordable human genome 
sequencing is bringing about an era of improved diagnostics 
and personalised healthcare. For microorganisms, the reliable  
characterisation of their genetic material allows improved  
insights in their identity and physiology. Novel strategies for the 
implementation and analysis of NGS data are being developed 
and improved, and they can be used, for instance, to reconstruct 
the timeline and relationships between the cases of an infectious  
disease outbreak, which is something difficult to achieve with clas-
sical microbiological techniques.

Once sequenced, the genome of a microorganism can also be 
used to (re-)identify the species and infer important phenotypic  
properties, such as virulence, resistance to antibiotics, typing 
and other adaptive traits. An important aspect in this are con-
siderations related to quality and consistency (see 1), in par-
ticular if the result of the method is to be used in a regulatory 
context (for example, in a monitoring framework) or, more 
importantly, in a clinical setting linked to decisions on medical  
treatments2–4, veterinary, agricultural or environmental inter-
ventions and food safety5,6 which may be linked under One  
Health initiatives.

Methods for predicting antimicrobial resistance (AMR) genetic 
determinants from NGS data rely on complex bioinformatics  
algorithms and procedures to transform the large output pro-
duced by the sequencing technologies into relevant information.  
Traditionally, regulatory implementation of analytical meth-
ods focuses on harmonisation of the protocol and the subsequent  
steps of analysis, i.e. ensuring the implementation of specific  
methods previously validated according to a set of criteria. For 
methods with important bioinformatics components, this is often 
not optimal, due to both the large variability in the developed  
strategies, variations in the particular computational resources  
available and the speed at which technologies and analytical 
approaches evolve. For the prediction of AMR determinants, very 
different strategies have been proposed, processing the sequencing  
data either as a set of reads or as pre-processed assemblies7,8,  
even using neural networks9; sometimes, the system itself is  
proprietary and operates as a “black box” from the point of view of 
the user. In such cases like this, it has been proposed to approach 
the quality assurance challenge through performance-based  
evaluations, i.e. ensuring that the implemented methods, although 
different, perform at a similar (acceptable) level in this context10. 
The same performance-based evaluation can then be applied  
whenever a component of the pipeline, or its environment, is 
replaced or updated.

An important component for a performance-based evaluation 
scheme is the availability of resources (in particular, datasets) 
that enable these evaluations11–13. In 2017, the Joint Research  
Centre (JRC) initiated a reflection on the subject by inviting  
experts in the field of AMR detection with NGS from the four  
compartments of a “One Health” perspective, i.e. clinics, food, 

animals and the environment14,15. These discussions led to a  
compilation of the challenges involved in the development of 
a benchmark strategy for bioinformatics pipelines, both for  
NGS-based approaches in general and in this specific field of  
application16. These challenges were grouped into often  
overlapping categories, including the nature of the samples in the 
dataset (e.g. their origin, quality and associated metadata), their 
composition (e.g. the determinants and species to include), their 
use (e.g. expected results and performance thresholds) and their 
sustainability (e.g. their development, release and update).

On the 27th and 28th of May 2019, the JRC held a follow-up  
meeting, including most of the authors of the original article and 
additional experts that expressed interest, to discuss and propose 
solutions to the identified challenges for AMR detection using next 
generation sequencing. The present article represents a summary 
of these discussions and the conclusions reached. We propose this 
document as a baseline for a roadmap and guidelines to harmonise 
and standardise for the generation of the benchmark resources in 
the field of AMR.

2. Framing the aims and purposes of the 
benchmarking resources
An important observation that arose from the two-day discussions 
is that the concept of benchmarking, even when focusing on a  
single component of the method (i.e. the bioinformatics pipe-
line), may refer to different activities that can vary in their scope  
and objectives (see also 17,18). Clarifying these scopes is crucial  
when proposing recommendations, as these (and the final  
datasets) will be influenced by the scope of the evaluation.

In the conclusions of the previous article, the use of the bench-
mark resources was reported as follows: “(1) Ensuring confidence  
in the implementation of the bioinformatics component of the 
procedure, a step currently identified as limiting in the field.  
(2) Allowing evaluation and comparison of new/existing bio-
informatics strategies, resources and tools. (3) Contributing  
to the validation of specific pipelines and the proficiency testing 
of testing laboratories and (4) “Future-proofing” bioinformatics 
pipelines to updates and replacement of tools and resources used 
in their different steps.”19.

These four summarising points made above, in practice, cover 
two different questions: 1, 3 and 4 (implementation, validation,  
proficiency testing and future proofing) ask whether 
the bioinformatics pipeline performs as expected, while  
2 (evaluation/comparison) focuses on identifying gold standard 
pipelines and resources for implementation. The first scope of a 
benchmark resource would thus address the question: “Which 
pipeline performs best and at least by the agreed minimum  
standards?” A second scope addresses the question: “What is 
the quality of the information produced by the implemented  
bioinformatics pipeline?”

The latter question requires further refinement, based on the  
“what” the pipeline is “required” to achieve. Although there 
may be different contexts to the use of the methods (e.g. guide 
clinical intervention, contribute data to a monitoring framework,  
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outbreak management, monitor the spread of AMR genes in or 
between different settings/environments, etc.), for a benchmark 
resource, these can be split in three main use cases:

     •     �to predict the resistance of a pathogen of interest (either  
cultured or directly from samples of complex microbial 
communities)

     •     �to identify the complete repertoire of the AMR determinants 
in a complex sample (i.e. the resistome)

     •     �to identify the link of AMR genes to an specific taxon 
in a complex sample (i.e. taxon-binning approaches like 
described by Sangwan et al.20).

Finally, another important scope for a benchmark resource 
was identified, having, once again, an impact on the deci-
sions regarding the benchmark dataset: “How robust is the  
bioinformatics pipeline?” Studies addressing this question 
focus on identifying how the pipelines can tolerate variation in  
characteristics of the input data, most often related to the qual-
ity of the sample or sequencing steps: robustness against  
contamination or low number/poor quality reads, for example. 
Robustness, in certain contexts, could also be seen as the effect 
(or lack of) of swapping a tool (or the reference database) at a  
certain step in the pipeline for a different one that is functionally 
equivalent (see, for example,21).

In summary, it is important to be specific about the purpose  
and scope of the benchmark resource in the decisions taken when 
generating the datasets. We propose that the scope of a benchmark 
has three major parts, summarised in Figure 1.

General considerations
When discussing the different challenges described in 16, rarely  
can an absolute “best” answer be identified for a given ques-
tion; recommendations thus need to be made, taking into account 
the specific purpose of the benchmark resource and the fact that  
they may evolve with the state-of-the-art in the field.

Still, some general observations and conclusions were proposed, 
summarised in this section.

2.1. NGS platforms
A quick analysis of the different NGS platforms currently  
available and in development makes it obvious that the set of reads 
that they produce have very different characteristics. In addition, 
each platform has its strengths and weaknesses. Both the error 
rate (about 0.1% for Illumina (RRID:SCR_010233), 1–10% for  
newer technologies like from Pacific Biosciences and Oxford  
Nanopore Technologies (RRID:SCR_003756)) and the types of 
errors (miscalls, insertions or deletions, or problems of particular 
motifs such as homopolymer sequences) vary according to the  
platform used. The average length of the reads can vary from hun-
dreds (Illumina, Ion Torrent) to thousands (PacBio, Nanopore)  
of base pairs22–24.

Bioinformatics pipelines are thus usually designed to handle 
the output of a specific platform, often in a certain configura-
tion. Although exceptions exist (e.g. 25,26), in the context of a 
benchmark resource (and independently of the question asked),  
we thus believe that different datasets are needed for each of 
the different NGS platforms, each containing reads that have a  

Figure 1. Summary of the different “scopes” for the benchmark resources for AMR detection using next generation sequencing 
discussed in the current document, with an indication of the uses for each.
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profile that matches closely with the normal output of the respec-
tive technologies. It is important, in this case, to ensure that the  
datasets produced for the different platforms do not introduce any 
bias among the different platforms (when bioinformatics pipe-
lines analysing the output of different platforms are compared).  
Although the absence of bias may be hard to demonstrate  
a posteriori, efforts should be made to ensure that the data-
sets derive from strategies that are as similar as possible, for 
example by containing reads generated from the same input  
samples.

The platforms for which benchmark datasets are produced  
should be selected based on pragmatic considerations. Ideally, 
equivalent resources should be available for all technologies; 
in practice, a prioritisation exercise should be made based on 
the capacity building efforts in testing laboratories. Recent sur-
veys have shown a clear preference for the Illumina platform in  
this context27,28. The same trend can be observed when counting 
the number of published articles in a scientific literature database 
(Figure 2).

The so-called “Third Generation Sequencing” technologies that 
sequence single DNA molecules and, importantly, produce long 
reads, have been shown to provide substantial benefits in the  
context of AMR detection. First, many resistance genes are located 
on plasmids, which are challenging to assemble using short-
read sequencing technologies, because the short read lengths 
do not allow spanning of repetitive regions29. The presence of an  
AMR determinant on a plasmid is also important for its trans-
fer and eventual spread, and thus their correct assembly using  
long-read technologies represent a substantial advantage30–34.  

In addition, the proper and timely treatment of a pathogen  
infection is critical for successful prevention and control of diseases 
in clinical settings as well as in the community. In line with this, 
the Nanopore sequencing technology has shown the promise of  
providing accurate antibiotic resistance gene identification within 
six hours of sample acquisition35–37 We thus propose to include 
DNA Nanopore sequencing as an additional priority platform to 
develop benchmark resources.

The choice of formats for the different components of the  
datasets is also important. Each instrument produces a raw 
data output in a specific format (for example, the Illumina  
platforms generate raw data files in binary base call (BCL)  
format, while the Nanopore platforms produce FAST5 (HDF5) 
files). However, the entry point of most bioinformatics pipelines 
in this context is the description of the sequence of the produced  
reads, with an indication of the quality (or confidence) score for 
each of the base positions. The FASTQ format is a standard for-
mat in this context38, which should be used in the benchmark  
resources; many tools exist to convert the raw data output files 
into this format in case of different platform outputs (see, for  
example,39,40) although, it should be noted, different tools may 
produce different results and this step should be carefully  
planned.

Other standard formats exist to describe intermediate states 
of processing, for example for the description of assembled  
contigs or variant calling41. However, using these formats  
would make an a priori assumption about the strategy of the  
bioinformatics pipeline that may not be universal; indeed, not all 
reported solutions involve assembling reads, or mapping them to 
reference genomes or databases (see, for example,42,43).

Figure 2. Number of articles published each year in the scientific literature mentioning the selected platform. Source: Scopus, 
using the search: ALL ( “X” AND “antimicrobial resistance” ).
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2.2. Datasets origin
Three main sources of data for creating a benchmark dataset 
were identified. The first is to simulate the output (reads) in silico  
using an input sequence of a resistant pathogen and a specialised 
software. The second is to use the archived output of previously 
performed experiments that are available in different repositories. 
The third is to perform NGS experiments on biological samples.

Although the disadvantage of simulating in silico data is  
obvious (it is not ‘real’), there are some substantial advantages: it 
is a lot cheaper than performing sequencing runs, a lot faster, and 
can be applied to any genome previously sequenced. Thus, many  
more potential scenarios can be tested, for which the ground 
truth is well-established (i.e., the annotation of the genome  
reference that is used: different species, different classes of 
AMR, different localization of AMR), which usually cannot be 
done by actually sequencing them. Finally, it is also potentially  
‘safer’ to do this for pathogenic bacteria for which high 
biosafety levels would be required to sequence in a laboratory.  
However, a major drawback is that simulating variation the 
way nature evolves is very challenging – genetic variation  
happens in places in the genome where it is hardest to find.

Many methods and programs have been developed to simulate 
genetic data. Their use in this context is, in itself, an exercise of 
Open Science and mechanisms should be used to guarantee qual-
ity and reproducibility (see 44) In 2013, Peng et al.45 developed 
the catalogue “Genetic Simulation Resources” (GSR, available at  
https://popmodels.cancercontrol.cancer.gov/gsr/) to help research-
ers compare and choose the appropriate simulation tools for 
their studies. However, after reviewing the software listed in the  
GSR catalogue, the authors realised that the quality and  
usefulness of published simulation tools varied greatly due to 
inaccessible source code, lack of or incomplete documentation, 
difficulties in installation and execution, lack of support from 
authors and lack of program maintenance45. For these reasons, a  
defined checklist of features that may benefit end users was 
defined46; the “GSR Certification Program” was developed and 
recently implemented into the GSR in order to assess simulation 
tools based on these criteria47. Established criteria are grouped to 
attribute four “certificates” (https://popmodels.cancercontrol.can-
cer.gov/gsr/certification/):

     •     �Accessibility: it ensures that the simulator is openly  
available to all interested users and is easy to install and 
use.

     •     �Documentation: it ensures that the simulator is well  
documented so that users can quickly determine if the  
simulator provides needed features and can learn how to use 
it.

     •     �Application: it ensures that the software simulator is  
peer-reviewed, is reasonably user-friendly to be useful to 
peer researchers, and has been used by researchers in the  
scientific community.

     •     �Support: it ensures that the authors of the simulator are 
actively maintaining the simulator, addressing users’  
questions, bug reports and feature requests.

As of December 2019, the GSR catalogue lists 148 simulators  
and many of them have been assessed for their compliance with  
the requirements in order to be certified. Obviously, not all of  
them are for simulation of NGS reads. In 2016 Escalona et al.48 
identified and compared 23 computational tools for the simula-
tion of NGS data and established a decision tree for the informed  
selection of an appropriate NGS simulation tool for the specific 
question at hand.

By browsing the GSR catalogue, 20 out of 23 tools assessed  
by Escalona et al. (45) have been recorded, including only one  
with the four “GSR certificates” (Table 1), i.e. the ART tool49.  
Other tools not assessed by Escalona are also present in the GSR 
catalogue with certificates, like NEAT50 and VISOR51.

For choice of the simulation methods and programs for NGS  
reads, the decision tree proposed by Escalona et al. is robust.  
However, it should be complemented by “certification” steps and, 
in this respect, we encourage the use of the “certification” crite-
ria established by the GSR Certification Program, to tackle the  
challenge of following agreed principles for rigorous, reproduc-
ible, transparent, and systematic benchmarking of omics tools, in  
line with those proposed by Mangul et al.13.

Using pre-existing experiments, from private or public repositor-
ies, ensures that the components of the dataset are representative  
of a real-life experiment, including the complete panel of  
real-life variabilities that are difficult to simulate. The main  
issues then are: a) there is a need to demonstrate that the experi-
ment met the necessary quality criteria (see section 3.3); b) the  
“correct” value (i.e. the ‘ground truth’) for the experiment 
needs to be determined. This can be already described in the  
metadata associated with the record and/or determined (verified)  
a posteriori – although this requires strict annotation of the  
experiment; c) it will not be possible (besides rare exceptions) to 
build datasets for the different platforms using the same initial  
samples.

Generating experiments specifically for the sake of a bench-
mark dataset has almost the same advantages and disadvantages 
as using pre-existing data. Additional advantages include a  
better capacity to determine the “ground truth” of each sample by  
ensuring access to the original pathogen, as well as the  
possibility to generate datasets for the different platforms 
while using the same samples, if the same pathogen/purified 
DNA is processed through the different protocols and instru-
ments. This also allows to better control of the quality aspects of  
the procedure performed, e.g. through the use of accredited lab-
oratories who have therefore demonstrated by audits that they  
possess the necessary knowhow and expertise to create high-
quality data. However, an additional disadvantage is that this 
process requires a substantial investment of time and resources  
(although this investment may be deemed worthwhile given 
the importance of the topic, and could benefit from the  
involvement of the instrument vendors).

Because each approach has advantages and disadvantages,  
the choice must be carefully considered, according to the purpose 
of the dataset, which will be discussed in section 4.
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Table 1. Analysis of the GSR certifications of the computational tools for the simulation of 
next-generation sequencing described in 48. See text for details.

Tool In GSR? GSR certificate?

Accessibility Documentation Application Support

454sim Yes not yet evaluated

ART Yes Yes Yes Yes Yes

ArtificialFastqGenerator Yes not yet evaluated

BEAR No -

CuReSim Yes No Yes No No

DWGSIM Yes Yes Yes No Yes

EAGLE Yes not yet evaluated

FASTQSim Yes not yet evaluated

Flowsim No -

GemSIM Yes Yes Yes No No

Grinder Yes not yet evaluated

Mason Yes Yes Yes No Yes

MetaSim Yes No Yes Yes No

NeSSM No -

pbsim Yes not yet evaluated

pIRS Yes Yes Yes No Yes

ReadSim Yes not yet evaluated

simhtsd Yes not yet evaluated

simNGS Yes not yet evaluated

SimSeq Yes not yet evaluated

SInC Yes Yes No No Yes

wgsim Yes not yet evaluated

XS Yes not yet evaluated

2.3. Quality metrics
The quality of the original sample and the wet laboratory  
procedures (e.g. DNA extraction, library preparation and sequenc-
ing) have a strong impact on the quality of the reads fed into  
the bioinformatics pipelines. Contamination, low amounts of 
reads passing the machine QC, higher error rates than normal, etc. 
can influence the output of bioinformatics pipelines. Usually, the  
pipelines are designed to be resilient to some extent to these  
variations.

Although understanding this resilience is important, we  
propose, as shown in Figure 1, to separate these considera-
tions from resources meant for quality control and performance  
evaluation (questions 1, 2a and 2b) for two reasons: first, many 
of these factors are variable, heterogeneous, technology-specific, 

and can be implemented at different stages of the bioinformatics  
pipeline; attempting to incorporate them all in the same resource 
would be impractical and too costly. Second, pipelines imple-
mented for regulatory or clinical decision-making will be  
incorporated into a larger quality assurance framework that 
will ensure the quality of the input until that step2. Although 
examples exist of end-to-end NGS workflow validation 
(like in the case of WGS) where bioinformatics is one of the  
components52, our approach emphasises on an approach where  
each step is validated separately (see 53).

It is then crucial to closely follow the proposed quality  
control schemes, either published or in development, in  
particular for the upstream steps (DNA isolation, library extrac-
tion, sequencing, etc.), for example ISO/TC 34/SC 9/WG 25. 

Page 8 of 26

F1000Research 2021, 10:80 Last updated: 24 JAN 2022



From these, both the metrics and the thresholds that can be 
applied at the level of the reads should be identified (some of 
which may vary according to the sequencing methodology), 
such as percent of bases with quality scores over Q30, percent 
alignment and error rates of the positive control (if present), the 
number of reads after trimming, etc. Tools exist that can provide 
a panel of quality metrics from FASTQ files, such as FASTQC  
(RRID:SCR_014583)54. It is important to include the quality  
metrics as metadata in the dataset samples.

For the studies evaluating resilience (question 3), many different 
datasets as possible are needed for the “low quality dimensions”  
to be tested. For this reason, the establishment of standard  
datasets for this type of benchmarking is a complex exercise 
and answering question 3 of Figure 1 should be attempted on a  
case-by-case basis, thus it is better suited to individual studies.  
One way to harmonise the approach would be to use the datasets 
produced for questions 1 and 2 as a starting point, as there are  
tools that can add some extent of “noise” to existing good  
quality datasets49.

2.4. Choice of bacteria/resistance to include
In the context of challenging/evaluating a bioinformatics pipe-
line for the detection of AMR genetic determinants, a very  
pragmatic approach could be the generation of random DNA 
sequences, to which particular sequences of interest are added  
(i.e. fragments of AMR genes). However, there is sufficient  
evidence that the genomic background of the bacteria (i.e. the  
“non-AMR related” sequences) can have a profound influence 
on the performance of the pipelines. For example, pipelines that 
include a contig assembly step will be affected by the frequency 
and level of repetitive sequences in the background genome, as well  
as its GC content55,56. Some species also have genes that are  
similar at the sequence level to known AMR determinants that  
efficient pipelines must be able to distinguish.

In conclusion, the bacterial species included in the benchmark  
datasets, and the AMR genes they contain, need thus to be  
carefully selected, with the appropriate justifications. These are  
specific to the purpose of the dataset (Figure 1) and will be  
discussed in section 4.1–section 4.3 below.

2.5. Genomic or phenotypic endpoint
A pipeline processing sequencing information for AMR can  
produce two closely linked but conceptually different outputs:  
a) they can detect the genetic determinants of AMR, and in  
addition b) some can predict the AMR/susceptibility of the  
bacteria in the original sample.

In a clinical context, the phenotypic endpoint is the most rele-
vant, as it provides the information most useful for the end users.  
Studies that evaluated AMR genotype to phenotype relationships  
have indicated that despite generally high correspondence,  
this can vary greatly between pathogens / case studies, and even 
for different antimicrobial agents within the same species57,58. 
There are different reasons for discrepancies between pheno-
type and genotype, including the extent of the expression of the  
resistance determinants in order for the resistance to be  

conferred, and also relatively complex molecular pathways that  
can influence the eventual phenotype. In some cases, genes can  
also confer reduced susceptibility (i.e. increasing the concen-
tration of an antimicrobial necessary for treatment) rather than  
resistance per se. A genotypic endpoint may also be problem-
atic due to the definition of “antibiotic resistance” in different  
settings59, which can complicate the interpretation of results.

In practice, however, focusing on a genomic endpoint has many 
advantages:

     •     �The end-point (determinant; gene or SNP) is better  
defined: presence or absence.

     •     �The gene copy number can be calculated, this is  
important even if obtaining gene copy numbers with short 
read data remains pretty difficult.

     •     �It provides high resolution information, that is useful  
when many genetic determinants confer resistance to the 
same antimicrobials.

     •     �It offers additional information to contribute to an  
evaluation of the history of the spread of AMR60.

     •     �It does not rely on breakpoints such as Minimum  
Inhibitory Concentrations (MICs), which may vary 
between human and animal bacterial isolates, or may not be  
available for some animals (or pathogens), or because it may 
be updated based on phenotypic scientific observations61,62.

     •     �Even in the cases of AMR determinants not being expressed 
(thus not leading to a resistance phenotype), this may  
be important to characterise/record for epidemiological  
purposes.

2.6. Benchmark datasets metadata
Besides the set of reads themselves, additional information needs  
to be associated with each sample in the dataset.

Obviously, each sample needs to include a “true” value, i.e.  
the ‘ground truth’ to be used for comparison when evaluating 
the performance of the pipeline. For a genotypic endpoint, this 
would take the form of the name (with a reference to a database) 
of the AMR determinants present. If real-life samples are used, 
the phenotypic information should be included, on top of the  
genotypic endpoint.

Public resources and repositories are available to host both the  
data and the metadata, and should be used as appropriate for 
the sake of transparency, obsolescence and traceability of the  
datasets of the benchmark resource. In practice, this means:

     •     �The NGS reads data should be hosted in one of the Inter-
national Nucleotide Sequence Database Collaboration 
(INSDC, RRID:SCR_011967) sequence reads archives63, 
compiling the metadata information as appropriate.

     •     �For simulated reads, this information should include the 
simulation tool used (source, version, parameters).

     •     �For simulated reads, the “input” sequence(s) should be 
a closed genome, and any additional genes, that should be 
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available in INSDC sequence archives64, and the record  
ID(s) included in the reads metadata information. Opti-
mally, the closed genomes should be linked to a “real”  
sample in the INSDC BioSample database.

     •     �For real experiments, the originally sequenced sample 
should be present/submitted in the INSDC BioSample  
database65, with all the appropriate metadata information 
(including identified resistances and the MIC(s) deter-
mined according to the standard culture-based evaluation  
methods).

3. Design of the scope-specific benchmark 
resources
3.1. Is the bioinformatics pipeline performing according 
to (agreed) minimum standards?
The scope of this benchmark resource is to address the ques-
tions of validation, implementation and quality control over time  
(i.e. following any change in the pipeline or the environment 
on which it is executed). The dataset required for this should be  
compiled based on an agreed “minimum” standard, i.e. thresh-
olds for the acceptance values of certain performance metrics  
for the bioinformatics pipeline in the context of the detection of 
AMR determinants, no matter the exact final use of the information 
produced.

This evaluation of performance should be based on challenging 
the pipeline with input representing a carefully selected set of  
resistance determinants and bacterial hosts. These sets of NGS 
reads should be fully characterised regarding their genetic  
content and serve as (in silico) reference materials for the  
validation and quality control of the bioinformatics component  
of the methods (see, for other host models, 66,67).

To maintain this necessary control on the genetic content  
of the reads, the dataset should be composed exclusively of  
simulated experiments. Nevertheless, this does not exclude at all 
the use of real data, which would be extremely relevant for cases 
like when the presence/absence of some AMR determinants 
has been established using first generation of consolidated and  
classical molecular-biology-based methods (e.g. PCR + Sanger  
sequencing). Synthetic reads can be generated in a large scale, 
in a harmonised manner, and most importantly allow full con-
trol on the content of the output. For the choice of resistances  
and bacterial species to be included, it is proposed to select 
them based on three sources, based on their current public  
health relevance and regulatory frameworks:

     •     �The WHO’s list of antibiotic-resistant "priority  
pathogens"68.

     •     �The AMR reporting protocol for the European Antimicrobial 
Resistance Surveillance Network (EARS-Net)69.

     •     �The Commission Implementing Decision of 12 Novem-
ber 2013 on the monitoring and reporting of AMR in  
zoonotic and commensal bacteria70.

Table 2 shows the combination of these three lists, in terms of  
both the bacterial species and the antibiotics mentioned.

In practice, the simulated reads should be derived from:

     1.     �High-quality and complete reference genome sequences 
for the pathogens in Table 2. See, for example, the  
FDA-ARGOS database11 and the NCBI RefSeq Genomes 
database (RRID:SCR_003496).

     2.     �Known genetic determinants for the resistance against 
the antibiotics in Table 2, using available resources7,8,71.  
If more than one determinant is associated with a  
resistance phenotype, one possibility is to collect them 
all; expert knowledge and empirical evidence on the rela-
tive contribution of different genes to the phenotypes, from 
published large-scale studies (e.g. 72) can also be used to  
objectively reduce the list of determinants to include for a 
given antibiotic.

     3.     �Combinations of (1) and (2) present in at least one of 
the chosen lists (see cells in Table 2), the sequences are  
combined and used as the input to simulate the reads using 
the appropriate tools (see section 3.2).

It is important to highlight that the combination of these three 
lists still leaves important regulatory gaps, and should be  
complemented by the World Organisation for Animal Health  
(OIE, RRID:SCR_012759) list of antimicrobial agents of veteri-
nary importance73 or others74. However, the lists do not mention 
specific species associated to each antibiotic, and these should 
be selected by the appropriate experts for the context of this  
benchmark resource.

The endpoint considered for this benchmark is thus genotypic  
(see section 3.5), and the main metric measured is the pipeline’s 
accuracy in the identification of the correct genetic determinants 
or alleles.

Because of the selection of this subset of bacteria/resistances 
and their immediate clinical and regulatory importance, an  
important performance metric to be evaluated with this dataset 
is accuracy. The reference genomes for each pathogen used to  
simulate the reads should be carefully chosen and characterised 
to ensure all present AMR determinants (besides the one that 
will be added to the sequence prior to simulating the reads) are  
carefully recorded to avoid unfair assignment of “false positives”  
to the pipelines that will (correctly) identify them.

There are other important performance metrics to consider  
in the context of validating a bioinformatics pipeline, such as 
repeatability, reproducibility, sensitivity, specificity, and precision, 
whose definitions need to be carefully considered in this context53 
(for example, “reproducibility”, could be evaluated as the result of 
running the same bioinformatics pipeline, with the same datasets, 
implemented in different systems).

For all the performance metrics, the minimum acceptable  
values should be subsequently determined once the outputs of real 
benchmarking exercises considering all the aspects described in 
this article are available.
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Table 2. Summary of the bacterial species and antibiotics resistances mentioned in the three lists 
discussed in the text. a: WHO’s list of antibiotic-resistant “priority pathogens”. b: EARS-Net reporting protocol for 
2018. c: Commission Implementing Decision 2013/652/EU.
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Amikacin b b b b

Amoxicillin b b b b

Ampicillin b,c b,c b,c a c

Azithromycin c c b

Cefepime b b b

Cefotaxime b,c b c b

Cefoxitin b

Ceftazidime b,c b b c

Ceftriaxone b b b

Cephalosporin a

Chloramphenicol c c c c

Ciprofloxacin b a,c a,c c c b,c b a b a,c a b

Clarithromycin a b

Cloxacillin b

Colistin b b,c b b c

Daptomycin c c c

Dicloxacillin b

Ertapenem a a,b a,b a a a

Erythromycin c c c c b

Flucloxacillin b

Gentamicin b c c b,c b,c b,c b b c

Imipenem a,b a,b a,b a,b a a

Levofloxacin b a a b b a b a a b b

Linezolid b,c b,c b

Meropenem a,b a,b,c a,b a,b a,c a

Methicillin a,b

Moxifloxacin b b b

Nalidixic acid c c c c
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Netilmicin b b b b

Norfloxacin b b b b

Ofloxacin a a b b a a a b

Oxacillin b b

Penicillin a,b

Piperacillin b b b

Polymyxin B b b b b

Quinupristin/ 
Dalfopristin

c c

Rifampin b

Streptomycin c c

Sulfamethoxazole c c

Teicoplanin b,c b,c

Tetracycline c c c c c c

Tigecycline c c b,c b c

Tobramycin b b b b

Trimethoprim c c

Vancomycin b,c a,b,c a,b

When generated, the benchmark should be deployed on a  
dedicated (and sustainably maintained) platform that includes 
all the links to the data (see section 3.6) and a description 
of all the steps/decisions that were taken to generate it. It is  
also important to implement, from the start, a clear version con-
trol system for the benchmark resource, in order to properly  
document the changes over time, and the exact versions used 
at the different times that the resource is used. In addition to  
the unique accession numbers of the individual samples in 
their respective repositories, the dataset as a whole should 
have a unique identifier (e.g. a DOI) that changes when any  
modification is made. The versioning should also allow access 
to and use of any previous versions of the resource, even after  
being updated.

This minimal dataset contains, by definition, a limited number 
of species and may lack pathogens of clinical importance  
(for example, Mycobacterium tuberculosis, for which WGS-based 

approaches have shown particular advantages, see 75,76). A full  
validation exercise for a specific pipeline, applied to a specific  
context, will need additional samples that complement the 
resource described in this section with the appropriate species/ 
resistances. These datasets may, for example, be taken from 
the resources described in the following sections, that focus on  
evaluating the actual performance of methods in broader contexts 
by gathering the many datasets necessary to do so.

3.2. What is the quality of the information produced by 
the bioinformatics pipeline (prediction of resistance)?
The scope of this benchmark resource is to identify gold  
standards for bioinformatics pipelines, in this case linked to 
the specific use of predicting resistance/susceptibility of a  
pathogen.

There is a step between identifying the determinants of AMR 
and predicting resistance, which is not always straightforward 
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as factors such as expression of the AMR gene may affect the  
prediction57,72. For this reason, and because it is conceptually 
closer to the information that is acted upon, the endpoint for this  
benchmark should be phenotypic. In addition, the dataset should 
be composed of real NGS experiments, since artefacts and  
variations are more complex in real sequencing reads than in  
simulated reads, a factor crucial to consider for this scope that 
focuses on accuracy.

To minimise the need of extensive resources to produce these  
“real” datasets, we propose to focus on re-using experiments  
previously performed under standardised conditions. A great  
source of data are the published ring trials; these have the  
additional advantage of providing an accurate characterisation 
of the sequenced samples, since the same original samples are  
sequenced many times by different laboratories. If needed, 
the data generated by single-site studies can also be evaluated,  
although in this case the issue of the correct characterisation 
of the samples (their “true” resistance patterns) should be 
addressed. One possibility is to use studies performed in a hos-
pital setting, linked to clinical outcome (for example,77), or 
where sufficient information is available to evaluate the way the  
susceptibility testing was performed.

In practice, this would mean:

     1.     �Performing an extensive review of the published literature 
to   identify studies, ring trials, and proficiency testing that 
meet the criteria (focused on the detection of AMR using 
NGS, starting from a “real” sample). Table 3 provides a 
non-exhaustive list of recent references to be used as a 
starting point.

     2.     �Assessing whether the raw sequencing output for the projects 
meet the FAIR principles (Findability, Accessibility,  
Interoperability, and Reusability)78, and are retrievable 
from publicly available repositories – even if they are 
access controlled. If not fully open, the corresponding 
authors should be contacted and asked whether the data 
could be obtained and deposited in long-term archives  
(e.g. Zenodo (RRID:SCR_004129), EuDat and/or the 
European Nucleotide Archive (ENA, RRID:SCR_006515) 
depending on the deposited data).

These datasets would then be used to test and compare the  
different bioinformatics pipelines in order to calculate the accu-
racy of their phenotypic predictions. Although not exhaustive, 
these datasets should cover the most relevant “real-life” cases, as  
they warranted their inclusion into a ring trial, with the associ-
ated resources committed to produce the data. The final size and  
composition (species, resistances) of the dataset would depend on 
what is provided by the available projects; ad hoc ring trials could 
be organised to cover eventual important gaps in species and/or 
resistance.

Although the chosen endpoint is mostly phenotypic, the purpose 
is to evaluate bioinformatics pipelines that process information  
at the sequence level, so it was agreed that there was little added 

value of inserting resistant samples (based on a characterised or 
inferred phenotype) for which the resistance mechanism is still 
unknown. In any case, it is improbable that these cases would  
have been included in ring trials projects.

Although the performance metrics described in Section 4.1  
apply and are relevant in this case, the main performance metric 
for this benchmark is the accuracy. Because of the difficulty of  
predicting the link between the presence of AMR determi-
nants and their impact on the pathogen susceptibility to the  
antimicrobial agents, the target accuracy is expected to be lower 
than for a genotypic endpoint. Both false positives and false  
negatives can be an issue when the information is used for clinical  
intervention, so a sufficient amount of “borderline” cases  
should be included, and both sensitivity and specificity evaluated. 
It is also possible to consider attaching different relative costs for 
false positives and false negatives when evaluating the accuracy 
metrics.

Once selected and combined, the data should be separated by 
NGS platform, and by species and antibiotic. Because this  
benchmarking aims at evaluating and comparing performance 
of methods, which are continuously developed and optimised, 
against a large and constantly expanding dataset, it is crucial to 
define an environment where the AMR community can establish a  
continuous benchmarking effort. Within this platform, pipelines 
would be compared simultaneously based on up-to-date datasets, 
under the same conditions, and over time. Constantly updating and 
adding to the reference datasets is important both to keep up with 
the evolution of the knowledge/reality in the field, and to avoid that 
pipelines are developed that are optimised to specific datasets only.

One option is OpenEBench (Open ELIXIR Benchmarking and 
Technical Monitoring platform), which is developed under the  
ELIXIR-EXCELERATE umbrella in order to provide such 
a platform18. In this framework, in addition to compiling the  
data resources to be included (as described above), and whatever 
the platform chosen, there will be the need for efforts to:

     •     �Establish guidelines for input and output formats (and, in 
the case of the phenotypic endpoint, an agreed ontology for 
the conclusions).

     •     �Encouraging a “FAIR” implementation of the pipelines 
themselves, to increase the number of pipelines accessi-
ble for the benchmarking platform, and for interested end  
users to retrieve and implement in house.

Provisions should be included to allow the possibility to evaluate, 
in this context, pipelines that cannot be made “FAIR” based on  
intellectual property rights, institutional policies or available 
resources.

A final step will be to communicate these efforts within the  
scientific community and the potential end users, as well as to  
demonstrate the added value of this “live” benchmark resource 
to ensure that future studies (in particular, their pipelines and the  
datasets they generate) are efficiently integrated in the platform.
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Table 3. Sample studies to be analysed for the availability of FAIR raw reads data, to include in the 
benchmark resource.

Pathogens Study Year Study type Ref

Clostridium (Clostridioides) difficile Berger et al. 2019 ring trial 79

Neisseria meningitidis Bogaerts et al. 2019 validation study 53

Salmonella enterica Mensah et al. 2019 single study 80

Enterobacteriales Ruppé et al. 2019 single study 58

Escherichia coli Stubberfield et al. 2019 single study 81

Staphylococcus aureus Deplano et al. 2018 ring trial 82

Brucella melitensis Johansen et al. 2018 ring trial 83

Salmonella enterica Neuert et al. 2018 single study 84

Salmonella, Campylobacter Pedersen et al. 2018 proficiency 
testing

85

Escherichia coli Pietsch et al. 2018 single study 86

Enterococcus faecium, Enterococcus faecalis Tyson et al. 2018 single study 87

Actinobacillus pleuropneumoniae Bossé et al. 2017 single study 88

Klebsiella pneumoniae Brhelova et al. 2017 single study 89

Salmonella enterica Carroll et al. 2017 single study 90

Escherichia coli Day and al. 2016 single study 91

Salmonella spp., Escherichia coli, Staphylococcus aureus Hendriksen et al. 2016 proficiency 
testing

92

Salmonella McDermott et al. 2016 single study 93

Staphylococcus aureus, Enterococcus faecium, Escherichia coli, 
Pseudomonas aeruginosa

Mellmann et al. 2016 single study 77

Staphylococcus aureus, Mycobacterium tuberculosis Bradley et al. 2015 single study 42

Escherichia coli Tyson et al. 2015 single study 94

Mycobacterium tuberculosis Walker et al. 2015 single study 75

Campylobacter jejuni, Campylobacter coli Zhao et al. 2015 single study 95

Pseudomonas aeruginosa Koos et al. 2014 single study 96

Staphylococcus aureus Gordon et al. 2013 single study 97

Escherichia coli, Klebsiella pneumoniae Stoesser et al. 2013 single study 98

Staphylococcus aureus, Clostridium difficile Eyre et al. 2012 single study 99

Salmonella typhimurium, Escherichia coli, Enterococcus faecalis, 
Enterococcus faecium 

Zankari et al. 2012 single study 100

Salmonella Cooper et al. 2020 Single study 101

3.3. What is the quality of the information produced by 
the bioinformatics pipeline (mixed samples)?
Many gaps exist in the scientific understanding of antibiotic  
resistance development and transmission, making it difficult 
to properly advise policy makers on how to manage this risk.  
There is strong evidence that a multitude of resistance genes 

in the environment have not yet made it into pathogens102,103;  
understanding the relative importance of different transmission  
and exposure routes for bacteria is thus crucial59,104–106.

Establishing a baseline for resistance determinants in the  
environment, and linking this to a surveillance scheme, requires 
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a good understanding of the relative performance of methods  
that are and have been developed to characterise the resistome 
in a complex sample. There would be, also for this use case, a 
great value in the establishment of a community-driven “live”  
benchmarking using a platform such as OpenEBench, and many of 
the concepts that were discussed in section 4.2 apply here as well, 
with the following differences:

     •     �As, by definition, the resistome refers to the genetic deter-
minants (and not directly the associated phenotypes)107,108,  
the endpoint for this benchmark should be genotypic.

     •     �Culture-dependent methods established for clinical  
samples cannot always be readily applied to environmental 
samples109, so establishing “true” values for real samples, 
to compare the output of the evaluated pipelines, will be  
difficult, so the benchmark should be performed, at this  
stage, with simulated reads.

The resistome is usually derived from a sample containing a  
complex microbial community (see 110–112 for recent  
examples). For this reason, the approaches113 and tools114 from 
the ongoing Critical Assessment of Metagenome Interpretation 
(CAMI) could be considered when organising the community  
around this challenge.

In practice, this means an effort to engage and coordinate the  
community of bioinformatics pipelines designed to predict the 
resistome of a sample in order to:

     1.     �Design the scope of the challenge, including the relevant 
metrics for performance evaluation. For this, “accuracy”, 
the main metrics for the previous two benchmarks, may not 
be the most appropriate, and the focus should be placed, 
e.g., on “recall” and “precision”.

     2.     �Describe the microbial communities (i.e. microbial  
abundance profiles and their typical AMR gene profiles) 
most relevant for the determination/monitoring of the  
resistome, in order to generate congruent datasets that  
accurately represent real-life samples. Of particular  
interest, for which validation will eventually be a  
prerequisite, are blood, serum, saliva etc., i.e. the types of 
samples clinical microbiology laboratories and national  
reference centres/laboratories typically process.

     3.     �Identify both the microbial genomes and the resistance  
determinants (as single genetic determinants or plas-
mids) necessary to generate the profiles identified in  
(2). As stated in section 4.1, the genomes should be 
well analysed to ensure no lack of, or an adequate  
characterisation of, AMR determinants. This is crucial 
in order to establish a resistome “ground truth” for the  
generated datasets.

     4.     �Combine these sequences, as appropriate, to generate 
the benchmark datasets, using appropriate tools (such as  
CAMISIM, developed as part of the CAMI challenge114).

The community should decide whether (or at what stage)  
the use of real data can also be considered in the challenge. As 
for purified bacteria (see Table 3), many studies have been pub-
lished as potential sources of raw data. These studies can also 
be used as a source of information to define the relevant profiles  
(point 2 above). Recent studies include resistome determina-
tion in samples from drinking water (115, 116), wastewater  
plants (117, 118), hospital wastewater (119, 120), human gut  
(110, 121), sewage122, to name a few. In the benchmarking plat-
form, the datasets (and the calculated pipeline performances)  
should be separated by the type of source they originate from 
or simulate. Another important point for this scope is the detec-
tion of minority populations and the correct normalisation  
of the samples to be analysed123.

Conclusions
The scientific community quickly adopted the new NGS  
technologies to develop methods that can efficiently detect,  
identify and characterise genetic determinants of AMR. In paral-
lel with these research uses, NGS technologies can have imme-
diate impacts on how AMR is diagnosed, detected and reported  
worldwide, complementing etiologic agent diagnosis, clinical  
decision making, risk assessment and established monitoring 
frameworks3,124–126.

For this application and in general, there are great challenges 
in the implementation of NGS-based methods for public  
decision-making. Capacity building and its cost is of course a 
factor, but recent surveys show that capacity development is  
ongoing in many countries28. A greater concern is the  
interpretation of the produced genomic data into meaningful  
information that can be acted upon or used for regulatory  
monitoring, in great part because of the important bioinformatics 
component of these methods.

The difficulties posed by this reliance on bioinformatics  
processes are many, and include:

     •     �The specific expertise needed for their implementation  
and maintenance, which is still limited compared to the 
needs of routine testing environments.

     •     �The lack of harmonisation in their design, as the same 
sequencer output can be processed to produce the same  
target information by pipelines that either follow the same 
general strategy, with different tools for the individual steps, 
or completely different strategies entirely (see 127).

     •     �The constant, rapid evolution of the fields of informatics 
and bioinformatics, which makes uneasy (or even unwise) 
to “freeze” a harmonised, validated, implemented pipeline 
with the same components in the same environment over 
long periods of time.

     •     �For AMR, as for other fields, the pipelines (and their  
performance metrics) are built based on a priori scientific 
knowledge, in this case the genetics of resistance, which is 
constantly progressing.
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In this document, we propose a way through these difficulties  
with a transparent, performance-based evaluation approach to 
assess and demonstrate that pipelines are fit-for-purpose and to 
ensure quality control. The discussions, initiated in 201716, have 
involved experts in different fields: human health, animal health,  
food and environmental monitoring, and general bioinformatics.

The approach is two-fold: first, an agreed-upon, limited data-
set to contribute to performance-based control of the pipeline  
implementation and their integration in quality systems. We 
propose selection criteria for this common dataset based on  
bacterial species and resistances relevant to current public  
health priorities (see section 4.1).

Second, a community-driven effort to establish a “live”  
benchmarking platform where both the datasets and the  
bioinformatics workflows are available to the community 
according to the FAIR principles. After an initial investment of  
resources to establish the rules and integrate the existing 
resources, a proper engagement of the community will be 
needed to ensure that both the datasets and the workflows will 
constantly be updated, with live monitoring of the resulting  
comparative performance parameters. For this, two main use cases 
were identified, each necessitating its own platform: the analy-
sis of isolates (with a focus on the prediction of resistance, see  
section 4.2), and the analysis of mixed samples (with a focus  
on the interpretation of the resistome, see section 4.3).

To ensure acceptance of this approach by regulators and  
policy-makers, the conclusions and the roadmap proposed in this 
document should be complemented (and, if necessary, revised)  
with the continuous involvement of all relevant actors in the  
field, including (but not limited to) the scientific community, 
the collaborative organisation and platforms active in the field  
(e.g. the European Committee on Antimicrobial Susceptibility  
Testing (EUCAST), the Joint Programming Initiative on  

Antimicrobial Resistance (JPIAMR), the Global Microbial  
Identifier (GMI), the European Society of Clinical Microbiol-
ogy and Infectious Diseases and its Study Groups (ESCMID)), 
regulatory agencies (e.g. the European Food Safety Authority  
(EFSA, RRID:SCR_000963), the European Centre for Disease 
Prevention and Control (ECDC)), European Union reference  
laboratories and their networks (e.g. the EURL AR and the EURLs 
for the different pathogens) and the existing bioinformatics infra-
structures (e.g. the European Bioinformatics Institute (EMBL/EBI), 
ELIXIR).

Such an approach would be a way to facilitate the integration 
of NGS-based methods in the field of AMR, and may be a case  
study on how to approach the overlapping challenges in other 
potential fields of applications, including some at high level  
in policy agendas (food fraud, genetically modified organism  
detection, biothreats monitoring for biodefense purposes, etc.).

Disclaimer
The contents of this article are the views of the authors and  
do not necessarily represent an official position of the European 
Commission or the U.S. Food and Drug Administration.
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Petrillo and colleagues discuss approaches and associated challenges for establishing a 
performance-based benchmarking resource for antimicrobial resistance detection. The authors 
first describe general considerations and then provide scope-specific use cases. The paper 
represents a summary of the discussions held by experts in AMR and NGS-related fields during the 
JRC meeting. It is a relevant and important paper, and the initiative will be widely appreciated by 
the scientific community working with antimicrobial resistance. Overall, the paper is well-
written, however, it would benefit from some additional clarifications and adjustments, which are 
explained in more detail in the comments below. 
 
Introduction

Since the main focus of the paper is benchmarking, it would be beneficial to provide a short 
background on the previous benchmarking resources/initiatives in the introduction (e.g. 
Mangul et al., 20191, Sczyrba et al., 20172, etc).

○

Section 2 
Paragraph 2: “In the conclusions of the previous article...”, it is confusing which article the 
authors refer to since reference 19 (Bellman et al., 2015) provided at the end of the sentence 
does not contain the cited text.

○

General considerations
Several important questions such as which tools to include in the benchmarking, should 
they be run with optimised or default parameters (e.g. default or customised database), and 
what performance metrics are to be used for evaluation - could be added to the "General 
discussion" to clarify and benefit in the understanding of the subsequent sections.

○

Section 2.1 
This section discusses very important considerations when it comes to different sequencing 
technologies. Since sequencing technologies are constantly evolving perhaps it would be 
relevant to add some future perspectives, e.g. how to deal with emerging outperforming 

○
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technologies. 
Paragraph 2: From the sentence starting with “It is important, in this case...”, it is not clear 
whether the authors mean the bias among different platforms’ outputs or outputs from the 
same platform.

○

Section 2.2 
Apart from being in silico generated or obtained from a real-life sample, the data can come 
from different types of samples. In the case of metagenomics, it would be an important 
consideration for the evaluation of bioinformatics tools (i.e. a human gut sample or a soil 
sample would be characterised by a very different complexity). 
 

○

Paragraph 7: “The main issues then are: a) there is a need to demonstrate that the 
experiment met the necessary quality criteria (see section 3.3)” - section 3.3 does not 
contain any information on the quality criteria. 
 

○

Paragraph 11: “Because each approach has advantages and disadvantages, the choice must 
be carefully considered, according to the purpose of the dataset, which will be discussed in 
section 4.” - section 4 is missing.

○

Section 2.4 
This is perhaps the most important section considering the focus of the paper on AMR 
detection, however, it is very concise and does not provide a good overview of the 
challenges (e.g. what type of AMR mechanisms to include, which pathogens to consider). 
These topics are described later in section 3.1 in the example of a particular use case. 
However, it would be beneficial to outline them in the General considerations section. 
 

○

Paragraph 2: “These are specific to the purpose of the dataset (Figure 1) and will be 
discussed in section 4.1–section 4.3 below” - sections 4.1-4.3 are missing.

○

Section 2.5
To aid understanding it would be helpful to clarify genomic and phenotypic endpoint, 
perhaps by adding to the first sentence, e,g, “..a) they can detect the genetic determinants 
of AMR (genomic endpoint), and in addition b) some can predict the AMR/susceptibility of 
the bacteria in the original sample (phenotypic endpoint).”

○

Section 3.1
Paragraph 4: “3. Combinations of (1) and (2) present in at least one of the chosen lists (see 
cells in Table 2), the sequences are combined and used as the input to simulate the reads 
using the appropriate tools (see section 3.2).” - maybe the authors meant section 2.3 instead 
of 3.2. 
 

○

Paragraph 6: “The endpoint considered for this benchmark is thus genotypic (see section 
3.5),” - section 3.5 is missing. 
 

○

Paragraph 10: “When generated, the benchmark should be deployed on a dedicated (and 
sustainably maintained) platform that includes all the links to the data (see section 3.6) ” - 
section 3.6 is missing.

○

Conclusions
The authors mention in the conclusion that they identified two main use cases for this 
benchmarking resource, each necessitating its own platform: single isolates and mixed 
samples. This could be expanded upon in the General considerations section to give the 
reader an understanding of the different challenges and approaches for the two use cases. 

○
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It is also implied, but not specifically stated, in sections 3.1 and 3.2 that they focus on single 
isolates. This only becomes clear when reading section 3.3. 
 
Sections 4.1-4.3 are missing.○
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Is the topic of the opinion article discussed accurately in the context of the current 
literature?
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Are all factual statements correct and adequately supported by citations?
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Are arguments sufficiently supported by evidence from the published literature?
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Are the conclusions drawn balanced and justified on the basis of the presented arguments?
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report. 
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Rene Hendriksen  
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This manuscript describes a road map how to set up and conduct benchmarking to assess 
bioinformatics pipelines to detect AMR genes in three levels. 
 
Overall, comments: 
The manuscript is well-written but I find it in several paragraphs hard to comprehend the 
sentences as the authors contradict themselves. This needs to be address as the topic is important 
but it needs to be all clear. 
I suggest to focus the paper on single isolate genomes rather than but this and metagenomics. It 
is really two separate technologies and will need different approaches. It is trying to explain all but 
fails really to in depth address metagenomics. 
 
Specific comments:

Page 4 1st  paragraph: Describe other epidemiological traits alongside with the timeline and 
relatedness by merging the paragraphs “….such as virulence, resistance to antibiotics, 
typing and other adaptive traits… to the same paragraph. I was missing the characterization 
of AMR genes in the initial lines as this is the focus and title of the paper. 
 

○

Page 4 introduction: I miss an explanation about “complex microbial communities”. I know 
this is metagenomics but the term needs to be introduced. 
 

○

Page 4 introduction: “…. antimicrobial resistance (AMR) genetic determinants from NGS 
data…. This needs to be clarified if this include acquired antimicrobial resistance genes 
AND/ OR chromosomal point mutations. This is not clear what the approach includes. 
 

○

 Page 5 2nd bullet: Clarify what is mean by resistome. I suggest to make it clear that this 
bullet deals with metagenomics. 
 

○

Page 5 last paragraph: “Bioinformatics pipelines are thus usually designed to handle the 
output of a specific platform, often in a certain configuration”. This is true but also the 

○
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achilles heel of the further description where this is being contradicted. 
 
Fig 1: I miss the word “concordance to phenotype” as well as curation for scope 1. 
 

○

Page 6 2nd paragraph: “in practice, a prioritisation exercise should be made based on the 
capacity building efforts in testing laboratories”. Clarify why this is needed! 
 

○

Fig 2: The data could easily be explained in text – omit fig 2 or reference already published 
similar figures. 
 

○

Page 6 4th paragraph: I don’t understand the concept. It was earlier explained that 
“Bioinformatics pipelines are thus usually designed to handle the output of a specific 
platform, often in a certain configuration” so, why compare the output of a certain pipeline 
from data generated from different platforms knowing that the result for certain platforms 
will be biased due to the low comparability of a certain pipeline. 
 

○

Page 6 5th paragraph: “The FASTQ format is a standard format in this context, which should 
be used in the benchmark resources; many tools exist to convert the raw data output files 
into this format in case of different platform outputs (see, for example,39,40) although, it 
should be noted, different tools may produce different results and this step should be 
carefully planned.” I find this a source for bring in bias to the benchmarking. I find it hard to 
see how one can trust the analysis when bringing in variation which might not even be 
controlled. 
 

○

Page 7 1st, 2nd, 7th paragraph: I did it contradicting that its phrased that “ Although the 
disadvantage of simulating in silico data is obvious (it is not ‘real’), there are some 
substantial advantages: it is a lot cheaper than performing sequencing runs, a lot faster, 
and can be applied to any genome previously sequenced.” and “However, a major drawback 
is that simulating variation the way nature evolves is very challenging – genetic variation 
happens in places in the genome where it is hardest to find.” And “although this requires 
strict annotation of the experiment; c) it will not be possible (besides rare exceptions) to 
build datasets for the different platforms using the same initial samples.” First of all, its not 
all that can prepare simulated datasets and secondly, its correct that it will never mimic 
nature, Thus, I don’t see why this is so heavily recommended. 
 

○

Page 9 1st paragraph: I miss N50, no of contigs etc.. to be mentioned as QC metrics. 
 

○

Page 9 2nd paragraph: Not easy to understand. 
 

○

Page 9 2.4 1st paragraph: “a very pragmatic approach could be the generation of random 
DNA sequences, to which particular sequences of interest are added (i.e. fragments of AMR 
genes). However, there is sufficient evidence that the genomic background of the bacteria 
(i.e. the “non-AMR related” sequences) can have a profound influence on the performance of 
the pipelines”. Contradiction – see Page 7 1st, 2nd , 7th paragraph. 
 

○

Page 9 6th paragraph: define “phenotypic endpoint”. 
 

○

Page 9 6th paragraph: “Studies that evaluated AMR genotype to phenotype relationships ○
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have indicated that despite generally high correspondence, this can vary greatly between 
pathogens / case studies, and even for different antimicrobial agents within the same 
species 57,58.” I need to be further elaborated – what do one trust the phenotypic data or 
detected genes. 
 
Page 9 intro to bullets: define “genomic endpoint”. 
 

○

Page 9 section 2.6: Agree that metadata is needed but it needs to be explained that its not 
needed for the benchmarking itself but for others to use the dataset for future exercises. 
 

○

Page 10 1st paragraph of section 3.1: explain what is meant by “agreed minimum 
standards”- what performance metrics. 
 

○

Page 10 3rd paragraph of section 3.1: I find it contradicting to Page 7 1st, 2nd, 7th paragraph. 
 

○

Page 10: WHO CIA has been updated – provide ref. 
 

○

Page 10: The decision has been updated in 2021 – provide ref. 
 

○

Page 13: Tabel 3 greatly lack a million PT/ EQA reports from EURLs e.g. https://www.eurl-
ar.eu/reports.aspx https://antimicrobialresistance.dk/eqas.aspx 
 

○

Page 14 section 3.3: I would omit this part as it add more confusion to bring in also 
metagenomics to the concept – a completely different approach with complex samples. Past 
studies has also show that benchmarking metagenomics is not a trivial discipline.

○

 
Is the topic of the opinion article discussed accurately in the context of the current 
literature?
Partly

Are all factual statements correct and adequately supported by citations?
Partly

Are arguments sufficiently supported by evidence from the published literature?
No

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Partly

Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Mauro Petrillo, European Commission Joint Research Centre, Ispra, Italy 

Dear Dr Hendriksen, 
 
Thanks a lot for your valuable comments and suggestions that you have provided in the 
report. 
 
We will address all of them, together with those of other reviewers, in order to provide a 
fully revised version of the manuscript. 
 
Best regards, 
 
Mauro Petrillo, on behalf of the authors.  
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