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ABSTRACT

Besides invasive mosquito species also several native species are proven or suspected vectors of arboviruses as
West Nile or Usutu virus in Western Europe. Habitat models of these native vectors can be a helpful tool for
assessing the risk of autochthonous occurrence, outbreaks and spread of diseases caused by such arboviruses.
Modelling native mosquitoes is complicated because of the perfect adaptation to the climatic and landscape
conditions and their high abundance in contrast to invasive species. Here we present a new approach for
such a habitat model for native mosquito species in Germany, which are considered as vectors of West Nile
virus (WNV). Epizootic emergence of WNV was registered in Germany since 2018. The models are based on
surveillance data of mosquitoes from the German citizen science project “Miickenatlas” complemented by data
from systematic trap monitoring in Germany, and on data freely available from the Deutscher Wetterdienst
(DWD) and OpenStreetMap (OSM). While climatic factors still play an important role, we could show that
habitat suitability is predictable only by the combination of the climate model with a regional model. Both
models were based on a machine-learning approach using XGBoost. Evaluation of the accuracy of the models
was done by statistical analysis, determining among others feature importances using the SHAP-Library. Final
output of the combined climatic and regional models are maps showing the superposed habitat suitability
which are generated through a number of steps described in detail. These maps also include the registered
cases of WNV infections in the selected region of Germany.

1. Introduction

Mosquitoes are vectors of a wide range of arboviruses (arthropod-
borne viruses). Diseases caused by such viruses usually occur in tropical
and subtropical regions. However, a considerable increase of disease
cases caused by West Nile, Usutu, Dengue and Chikungunya viruses
was registered recently, with an accumulation of outbreaks in Western
and Southern Europe (Martinet et al., 2019; Vilibic-Cavlek et al., 2019).
Reasons of this trend are the growing number of imported cases of
such infections and the expansion of invasive mosquito vectors as Ae.
albopictus due to globalisation. Climate change is another important
cause since the expansion of invasive mosquito species as well as the
transmission dynamics of the viruses can be further enhanced by global
warming (Reuss et al., 2018; Ciota and Keyel, 2019; Metelmann et al.,
2019). As several arboviral diseases arrived meanwhile in Western
Europe an important question is whether local mosquito species, which
are well adapted and occur at high abundances and densities, can drive
the transmission of the respective viruses. Information about vector
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competence of local mosquito species for the specific arboviruses is,
however, still limited (Brugman et al., 2018; Martinet et al., 2019).
West Nile virus (WNV) is a widespread zoonotic arbovirus involving
several bird species as natural reservoirs. An increasing number of
outbreaks of WNV infection is reported from Southeastern and West-
ern Europe in birds, horses and humans. Also in Germany WNV has
been recognised as a threat to animal and public health since its first
autochthonous epizootic emergence in 2018 (12 birds, two horses) and
2019 (76 birds, 36 horses) (Ziegler et al., 2019, 2020). In 2019 the
first five autochthonous human cases were recorded. These outbreaks
correlated with two of the warmest summers and early autumns in
Germany of the last decades. WNV has been isolated from several native
as well as invasive mosquito species in Western Europe (Engler et al.,
2013; Martinet et al., 2019). Especially the invasive Ae. japonicus is
considered as a potential key bridge vector for WNV in this region
due to its high vector competence (Wagner et al.,, 2018). The first
demonstration of WNV in mosquitoes in Germany has recently been
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reported from Cx. pipiens (Kampen et al., 2020). Of the mosquitoes
indigenous to Germany, Cx. pipiens (biotypes pipiens and molestus), Cx.
torrentium and Ae. vexans are considered as the most important vectors,
with Cx. pipiens (biotype pipiens) and Cx. torrentium showing the highest
transmission efficiencies in experimental transmission studies (Jansen
et al., 2019; Holicki et al., 2020; Wohnke et al., 2020).

Mosquitoes require a number of climatic and structural features
of a landscape for the different stages of their development. Habitat
models can help in understanding the geographic distribution range
of the vectors in unsampled areas in order to assess the risk of occur-
rence of specific arboviruses and to apply targeted surveillance. In the
simplest case, models are developed only on the basis of bio-climatic
data (mainly temperature and precipitation) (Lee et al., 2016; Valdez
et al.,, 2018; Jacome et al., 2019). Prerequisite for the use of such
models is a high variance of the climate in the landscape of the study
area (e.g. transitions from high mountains to lowlands, often covering
several climate zones) (Roiz et al., 2014; Paz, 2015; Hahn et al.,
2015; Jacome et al., 2019; Cunze et al., 2020). This climatic variance
does not exist in the northeastern German lowlands. In the case of
invasive species, modelling is often still possible, as these species are
not yet fully adapted to the regional climate. Invasive mosquitoes prefer
regions with a climate comparable to their regions of origin (Friih et al.,
2018; Kerkow et al., 2019).

The present paper focuses on modelling the habitat requirements
of native mosquito species. The specificity of native mosquitoes is
their perfect adaptation to the climatic and landscape conditions as
well as their wide distribution and high abundance. The development
of habitat models is therefore challenging in comparison to invasive
vector species. The perfect adaptation of native mosquitoes leads to
considerable lower accuracies of the models exclusively based on cli-
matic variables in comparison to invasive species. This is why other
additional variables are required which are reflecting the specificity of
the respective regions as for example topography, vegetation or land
use. Such structural features of the landscape can either be combined
with the bio-climatic data to a model (Myer and Johnston, 2019), or
they can be developed separately and then combined. In Kerkow et al.
(2020) landscape structures were linked to the climate model via a
fuzzy model. This powerful and very flexible approach requires expert
knowledge e.g. of entomologists, for modelling. On the other hand, the
dependence on experts who are willing and able to contribute to mod-
elling is disadvantageous. Even if an expert were available, we would
like to show a way to develop a model that is generated only from the
data. The prerequisite is that sufficient data are available for machine
learning. In the present work we tested whether a clever combination
of climate-based models and models that take regional characteristics
into account can be used to create reliable habitat models of indigenous
mosquitoes.

Traditional monitoring and surveillance of disease-carrying
mosquitoes covering the whole country (e.g. by using specific traps)
is limited by the available financial and labour resources. To overcome
these problems, passive surveillance activities have been launched in
several European countries (Bartumeus et al., 2018; Kampen et al.,
2015). Such citizen science programmes already made a large contri-
bution in cataloguing the biodiversity of native and invasive mosquito
species, in monitoring their distribution, and even in understanding
the mode of spread of invasive species (Walther and Kampen, 2017).
Although the number of collected specimens per site is low in compar-
ison to the number obtained by traps, the large geographical coverage
gives a roughly realistic picture of the distribution of the respective
species. The disadvantage of such citizen science data (CSD) is that
the locations where the submitted mosquitoes were collected most
probably are related to the place of residence of the collectors rather
than to the specific breeding sites of the respective mosquitoes. Typical
mosquito areas may remain unsampled because only few people are
living there. On the other hand, some of the most abundant species
have an anthropophilic feeding behaviour and are found predominantly
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in human environments as e.g. Cx. pipiens biotype molestus, while other
anthropophilic species frequently migrate over long distances from the
breeding site to the preferred host, as e.g. Ae. vexans (Gutsevich et al.,
1970; Vinogradova, 2000; Becker et al., 2010; Hamer et al., 2014;
Verdonschot and Besse-Lototskaya, 2014).

In 2012, such a citizen science project called ‘“Miickenatlas” has
been launched in Germany as part of a nation-wide mosquito mon-
itoring programme supervised by the Leibniz Centre for Agricultural
Landscape Research (ZALF) and the German Federal Research Institute
for Animal Health - Friedrich-Loeffler-Institut (FLI) (Kampen et al.,
2015). Data from both, the citizen science project and routine field col-
lections are continuously submitted to the German mosquito database
CULBASE. Although collection sites of “Miickenatlas” submissions often
concentrate in densely colonised areas in and around larger cities, there
is a good matching of passive and active monitoring so far, e.g. for
invasive species, showing the potential of CSD to complement data from
traditional monitoring (Walther and Kampen, 2017).

In the present study we used “Miickenatlas” data as well as data
from field studies extracted from CULBASE to address the following
questions:

Is it possible to combine climatic and regional factors to achieve
models with high accuracies specifically for native mosquitoes?
Is it possible to implement the habitat model on the base of
machine learning without using expert knowledge?

Is it sufficient to use CSD for such models or is there a need to
supplement these data by traditional targeted monitoring data?

In this work, we present a new approach for modelling highly
adapted native mosquito species using data from a citizen science pro-
gramme, at the same time showing the high potential of such data for
the development of surveillance and control measures of vector-borne
diseases.

2. Methods

A habitat model for native mosquitoes must take into account both,
climatic conditions and regional specifics. Therefore, the final model
consists of two parts, the weather model (DWD model) and the regional
model. The DWD model models the dependence of the mosquitoes on
the climate, and the regional model their habitat requirements. The
workflow of this modelling approach is shown in Fig. 1

2.1. Data

For the development of the combined modelling approach we used
data from the citizen science project ‘“Miickenatlas” (‘sent’) and in
addition data originating from systematic active monitoring (‘sample’)
in Germany, or the combination of both (‘all’).

After determination of the mosquito species, all data linked to a
mosquito collection, including date of capture and geographic coordi-
nates of the collection site, are entered into the CULBASE. Information
on confirmed infections with WNV in 2019 was provided by the FLI,
where the national data are stored by the Animal Diseases Reporting
System (“Tierseuchennachrichtensystem”).

Out of the potential native vector species of WNV we selected
two, each representing a specific type of mosquito with respect to
their habitat and/or behaviour (Gutsevich et al., 1970; Vinogradova,
2000; Becker et al., 2010; Hamer et al., 2014; Verdonschot and Besse-
Lototskaya, 2014): Cx. pipiens (house mosquito) and Ae. vexans (flood-
water mosquito) to verify the modelling methodology (Table 1).
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Fig. 1. Overview of the used modelling approach. The equation in the middle shows the calculation of a combination of the DWD model and the regional model.

Table 1
Mosquito species selected for modelling and number of occurrence data for the time
period 2012-2019.

Type Species Sent Sample All
Floodwater mosquito Ae. vexans 2210 1159 3369
House mosquito Cx. pipiens 4084 1478 5562

2.2. Weather model

The DWD model is based on data freely available from the
“Deutscher Wetterdienst” (German Weather Service: DWD). The DWD
offers a variety of weather data consisting of temperature, precipitation,
radiation data, etc. (e.g. Tmin, Tmax, Tmean) for the period from 1881
until today. These data are available as raster data with a resolution of
1 km x 1 km for Germany. The available temporal resolution is daily,
monthly, seasonal and yearly. For modelling the mosquito habitat,
monthly, seasonal and yearly data are especially interesting (Kerkow
et al., 2020).

For the development of the DWD model, we used the mosquito trap-
ping data (occurrence data ‘sent’ and ‘all’) of the respective mosquito
species from CULBASE. The absence points (NP) were added by random
sampling (Thuiller et al., 2020). According to the sampling strategy, the
occurrence data (positive sites — PP) and the absence points (negative
sites — NP) were assigned to the grids of the DWD. The grids were
loaded and reprocessed using the open source software SAMT2 (see
Section 2.5) (Wieland et al., 2015).

From the large amount of DWD data, specific climatic variables
were selected according to the recommendations of BIOCLIM' based
on ecological and environmental factors affecting the development,
behaviour and activity of mosquitoes.

L http://www.worldclim.org/bioclim.

Table 2

Climatic variables selected for the DWD model.
Feature name Short name Description
Precq(3) Pq3 Average precipitation March-May
TDiff(7) TD7 Tmax-Tmin of July
annual_tmin TMinA Minimum annual temperature
Tempq(6) Tq6 Average temperature June-August
Precq(6) Pq6 Average precipitation June-August
TDiff(4) TD4 Tmax-Tmin of April
GRq(4) GQ4 Global radiation April-June
GRq(7) GQ7 Global radiation July-September
annual_prec() PA Annual precipitation
annual_tmax() TmaxA Maximum annual temperature

For the transformation of the DWD data into bio-climatic data a
Python module (bioclim.py) was developed, which is available as open
source software. It can be extended and customised by the users. Eq. (1)
is intended to illustrate the implementation of the transformations from
DWD to bio-climatic variables:

V(1] = bio.Tempq(3) (@]

The variable V[1] is assigned the average temperature of the months
March to May. The function Tempq(t) combines three months, begin-
ning with month 3 (March). Table (1) shows the climatic variables
selected for the DWD model (see Table 2).

Despite the use of the bio-climate transformation, it is not certain
that the most important features were chosen for the model. For the
classification task, the modern algorithm XGBoost (Ma et al., 2020) was
chosen as the modelling tool. XGBoost together with the statistically
based analysis software SHAP (see Section 2.5) (Lundberg et al., 2017)
allows the determination of the feature importance. An alternative
method for determining feature importance based on a support vector
machine was presented in Wieland et al. (2017).
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The derived weather models always refer to a specific year. To
balance the influence of the chosen year, an ensemble of three years
(Yarys Yuers Yuorma) Was used. This ensemble (Y1) Was calculated
according to Eq. (2)):

Yiry + Yier + Y,

wet ormal

Yensemble = f (2)

The DWD model consists of the following steps:

modelling step: Training a classifier (XGBoost) using the occur-
rence data (positive sites — PP) and the absence data (negative
sites — NP).

analysis step: Assessment of the classifier accuracy, recall and
precision of validation data; determination of feature importance

(SHAP).

+ application step: Generation of a map from the Y,z Of the
‘climatic habitat’ of the selected mosquito species for a target
year.

2.3. Regional model

For the regional model, maps are needed as a basis. The freely
available OpenStreetMap (OSM) maps (OpenStreetMap contributors,
2017) were chosen. These maps are characterised by a high level
of detailing and actuality. Compared to the often used Corine Land
Cover (Bielecka and Jenerowicz, 2019) the OSM maps have a higher
resolution (10 m * 10 m). For mosquito species, which usually do not
fly very far, the high resolution is essential. An OSM map of 4 km X 4 km
was loaded for each positive (PP) and negative (NP) mosquito site in
the centre.

In a next step, the OSM maps are analysed by means of a histogram
with regard to land use (urban, forest, grassland, lakes, rivers, etc.).
The distribution of land use data are the features used for training
the XGBoost. This quite simple procedure does not consider neighbour-
hood relationships between land use types. For example, it would be
important to know if a lake is surrounded by forest or not. But as
shown below, this simplification is not problematic. The regional model
consists of the following steps:

+ data provision: Downloading maps from the OSM server.

» modelling step: Training a classifier (XGBoost) using the occur-
rence data (positive sites — PP) and the absence data (negative
sites — NP).

- analysis step: Assessment of classifier accuracy, recall and pre-
cision of validation data; determination of feature importance
(SHAP).

2.4. Combination DWD model and regional model

Both models are combined to a final outcome (y,,,,;,) according to
Eq. (3):

Yeomp = W1 X max{DW D, REG} + w, X min{ DW D, REG} 3)

with DW D = p(mosquito|weather) and REG = p(mosquito|region) (p
= probability); the weighting factors w; + w, = 1 score the model
outputs. If w; > w,, then the dominant model is ranked higher than the
subdominate model and vice versa. The idea to use this formula comes
from fuzzy theory (Zadeh, 1965; Lin and Yang, 2020). The minimum
corresponds to the rather pessimistic view that a model can only be
as good as the worst part. The maximum implements the optimistic
view that if at least one model is good, the mosquito is established.
The mixture of both models according to Eq. (3) should come close to
the truth.

In order to present the generated models in a more analysable and
comprehensive form to the user, the combined model was subjected
to a cubic spline interpolation and transferred to a map with a size of
25 kmx25 km. The size of the map is configurable, but 25 kmx25 km has
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proven to be useful, also with respect to the average flight distances of
local mosquitoes (Gutsevich et al., 1970; Vinogradova, 2000; Becker
et al., 2010; Hamer et al., 2014; Verdonschot and Besse-Lototskaya,
2014).

Thus, the final merging (‘Merge’) of the two models (‘DWD’ and
‘Regional’) consists of the following steps:

» model combination: According to Eq. (3) and optimisation of
the parameters w;, and w,,

- visualisation: Projection of the model result into a high resolu-
tion map of 25 km X 25 km; adding the case of WNV infection.

2.5. Machine learning with XGBoost

XGBoost is one of the latest developments of boost algorithms.
The idea behind “boost” is the combination of weak models into a
powerful model (Schapire, 1990). Through a rich set of parameters,
XGBoost allows to optimise the machine learning. However, the default
values are often already sufficiently good, so that the time-consuming
optimisation of the parameters can be limited to a few important ones.
Especially important in our experience are the learning rate (eta), the
maximum depth of weak learners (max_depth) and the regularisation
parameters (lambda and alpha). XGBoost reads tables with X-values
and a vector with y-values. These have to be prepared before training,
which is often a major part of the work to be done. In the present
case, the preparation of the histograms from the maps was the most
time-consuming step. XGBoost itself can be used for classification and
regression. The algorithm is extremely fast, so that the training of the
image data was done in a few seconds on the PC. If this is not enough,
XGBoost can also be accelerated with the help of a GPU. The use of
XGBoost is described in detail in Brownlee (2015).

SHAP opens up a method to analyse and understand the training
of XGBoost. SHAP is based on the cooperative game theory (Lund-
berg Sc and Lee, 2017). It uses the trained XGBoost model (explainer
= shap.TreeExplainer(model)) and the training data (shap_values = ex-
plainer.shap_values(X)). SHAP’s statistical approach also allows it to be
applied to deep neural networks, which opens up the possibility of ex-
amining alternative model structures for the same problem. SHAP offers
a variety of visualisations, of which only the shap.summary_plot(shap_
values, X) was used here. SHAP has proven to be extremely important in
the evaluation of (blackbox) models. For more information, Lundberg
et al. (2017) is recommended.

The Spatial Analysis and Modelling Tool (SAMT) (Wieland et al.,
2015) developed at ZALF is used here to read and write rasterised
geographic DWD data. Since it is available as compiled Python code, it
can also read and write large data sets in a few seconds. The possibility
of binary storage of raster data increases the speed tenfold again.

Opencv2 (Villian, 2019) is a sophisticated image processing soft-
ware originally developed by Intel. Today it is open source and avail-
able for C, C++, Python and Java. In addition to the image processing
used here, machine learning algorithms are also implemented. Since its
basis is an implementation in C, the modules for Python are very fast,
which is also necessary for processing the many images.

The software applied (Python with the modules: numpy, pandas
etc.) is open source and can be used freely.

3. Results
3.1. DWD model

The ensemble was formed from the models of the years 2016, 2017,
and 2018. The results of the validation run for the mosquito species
Ae. vexans and Cx. pipiens are shown in Tables 3 and 4. The data was
divided into 70% for training and 30% for validation. This was done
for both the DWD model and the OSM model.
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Fig. 2. Feature importance of Ae. vexans with: settle. = settlement, forestl = mixed forest, forest2 = coniferous forest.
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Fig. 3. Feature importance of Cx. pipiens with: settle. = settlement, forestl = mixed forest, forest2 = coniferous forest.

Table 3

DWD model for Ae. vexans, N: size of data (number of occurrence points).
Data Year Accuracy Recall Precision N
all 2016 0.831 0.832 0.832 613
all 2017 0.783 0.811 0.773 538
all 2018 0.74 0.692 0.782 82
sent 2016 0.750 0.728 0.773 547
sent 2017 0.805 0.864 0.777 410
sent 2018 0.704 0.700 0.667 72

Table 4

DWD model for Cx. pipiens, N: size of data (number of occurrence points).
Data Year Accuracy Recall Precision N
all 2016 0.743 0.750 0.731 1688
all 2017 0.737 0.696 0.783 1440
all 2018 0.683 0.636 0.685 485
sent 2016 0.716 0.719 0.703 1332
sent 2017 0.705 0.705 0.702 987
sent 2018 0.697 0.714 0.685 472

It should be noted that in 2018 the models of Cx. pipiens (Table 4)
but especially of Ae. vexans (Table 3) have only few data for the
training. Therefore such a model should not be used independently.
Nevertheless, this model was included in the ensemble because the
year 2018 was extremely hot and dry. The 2018 mean annual tem-
perature was the highest with 10.45 °C, and the annual precipitation

Table 5
OSM model for Cx. pipiens (pip) and Ae. vexans (vex), N: size of data (number of
occurrence points).

Species Data Accuracy Recall Precision N

pip all 0.884 0.888 0.882 5562
pip sent 0.884 0.886 0.878 4084
vex all 0.878 0.902 0.860 3369
vex sent 0.848 0.847 0.847 2210

of 586.3 mm was the lowest from 2011 to 2020 in Germany (DWD).
The feature importance graphs for the DWD models are provided in the
supplementary material.

The two DWD models generated with the ‘all’ and the ‘sent’ data
sets showed for both tested species no significant differences in their
validation results.

3.2. OSM model

Table 5 summarises the validation data of the training of the re-
gional models for the selected two species. In contrast to the annual
data of the DWD model, the regional data are obtained from all years
(2012-2019), which explains the higher number of training data.

The two regional models also show no significant differences be-
tween the results generated with the ‘all’ and ‘sent’ data. Consequently,
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Fig. 4. Combination (‘Merge’) of the DWD model (target year 2019) with the regional model for Ae. vexans in the area of the city Bitterfeld-Wolfen in Saxony-Anhalt (25 kmx25 km),

where WNV infections occurred in 2019.

10

00

Regional

Merge

10 10

0.0 00

Fig. 5. Combination (‘Merge’) of the DWD model (target year 2019) with the regional model for Cx. pipiens in the area of the city Bitterfeld-Wolfen in Saxony-Anhalt (25 kmx25 km),

where WNV infections occurred in 2019.

the data from the “Miickenatlas” (‘sent’) alone would be sufficient for
modelling. This conclusion is also valid for the DWD models.

In the following step, the SHAP library is used to calculate the
feature importance for the two mosquito species. The data ‘all’ which
combine ‘sample’ and ‘sent’ are used as a basis. Fig. 2 shows the feature
importance of the floodwater mosquito Ae. vexans and Fig. 3 of the
house mosquito Cx. pipiens.

Fig. 2 shows that, beside settlements, also lakes and rivers are
most important for Ae. vexans, while agricultural structures are rather
avoided. The Ae. vexans is a floodwater mosquito therefore lakes and
rivers are important. In Fig. 2 they are at position two and three. Low
availability of lakes and rivers (blue) leads to negative SHAP values and
thus speaks against a suitable habitat. A high availability of lakes and
rivers (red), on the other hand, leads to positive SHAP values and thus
to a suitability as a habitat.

Fig. 3 shows also the preference of Cx. pipiens for settlements.
Structures connected with mining and avoiding mixed forest are more
important parameters than the presence of water, whereas lakes seem
to be preferred over rivers.

3.3. Simulation results

To verify the combination of the DWD model and the regional
model, both were first tested separately and then together according
to Eq. (3). Figs. 4 and 5 show that both models contribute to habitat
modelling. w, * max{DW D,REG} + w, * min{DW D, REG} means
that w; supports the dominant part (here mostly REG) and w, supports
the subdominant part (here mostly DWD). We tried a range of w, €
[0.2,0.8] with w, = 1 — w; and visually evaluated the combination
(w,w,). It turned out that (w; = 0.7,w, = 0.3) was reasonable. It
was also reasonable for alternative locations (nearby Berlin and nearby
Dresden). However, the number of occurrence points of mosquitoes
in the regions (infected or not) was too low (<15) for numerical
optimisation.

After completion of the development of the two models (DWD
ensemble models of specific years and regional model) for the mosquito

species Ae. vexans and Cx. pipiens they were applied to specific real
regions in a simulation. In order to demonstrate the combination of
the two models we have chosen a 25 km x 25 km area around the city
Bitterfeld-Wolfen in Saxony-Anhalt, where in 2019 a number of cases
of WNV infections were registered in birds and horses. In the centre of
the chosen region there is a confirmed case of WNV infection (Figs. 4,
5).

Fig. 6 shows the simulation results for Ae. vexans for the selected
Bitterfeld-Wolfen region displayed on a map and a heat map. On the
left, the OSM map is shown. The heat map shows overlay of the OSM
map and the habitat quality (DWD,0SM) which was interpolated using
a bicubic interpolation from 1 km * 1 km to 30 m * 30 m. Dark areas
mark high habitat suitability. Fig. 7 shows the simulation results for Cx.
pipiens. All cases of WNV infection from the selected region are shown
as red dots. We selected the area in such a way, that one of the cases
is in the centre of the map.

Both results are similar at first sight. However, it is notable that the
occurrence of Ae. vexans is more strongly associated with water bodies
in comparison to Cx. pipiens. Cx. pipiens is more oriented towards urban
regions. The models of both species agree with the occurrence of cases
of WNV infections. An assignment of the cases of WNV infections to
a specific mosquito species was not possible at this stage, since the
number of cases is not sufficient for such conclusions and also other
species considered as potential vectors of WNV should be tested.

4. Discussion

The central question of the present work was to find an approach
for habitat modelling of native mosquito species, which are ubiquitous
and perfectly adapted to their habitats. Some of them are considered
as potential or even proven vectors for arboviruses. While models of
invasive species, which are mostly based on climatic factors, revealed
high accuracies, the case of native species is more complicated and
needs a more complex modelling strategy. Prerequisite of a good model
is a solid data base of surveyed mosquitoes. As active monitoring is
often limited by the availability of human and financial resources, a
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Merge Ae. vexans
T =3

i

Fig. 6. Simulation result and heat map for Ae. vexans in the area of the city Bitterfeld-Wolfen (25 km x 25 km, resolution = 30 m). Dark areas mark high habitat suitability. Cases

of WNV infections (2019) are marked by red dots.

Merge Cx. pipiens

Fig. 7. Simulation (target year 2019) result and heat map for Cx. pipiens in the area of the city Bitterfeld-Wolfen (25 km x 25 km, resolution = 30 m). Dark areas mark high

habitat suitability. Cases of WNV infections (2019) are marked by red dots.

countrywide sampling is not possible. Passive monitoring could be a
solution for this problem since submissions are covering the whole
country, however, also this kind of data collection is prone to certain
biases (e.g. submissions mostly from densely inhabited regions). There-
fore, we tested the applicability of citizen science data (CSD), in our
case of the “Miickenatlas”, and compared the quality of the models with
a combined data set of the CSD and of data from active monitoring.
We could show that in case of our modelling approach the CSD of the
“Miickenatlas” are sufficient to develop models with high accuracies,
which are comparable to those of the combined data set. In contrast,
the application of data from active sampling alone was not sufficient
because of the limited number of occurrence points (data not shown).

From the small number (10-12) of potential WNV vectors we se-
lected two species, which (i) were represented by a sufficient number
of collections (occurrence points) in the data base and (ii) which
differ in their biological traits (e.g. habitat preferences of the distinct
developmental stages, temperature optimum, diapause, breeding sites,
flight distances, host feeding preferences etc.). In a first step the power

and accuracy of the models based on either climatic or regional factors
were tested separately.

The accuracy of the DWD model was partly poor (~0.7). This
was expected for native mosquitoes, because they are well adapted
to the climate. The combination of three DWD models corresponding
to different weather conditions (e.g. hot and dry summer in 2018)
proved to be useful. Furthermore, it was tried to train the models with
simple features like [T3...T10] or [P3...P10]. The resulting accuracy
was only slightly worse than the accuracy based on the bio-climatic
data. Nevertheless, such simple data have the advantage of being easy
to interpret. This means that the biologist can interpret the models
based on the temperature or precipitation series. This interpretability
is a great advantage when using simple data series. Together with
modern analytical methods such as SHAP, even blackbox models can
be analysed. In the presented example we used selected bio-climatic
variables, chosen according to the biology of mosquitoes. The climate
models possibly could be further improved by adapting the variables
to the biological and behavioural specificities of the selected mosquito
species.



R. Wieland et al.

In contrast to the DWD models, the regional models have a rather
high accuracy. This shows that at least for native mosquitoes regional
characteristics play a greater role in the habitat than climatic condi-
tions. However, the regional characteristics alone are not sufficient to
calculate the habitat quality, as shown in Figs. 4 and 5. The climatic
conditions lead to a large-scale habitat quality, while the regional
conditions rather add the small-scale characteristics to the calculation.
The weights (w,) and (w,) from Eq. (3) were estimated and then used
in all simulations: (w; = 0.7) and (w, = 0.3). They can be adjusted if
necessary.

The visualisation part of the simulation involves selecting the co-
ordinates of a case of WNV infection and selecting a 25 km X 25 km
map section with that case in the centre. Other registered cases, which
occurred in the same area, are also displayed. The habitat suitability
calculated with the model combination is displayed as a heat map. This
heat map is blended with the map and forms the result of the entire
habitat modelling. If there is an outbreak of WNV infections in a region,
an assignment of the analysed various mosquito species considered as
potential or proven vectors can be made via the result maps. This can
help in the design of disease control measures.

The methodology presented is based exclusively on machine learn-
ing and therefore does not require expert knowledge. It can be effi-
ciently applied for different mosquito species or even other arthropods
transmitting diseases including also parasitic and bacterial diseases,
provided that sufficient training data are available.

The innovation of the present work is the possibility of generating
detailed map sections of regions with cases of WNV infections, a kind
of zooming in on the map. The size of the map section (25 km * 25 km)
is adjustable (e.g. to the flight distance of the selected mosquito), but
limited by the computing capacity. Based on the habitat suitability and
the occurrence points of WNV infections the risk of spread of the virus
into adjacent areas can be assessed, taking into account also the vector
capacity of the respective species.

In the future, the presented method will be used in the development
of a spatially distributed simulation of mosquito dispersal and in par-
ticular the spread of WNV. The simulation will then be performed on
a central 25 km = 25 km grid surrounded by 8 grids of equal size (D8
environment). Movements in space can be modelled by means of an
agent model (Grimm et al., 2005; Lenfers et al., 2018).

The approach could be also supplemented by other factors as
wind (dispersal of mosquitoes), or water levels and flooding dynamics
(e.g. changing water levels of rivers due to intense rainfalls or other
reasons in remote upstream regions) which were shown to be useful
factors (Loncari¢ and Hackenberger, 2013; Verdonschot and Besse-
Lototskaya, 2014; Kerkow et al., 2019). Also population density of
mosquitoes could be added as a factor. In the present work we used
only occurrence points, not the amount of specimens per occurrence
point. The dynamics of mosquito populations can be modelled as
described in Laperriere et al. (2011). The prediction of increased adult
population densities is essential for the implementation of targeted
control measures.

5. Conclusion

The work has shown that even difficult modelling tasks can be
solved by combining different modelling approaches, in this case a
climate model and a regional model. Even the exclusive use of citi-
zen science data, if collected over many years and with a sufficient
submission quantity as well as territory coverage, can be sufficient to
solve scientific problems. It is essential, however, that even the most
sophisticated machine learning methods can only provide the hoped-for
boost in modelling through a sound selection of data.
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