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ABSTRACT: Layer-by-layer (LbL) assembly is a widely used
tool for engineering materials and coatings. In this Perspective,
dedicated to the memory of ACS Nano associate editor Prof.
Dr. Helmuth Möhwald, we discuss the developments and
applications that are to come in LbL assembly, focusing on
coatings, bulk materials, membranes, nanocomposites, and
delivery vehicles.

The classic realization of layer-by-layer (LbL) assembly
was introduced three decades ago,1−7 with significant
contributions from our colleague, the late ACS Nano

associate editor Helmuth Möhwald.8−33 Research on Langmuir−
Blodgett deposition and later LbL assembly carried out by
Helmuth Möhwald34 created a critically important foundation
for development of multilayer composites based on hybrid
organic−inorganic nanostructures and numerous related tech-
nologies. Early studies in this area involved self-assembly of multi-
layers from graphite oxide,35 clay sheets,36 nanoparticles,8,37−42

and other materials, serving as conceptual growth points for the
evolution of the fields of biomimetic composites, energy materials,
and self-assembly. Numerous studies inspired and authored by
Helmuth Möhwald not only paved the way for rapid expansion
of nanoparticle-based design of nanocomposites, but also led
to understanding biomineralization processes in Nature and
their utilization in diverse areas of technology.43 This field has
since undergone massive expansion that continues to this day,
and LbL is now an established and widely used technique for
coating and encapsulation. With several publications per day,
LbL assembly has matured from a scientific oddity to an acces-
sible and useful tool for the preparation of nanoscale functional
films. It continues to be used to create new commercial products,
making it as interesting for various industries now as chemical
vapor deposition (CVD) and physical vapor deposition (PVD)
were in the 1960s. Whereas the past and the present of LbL have
been extensively reviewed,11,44−50 in this Perspective, we focus
on future opportunities using this exciting technique.
The classic realization of layer-by-layer assembly as a dip-

and-rinse process has several conceptual advantages over other
methods of materials preparation that predicated its wide use
in science and technology. First, compared to other techniques,

for instance, sequential spin-coating, it enables preparation
of nearly ideal conformal coatings on surfaces of any topog-
raphy. Thus, it has been applied to planar surfaces, spherical par-
ticles, inside pores, and onto other more complex geometries.

Second, LbL is universal and flexible. It is compatible with other
chemistries, meaning that a wide variety of different surfaces can
be coated, not only charged substrates. The sequential assembly
of the layers involves a washing step after the addition of each
layer, which reduces the excess non-assembled materials or
molecules. Because of the large variety of materials out of which
layers can be formed, LbL enables convenient surface chemistry
tailoring. Another important characteristic of LbL technology
is the broad and independent variability of each double layer,
which, in contrast to many other coating and encapsulation
technologies, enables the modular construction of multifunc-
tional devices like a box of bricks that have different properties
and can be combined in different ways. These properties, com-
bined with the availability of various stimuli51−55 to control
responsiveness of polyelectrolyte assemblies, make LbL an
extremely versatile technology platform. Third, the LbL method
replicates the essential aspects of physics and chemistry of
materials engineering in living organisms, and therefore, it leads
to the amazing spectrum of biomimetic materials. Importantly,
they may or may not be based on biomacromolecules pertaining
to a specific biological process. Replicating the molecular-scale
adaptation of the different structural components at the inter-
faces taking place in, for instance, biomineralization, one can
attain structures and properties equal to or better than those of
materials found in biology.56 Note, however, that as with
biology, many LbL processes require time for atomistic relax-
ation at the interfaces. Although the formation of multilayers
approaching thermodynamic equilibrium is a rather time-
consuming process, many future technologies will require such
highly complex structures. This complexity will be illustrated
below for some especially promising developments in this field.
Of note are several successful reports of accelerating LbL
processes using automated procedures on both planar and
colloidal templates.57−61 In parallel, endeavors have also been
undertaken to produce coatings with properties similar to
those of LbL films but using single-step approaches.62−64

In this Perspective, we highlight future directions with a
focus on three areas: (1) functional coatings on planar and
highly curved surfaces, (2) free-standing membranes and bulk
materials, and (3) delivery vehicles based on encapsulation
for biomedical applications.

LAYER-BY-LAYER-BASED FUNCTIONAL SURFACE
COATINGS

Versatility of Coatings. Layer-by-layer coatings are
extremely versatile. They enable variability in (1) composition,
i.e., the integration of different materials; (2) vertical structuring
normal to the surface, i.e., the possibility to create defined

Numerous studies authored and
inspired by Helmuth Möhwald not
only paved the way for rapid expansion
of nanoparticle-based design of
nanocomposites, but also led to
understanding biomineralization
processes in Nature and their utilization
in diverse areas of technology.
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sequences of layers;65 and (3) anisotropic alignment, i.e., to
orient anisotropic materials within layers.
(1) Toward Multinanocomposites. Among all methods for

functionalizing surfaces, LbL assembly arguably has the largest
choice of deployable components (inorganic salts, organic
molecules, polymers, DNA,66,67 graphene oxide, biomolecules,
lipids, nanoparticles, or biological objects including cells68).
In polyelectrolyte multilayers, one can bring tens (if not
hundreds) of materials together in ordered ways, whereas the
number of components in most current nanocomposites is less
than ∼20. The precision of LbL in controlling the structures of
materials bridging the molecular, nano-, meso-, and micro-
scales69−72 makes it possible to create conformal coatings with
exceptionally high curvatures, including functionalized par-
ticles,73−76 and to design self-assembled nanocomposites with
previously unexpected combinations of macroscale proper-
ties.36,69,77 Along these lines, LbL makes it possible to demon-
strate the transition between nano- and macroscale optical
effects in gold films experimentally by precisely tuning inter-
particle distances in multilayers of silica-coated gold nano-
particles,78,79 leading to extremely efficient substrates for
surface-enhanced Raman scattering (SERS) detection.80 The
fundamental findings regarding rare combinations of properties
made using LbL-based composites were confirmed using other
techniques, such as vacuum-assisted filtration81−83 and spin-
coating.84 Layer-by-layer assembly enables the design and pre-
paration of materials with adjustable multifunctionality, which
is difficult, if not impossible, using other formulation tech-
nologies. Thus, LbL offers the tools to fabricate advanced
materials by combining heterogeneous components with
potential applications in optoelectronic devices, smart surfaces,
solar cells, etc.
(2) Toward Three-Dimensional (3D) Coatings. The LbL

technique also offers multiple approaches for the fabrication of
composite materials from heterogeneous components, where
the compositions of the materials are varied in the direction
normal to the substrate. In addition to gradients in chemical
composition, one can also vary the mechanical, optical, and
electronic properties of composites in the vertical direction.
The LbL concept can also be integrated with other nano- and
microfabrication techniques. In particular, the use of printing
strategies and combinations with other 3D coatings with vari-
able vertical composition are possible. Combining LbL assembly
with other modern strategies (e.g., roll-to-roll, lithography, and
3D printing, etc.) as well as high-throughput production
methods57,58,85−88 is beneficial for the preparation of novel
functional LbL composites. Note that multilayer nanocom-
posites, made by LbL and Langmuir−Blodgett deposi-
tion, are extensively used in industry already, albeit produced
using closely related, derivative methods. Some representative
examples of these multilayer composites are those based on
various forms of nanocarbons (graphene, graphene oxides,
graphene, nanotubes, nanoribbons, graphene carbon quantum
dots, etc.81,82,89−91) and those based on various forms of
ceramic nanoplatelets (clay, metal oxides, MXenes, etc.89,92−94).
The former are employed in energy technologies, whereas the
latter are used in membrane and coating technologies. In each
case, the composite multilayer production is reliable, scalable,
and low cost due to self-assembly of anisotropic colloids. Future
directions in multilayer biomimetic composites are likely to
include computational design of the multilayers starting from
molecular dynamics95−97 and coarse-grained models of the
multilayers.92

(3) Toward Materials with Complex Anisotropies. Most of
the current materials are isotropic. Materials with anisotropic
properties are, in general, more difficult to prepare and to
characterize. For example, grazing incidence spraying98 enables
alignment of nanowires, nanorods, and nanofibers in plane99,100

during the deposition of individual layers in LbL films. With
unidirectionally oriented multilayers, one can fabricate films
containing ultrathin polarizers.100 This approach, however, is
capable of producing more complex anisotropies, even over
large surface areas, by changing the direction of alignment
in each individual layer of a multilayer film. We are just starting
to realize materials with crisscross and even helical superstruc-
tures. Materials with such anisotropies are likely to be interesting
for various applications in mechanics, photonics, and other areas.

Protective Coatings. Layer-by-layer assembly provides a
convenient coating strategy for the protection of consumer
products, such as paints for corrosion protection or antigraffiti
coatings.101−104 Here, among the spectrum of technological
advances based on LbL materials, one should mention anti-
corrosion coatings investigated by Möhwald and co-workers.
Andreeva et al. deposited oppositely charged (PEI/PSS)n
polyelectrolyte (PE) multilayers on aluminum surfaces.102 The
corrosion processes on the aluminum surfaces were blocked due
to the pH-buffering ability of polyelectrolyte-based LbL coatings
(Figure 1a). Another representative advance in this area is
halloysite nanocontainers for anticorrosion coatings. Shchukin
et al. first deposited LbL-assembled polyelectrolyte multilayers
of (PAH/PSS)n on the surfaces of inhibitor-loaded halloysite
nanotubes.105 After the halloysite nanocontainers were embed-
ded, the sol−gel SiOx/ZrOy active composite coatings with the
nanocontainers showed long-term anticorrosion performance.
The LbL composite multilayers provide effective storage and
prolonged release of the inhibitor. Similarly, SiO2 particles
coated with LbL multilayers entrapping inhibitors were used as
nanocontainers to achieve self-healing and anticorrosion
composite coating simultaneously.18,103 Li et al. also designed
a silica/polymer double-walled hybrid nanotube loaded with
active molecules for metal corrosion protection.106 A new
generation of anticorrosion coatings that possess passive matrix
functionality and that actively respond to changes in the local
environment has been introduced.107 Active corrosion pro-
tection aims to restore the properties of the material when the
passive coating matrix is broken and corrosion of the substrate
has started. The main component of the self-healing
anticorrosion coatings are capsules in flat layers, which provide
controlled release of the corrosion inhibitor on demand and
only inside the corroded area (see Figure 1a). This release acts
as a local trigger for the mechanism that heals the defects. The
LbL assembly approach is an effective tool for the fabrication
of the capsule shells, controlling release of the corrosion
inhibitor on demand. Layer-by-layer assembly enables the use
of various materials as shell components, utilizing weak, mostly
electrostatic forces for their assembly. Depending on the nature
of the “smart” materials (e.g., polymers, nanoparticles) intro-
duced into the container shell, different stimuli can induce
reversible and irreversible shell modifications: pH, ionic strength,
temperature, ultrasonic treatment, and electromagnetic fields.
The different responses that can be observed vary from fine
effects, such as tunable permeability, to more profound ones,
such as total rupture of the container shell. These different
behaviors depend on the composition of the polyelectrolyte
multilayers (e.g., weak polyanion−weak polycation or strong
polyanion−weak polycation-based interactions).
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Coatings for Photonics and Energy-Related Applica-
tions. There are numerous energy applications that can take
advantage of the tunable mechanical, electrical, and chemical
properties of LbL composites.108 In fact, the first implementa-
tion of graphene composites on electrodes currently used in a
variety of batteries, supercapacitors, conductive inks, and fuel
cells was demonstrated in LbL composites referring to these
materials as graphite oxide in 1996.35 The excellent laminar
organization of the films also afforded demonstration of the

transition from the nonconductive state of graphite oxide to
reduced graphene and their utilization in lithium batteries.109

Composite materials with identical layered design were later
produced by other techniques, such as vacuum-assisted filtration,
are widely used in the technology.81 There are also many other
energy-conversion devices that employ LbL multilayers from
electroconductive materials which include batteries, super-
capacitors, catalysts, solar cells, and fuel cells, and these modern
applications frequently place higher demands on the performance

Figure 1. (a) Layer-by-layer assembly can be used in protective coatings in several ways, e.g., as nanoreservoirs of corrosion inhibitors and in
multicomponent coatings. (b) Layer-by-layer assembly can be used for biomolecule immobilization in sensing devices and biofuel cells.
(c) Layer-by-layer assembly can be used in photoelectrochemical devices to create 3D structures; in medical devices, different biological
materials can be assembled in each layer independently. (d) Tailored coatings for better control of cell−surface interactions. (e) Layer-by-
layer assembly can be used in antibacterial coatings of implants.
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of the composites.110 Layer-by-layer multilayers can integrate the
properties of different constituent materials, and judicious design
enables them to take on multiple roles and function-
alities, for instance, as battery anodes or ion-transporting
membranes.111−113 Layer-by-layer assembly also facilitates the
creation of controlled assemblies to study photonic properties of
materials. Layer-by-layer assembly enables composite functional
materials that combine polymers with oppositely charged
nanoparticles. Such structures can easily be created on planar
substrates114−117 and on colloidal microspheres.23,118−120 The
organized superstructures from semiconductor nano-
particles (NPs), also known as quantum dots (QDs), can
also be made using LbL as was demonstrated for CdS, PbS,
and TiO2.

121 The advantage of QDs compared to graphite/
graphene oxide is that they are capable of emitting in the
visible114,122 and near-infrared122 parts of the spectrum; this
property has been used to fabricate luminescent self-assembled
films and to study energy transfer in such composites.115

Directed energy transfer from specific layers of QDs toward an
interface or electrode was made possible exactly due to the
possibility of arranging the LbL layer in the order of decreasing
or increasing band gaps in graded semiconductor nanostruc-
tures.123 Excitation recycling in LbL-grown graded band gap
QD structures has been demonstrated116 and ascribed to
superefficient exciton funneling to the layer containing the
largest QDs.117 Besides graphene, layer-by-layer assembly is
also compatible with other emerging two-dimensional (2D)
materials such as hexagonal boron nitride whose LbL coatings
yield exceptional performance as gate dielectrics in graphene
field-effect transistors.124 Last but not least, LbL has been used
to build coatings for electromagnetic shielding. Flexible and
electrically conductive thin films are required for electromag-
netic interference (EMI) shielding of portable and wearable
electronic devices.93 The LbL technique enables combinations
of nanoparticles and polymers, providing a platform for devel-
oping hierarchical architectures with a combination of properties
including mechanical strength, transparency, and conductivity.89

Spin-spray LbL enables rapid assembly of 2D Ti3C2 MXene−
carbon nanotube (CNT) composite films for EMI shielding.
These semitransparent LbL MXene−CNT composite films
showed high conductivities and high specific shielding effec-
tiveness, which are among the highest reported values for
flexible and semitransparent composite thin films.
Biomolecule Immobilization for Sensing and Biofuel

Cells. The LbL technique has found widespread applications
in the fixation of biomolecules to surfaces49,125 because it
enables (1) engineering of man-made materials with structural
analogy to biomaterials; (2) the controlled deposition of
biomolecules because deposition can be governed not only by
the number of layers but also by adjusting pH, ion concen-
tration, temperature, and polyelectrolyte and biomolecule
concentrations in each layer; (3) the defined integration of
different biomolecules in different layers and, thus, the creation
of sequential signal chains; and (4) the incorporation of other
functional components, such as mediators, which can facilitate
electron transfer between immobilized molecules and electrodes
or lipids, which, in turn, facilitates integration of more
hydrophobic membrane proteins.126 Furthermore, additional
layers on top of the biomolecular assembly enhance the stability
of the coatings and ensure efficient discrimination against
unwanted species when the multilayer structure is used for
sensing purposes. Interestingly, biomolecules cannot simply be
passively incorporated into LbL architectures, but because they

often carry charges, they can be used as separate building blocks
in the assembly process. In this context, alternating polymer/
biomolecule or NP/biomolecule structures can be formed,127,128

as well as pure biomolecular LbL assemblies, such as DNA/
protein or protein/protein multilayers.129 The beauty of the
technique can also be demonstrated by immobilizing different
biomolecules in different layers on the sensing surface. This
localization enables the construction of defined signal pathways
by exploiting sequential reaction schemes. Here, reaction
products formed in one layer can be further converted in a
subsequent layer, as shown in Figure 1b.13 These artificial
architectures can mimic biological functions, such as sequential
electron transfer reactions or switchable pathways.130 This capa-
bility enabled, for instance, the first implementation of tissue-
adapted neuroprosthetic implants from conductive composites131

and light-induced excitation of neurons.132 Further steps in this
directions can be based on direct electron transfer between the
immobilized protein molecules. The LbL technique enables
the artificial arrangement of redox centers, while keeping them
in or close to their natural states. Here, developments are still
at early stagesmore advanced structures appear to be feasible
though, such as the arrangement of enzymes into complex
cascades to create artificial metabolome structures with high
efficiency.133−135

Switchable Coatings for Photoelectrochemistry. Elec-
trochemical devices can be controlled by light based on
photosensitive switches, such as QDs.136−139 Light-generated
charge carriers can create photo currents, which enables both
control and monitoring of electrochemical reactions (see
Figure 1c).140 Inorganic, photoactive materials such as QDs
are commonly used in such applications, but light-sensitive

biomolecules have also gained considerable interest for the con-
version of light into electrical or chemical energy.141 An example
is the protein supercomplex photosystem I, which can be
assembled with the help of negatively charged DNA and the
positively charged redox-protein cytochrome c. This system
generates well-defined photocurrents, the magnitude of which
depends on the number of deposited layers.142 Charge transfer
in LbL structures has been well-studied by numerous
groups.14,17,127,143−145 Layer-by-layer assembly can be used to
increase the coverage of redox active molecules by assembling
3D structures, thereby dramatically increasing the analytical
signal, but also improving the signal-to-noise ratio (SNR).146,147

The response from multilayer structures is significantly enhanced
compared to the response from single monolayer-based struc-
tures. In addition, different kinds of biological modifications
can be introduced to the LbL structures of the photoelectro-
chemical devices. For example, LbL offers the convenient
possibility to immobilize enzymes, thereby controlling redox
reactions close to the light switches as fixed on the surface of
the electrodes. The porous structures of LbL films enable sub-

The layer-by-layer technique enables
combinations of nanoparticles and
polymers, providing a platform for
developing hierarchical architectures
with a combination of properties
including mechanical strength,
transparency, and conductivity.
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strates to reach the enzymes and cosubstrates or reaction pro-
ducts, such as O2 or H2O2, to reach the light switches.148−150

In the future, we expect antibodies and DNA to be
incorporated as recognition elements into LbL-based struc-
tures. Creating defined sequences of antibodies or oligonucleo-
tides within the 3D assemblies is also an important goal.151,152

There is great potential for photoelectrochemical devices to be
developed that can sense multiple analytes in parallel. Layer-
by-layer structures can also introduce good biocompatibility by
modifying working electrodes in such a way that applications in
cell-based detection become possible. The detection of several
metabolites will enable more specific studies of cellular
activities.152 Moreover, the biocompatibility and the ease of
preparation of LbL-based systems will enable the fabrication
of miniature sensors for human uses such as wearable health
monitors and portable environmental monitoring devices.
In addition, electrochromic coatings can be produced by self-
assembly of 2D titanium carbide (Ti3C2Tx) MXene and gel
electrolyte with a visible absorption peak shift from 770 to
670 nm and a 12% reversible change in transmittance with a
switching rate of <1 s when cycled in an acidic electrolyte
under applied potentials of less than 1 V.153 The LbL film can
act as both transparent conductive coating and active material
in an electrochromic device, opening avenues for a number of
optoelectronic, sensing, and photonic applications. Hybrid
systems prepared by LbL assembly of polyoxometalate clusters
and poly(4-vinylpyridine) also show reversible electro- and
photochromic behavior.154,155

Tailored Coatings for Better Control of Cell−Surface
Interactions. For many applications, detailed understanding
of the interface between cells and underlying substrates is
critical.156,157 It is well established that LbL assembly offers a
means to immobilize different biomolecules on surfaces using
mild deposition conditions (see Figure 1d).158 Layer-by-layer
assemblies can integrate plasmids,159 growth factors,160 pro-
teins, genetic material, antibodies, and antibiotics directly into
the layers or the components can be precomplexed with poly-
electrolytes and then assembled as complexes.161 For such
biological components, e.g., for growth factors, their action can
be extended in time162 or triggered by external stimuli, whereas
their controlled release can be regulated by barrier layers. Multi-
layers can be prepared from biocompatible polyelectrolytes and
their mechanical properties; wettability, and interactions with
proteins and cells, can be fine-tuned by chemical cross-linking,
thermal annealing,163 or the addition of nanoparticles into the
assembly (see Figure 2).164 This strategy enables the availability
of biomolecules on surfaces to be controlled.162,165,166 Imagine
chemically identical surfaces (composition, roughness, etc.),
below which nanoreinforced strata are hidden (i.e., deposited)
that enable control of the tensile strength of the interface. Other
combinations of surface properties can be deposited on top of
cell-culture gels. Such surface engineering would be extremely
useful for implants and scaffolds as a means to enhance cell
adhesion, mobility, and differentiation. In the long term, there
are numerous different ways for the LbL technique to be imple-
mented. For example, they can be used to modify scaffolds and
implants to create customized environments and interfaces
in tissue engineering. Layer-by-layer assembled surfaces can
also be laterally patterned as substrates for the growth of cells.
Micropatterned deposition of LbL films has been used to
generate architecturally organized cellular structures that better
mimic the complex microstructures of tissues in the body. For
example, patterned cocultures were generated by sequentially

depositing micropatterned LbL films made of hyaluronic acid
and polylysine or collagen that could be used to render regions
of a surface adhesive to cells.167,168 In such cultures, patterned
cocultures of liver cells and fibroblasts showed increased func-
tionality compared to various controls.
This strategy ultimately results in a multitude biomimetic

composites including those made in bulk form. The diverse
composite structures replicated using LbL assembly170−173

made possible ex vivo replication of nacre,36 enamel,170 extra-
cellular matrix,174,175 and models of cellular organelles.176−178

By combining LbL assembly with other fabrication techniques
at the micrometer and millimeter scale, tissue replicas with

complex geometries have been obtained, such as for bone
marrow.179,180 The exceptional materials properties of the
multilayer composites and the generality of the approach have
also made possible the design, fabrication, and implementation
of implantable devices,132,181,182 sensors,53,183,184 drug-delivery
vehicles,185,186 and optical devices,187,188 exceeding the
performance of existing technologies.

Antibacterial Surface Coatings. The advent of LbL films
has led to several new strategies for the development of
antibacterial coatings, from the fabrication of multilayers with

Figure 2. Scheme of the protein adhesion mechanism and the
effects on cell adhesion for non-annealed poly(L-lysine/alginate)
(PLL/Alg) and annealed-PLL/Alg.157 Results from the exchange-
ability assays are schematically described. On annealed PLL/Alg
layer-by-layer (LbL) surfaces, proteins exhibit augmented inter-
actions with the substrate, the exchangeability is reduced, and
fibronectin (FN), either alone or in cooperation with bovine serum
albumin (BSA), has stronger interactions with the LbL surface
coating. The effect on cell adhesion is also illustrated.169 The
objects depicted in the scheme are not to scale, and for FN, only
the FN III fragment is represented. Adapted with permission from
ref 150. Copyright 2019 John Wiley & Sons, Inc.

Micropatterned deposition of
layer-by-layer films has been used to
generate architecturally organized
cellular structures that better mimic the
complex microstructures of tissues in
the body.
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cationic polymers that disrupt bacterial membranes,189 to the
assembly of antibacterial nanomaterials such as silver nano-
particles or graphene oxide,190 to the encapsulation of antibio-
tics in the multilayers, to combinations of all these elements.191

The LbL assembly can include several layers of nanomaterials,
combine layers of different nanomaterials in a film, or facilitate
inclusion of antibiotics in the films by complexing with the
polymers (see Figure 1e). Many antibiotics have charged
groups that can be used to form complexes with polyelectro-
lytes in the LbL films or assembled in films replacing poly-
electrolyte layers. The LbL technique has the advantage that it
can be applied straightforwardly on almost any charged surface,
and antibacterial coatings could be developed for medical
devices as well as for implants. In particular, the LbL technique
has significant potential in the design of antibacterial coatings
that can inhibit nosocomial infections during implant surgery.
An optimal antibacterial coating for bone implants based on
release of an antibiotic should involve an initial burst release
at the time of surgery, followed by prolonged release over the
weeks following the surgical intervention to ensure bone tissue
regeneration.192 The LbL technique can be used to design films
capable of fully or partially degrading and releasing antibiotics
at different times and rates. Examples in the literature show
that aminoglycans, such as gentamicin, can be released from
LbL films, combining burst and steady releases that would be
particularly suitable for implant surgery.193 Moreover, the LbL
technique enables the additional assembly of growth factors on
the coating that can counteract negative effects on cell growth
and differentiation caused by a high localized dose of anti-

biotics.194 These combinations can result in films with enhanced
antibacterial properties and in the design of coatings suitable
for different environments in multiple medical settings or for
antifouling applications.

LAYER-BY-LAYER-BASED MEMBRANES

Purification Technologies. Another future for LbL
coatings lies in separation technologies, such as liquid or gas
permeation membranes (see Figure 4).69,195,196 Significant
pioneering work has already been carried out,197−201 starting
with gas separation membranes,69 but recently, LbL membrane
modification for fresh water production has been explored
further. Nanofiltration membranes for the removal of particles
down to virus sizes of ∼35 nm are not able to retain dissolved
materials, such as ions, leading to issues with water hardness,
low molecular weight pharmaceutical agents, etc., which
become increasingly problematic in fresh water prepa-
ration. However, reverse osmosis (RO) membranes consume
a great deal of energy and retain all salts, which is not useful for
drinking water. In contrast, a few LbL-assembled layers of
poly(diallyldimethylammonium chloride) (PDADMAC)/PSS
on top of tubular filtration membranes of pore size 20 nm are
able to increase the retention of magnesium sulfate from
5% to over 90% and for several endocrines above 50−90%
depending on the endocrine type (see Figure 5).202 In contrast
to RO membranes, these LbL membranes allow permeation of
sodium chloride, maintain high fluxes, and require much less
pressure and energy. Up to now, the LbL coating of
membranes has been evaluated only for films based on the

Figure 3. Changes in cell adhesion and in the physicochemical properties of layer-by-layer (LbL) multilayer coatings induced by thermal
annealing.157 (a) Scheme of the assembly and annealing protocols. (b) Phase contrast images of C2C12 cells adhered on glass, poly-L-lysine/
alginate (n-PLL/Alg, a-PLL/Alg), n-chitosan/hyaluronic acid (n-Chi/HA), or a-Chi/HA as indicated. (c) Average cell adhesion spreading
area from cells seeded on glass, n-PLL/Alg, a-PLL/Alg, n-Chi/HA, or a-Chi/HA polyelectrolyte multilayers. (d) Changes in physicochemical
properties of polyelectrolyte multilayers upon annealing. Adapted with permission from ref 150. Copyright 2019 John Wiley & Sons, Inc.

ACS Nano Perspective

DOI: 10.1021/acsnano.9b03326
ACS Nano 2019, 13, 6151−6169

6157

http://dx.doi.org/10.1021/acsnano.9b03326


combination of one polycation with one polyanion. However,
one can imagine that a multifunctional coating could improve
the membranes further. The first layer on the mem-
brane has to ensure a good connection of the LbL film to
the membrane in order to resist sufficiently high-pressure back-
flushing cycles. Furthermore, the first polyelectrolyte has to
be assembled exclusively on top of the pores and should not
penetrate into the pores, as otherwise these would be blocked.
The intermediate layers should utilize a design in which the
mesh size controls the retention of the analyte and also ensures
the removal of specific pollutants.91 Finally, the outermost
layer should reduce the fouling behavior of the membranes
by controlling its hydrophilic properties and electrostatic
repulsion.203−205

Introducing Channels in Biological Membranes.
Biomimetic nature of LbL materials opens the possibility to
replicate biological membranes. Cell membranes comprise not
only lipids but also high protein content,206 for example, trans-
membrane proteins that form channels for molecular transport
into/out of cells. Lateral inhomogeneity is important. Here lies
one big challenge for the future. To date, LbL structuring has
predominantly only been possible perpendicular to the surface,

i.e., by variation of the compositions of the different layers.
However, in order to create LbL-assembled membranes mim-
icking the function of biological membranesfor example,
with integrated protein-based channelslateral structuring
would also be required. In the simplest case, “channels” in the
form of holes could be introduced, for example, by nano-
plasmonic heating.207 Another option lies in tethered
membranes. In recent work, dense membranes with limited
defects and high resistivity were assembled on top of
multilayers.208−211 These membranes can contain channels
with selective ion permeability.212 For electronic sensing, the
multilayers provide a means to control the distance of the lipid
bilayer from the electrodes, which is particularly useful for
membranes incorporating channels and transmembrane
proteins, avoiding undesired effects from the electrode on
channel and protein behavior.212 Another method for lateral
structuring might be based on the fusion of microcapsules.213

Still, despite the numerous ideas outlined here, lateral
structuring of LbL films remains a challenge.

LAYER-BY-LAYER-BASED ENCAPSULATION FOR
DELIVERY VEHICLES

Layer-by-layer Assembly for Encapsulation. Layer-by-
layer technology for micro- and nanoencapsulation was intro-
duced ∼20 years ago and initially looked extremely promising
(see Figure 6).10,11,214−219 The key advantage was considered
to be the simplicity with which one could construct multifunc-
tional delivery systems. In fact, LbL capsules can combine
multiple functions and external responsiveness. However, LbL-
based encapsulation suffers from high permeability of small,
water-soluble molecules (i.e., leaching) and rather time-
consuming processes for fabrication. Some of these problems
have been solved, such as expanding the class of molecules that
can be encapsulated (e.g., doxorubicin, paclitaxel, liquid crystals,
siRNA) without severe leaching,44,45,220−225 and inroads have
been made into the problem of scale-up.61,226,227 This approach
has also been made possible by extending the initial capsule
geometries to more sophisticated structures, such as capso-
somes, etc.228−235 The capsule shells can also be labeled with dif-
ferent types of nanoparticles, providing contrast for imaging118−120

or enabling magnetic targeting.236,237 Currently, the technology
still has potential, particularly in areas where other technologies are
not available. A number of studies on various cell types, including
macrophages, dendritic cells, neurons, and stem cells, have

Figure 5. Retention of different endocrines by an uncoated
poly(ether sulfone) membrane (red) and by a layer-by-layer
(LbL)-coated (PDADMAC/PSS)4 membrane (green). Unpub-
lished data by the group of Lars Da ̈hne.

Figure 4. Layer-by-layer (LbL) assembly can be used for membranes for gases and liquids.
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demonstrated that incubation with cells results in internali-
zation of capsules by cells without significant effects on cell
viability.238−240 The elastic properties facilitate their uptake as
the capsules can easily be deformed during internalization.241−244

In other words, cells were found to tolerate capsule inter-
nalization, which is not always the case for other delivery systems.
Detailed studies on the tissue response after subcutaneous245 and
pulmonary246 administration of degradable LbL capsules
composed of polypeptide and polysaccharide building blocks
have also demonstrated that LbL capsules exhibit a moderate
foreign body response and are easily internalized by immune
cells, such as macrophages and dendritic cells. This advance
should pave the way for further development of such carriers in
advanced vaccine technologies. In summary, LbL offers a good
platform for delivery of encapsulated cargo inside cells, which is
discussed below in terms of drug delivery and imaging/sensing.
Because the capsules remain in endosomes/lysosomes after inter-
nalization, endosomal escape and translocation of encapsulated
compounds to the cytosol remains a significant hurdle.
Delivery of Therapeutic Agents. The LbL technique

opens the possibility of assembling therapeutics in between
layers of polyelectrolytes, on top of nano/microparticles that
protect a certain cargo, while, at the same time, making multiple
functional groups available in the polyelectrolyte, which can be
engineered to generate stealth coatings for targeting delivery. For
the delivery of encapsulated therapeutics in polyelectrolyte
multilayers, the assemblies must degrade, liberating the material
entrapped between the layers. However, as we noted above,
LbL assemblies have intrinsically semipermeable properties
that can be tuned by means of layer numbers and thicknesses
as well as by the type of the interacting polyelectrolyte pairs,
resulting in leaching even before intended degradation and
subsequent release. Thus, the initial euphoria in scientific articles
to encapsulate low molecular weight drugs and to release them
in a controlled manner on demand has not yet translated into
real-world applications. As previously noted, the most critical
reason for this difficulty in translation is the high permeability
of the films for small molecules (see Figure 7). Even for the
very dense polyelectrolyte system poly(allylamine hydrochloride)/
polystyrenesulfonate (PAH/PSS), researchers recorded release
rates ranging from minutes to a few hours for water-soluble
molecules having molecular weights below 5 kDa.247 In con-
trast, large molecules with molecular weights above 10 kDa can
be permanently immobilized, either in the polyelectrolyte

layers or in capsules comprising polyelectrolyte walls. This
same conclusion has been shown over the past decade for a
variety of biomolecules, including proteins, such as antibod-
ies;248 growth factors;249 hormones;250 enzymes;251 nucleic
acids, such as DNA plasmids;237 different types of RNA
molecules, such as silencing RNAs;252 and polysaccharides
such as alginate, carrageenan, chitosan, and hyaluronic acid.253

In parallel, new therapeutic avenues based on the delivery of
high molecular weight drugs, for instance, at the site of the
implantation of LbL material.159 Plasmids, specific antibodies,
RNA, or DNA can be delivered by incorporation in LbL films
and can be utilized as personalized medicines. However, due to
the sensitive and specialized recognition of such molecules by
our immune system, it is hard to deliver them efficiently in vivo
to the intended targets. For this purpose, LbL assemblies could
have a bright future in the form of capsule formulations,
because the necessary multifunctionality can be delivered by
LbL technology. For example, an ideal capsule should have an
inner surface that is not interacting with the biomolecule in
order to retain its functionality. The intermediate layers
determine the release behavior, which could be controlled slow
release, immediate release caused by an internal trigger (e.g., by

Figure 6. Layer-by-layer (LbL) assembly can be used to fabricate encapsulation platforms for nanodelivery.

Figure 7. Permeability of layer-by-layer (LbL) membranes
consisting of different polyelectrolyte combinations (8 layers) for
small molecules (fluorescein). Unpublished data from the group of
Lars Da ̈hne.
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the lower pH value in cancer cells or by specific enzymatic
surroundings254,255) or release activated by an external trigger
(e.g., NIR light,22,237,256−258 X-ray radiation, ultrasound
(US),259−261 or magnetic fields262,263). Internal triggers can
readily be created by combining polycations and polyanions in
such a way that their degradation will be fast or slow. The
sequential assembly of polyelectrolytes in LbL enables control
over the composition of the layers in the vertical direction and
could be used to deliver different therapeutics progressively.
For example, two siRNA molecules with complementary
actions could be assembled in different positions within the
LbL film, so that they are released sequentially. Degradation of
the multilayers in biological fluids or intracellularly can be
selected because matrices can be programmed by varying the
assembly conditions, the number of assembled layers and the
combination of polycations and polyanions. The surface layer
is also important: It should not be recognizable by the immune
system in order to realize high circulation times, but it should
nonetheless bind specifically to a defined target. In the case of
systemic delivery, there is the problem of targeting, i.e., to
produce locally enhanced concentrations of the pharmaceutic
agent at the desired target site. One interesting approach,
which has not yet been fully exploited, is cell-mediated delivery,
where cells are used as natural transporters to carry the encap-
sulated materials to a targeted site.264 Here, externally driven cell
navigation could be used.265 In vitro studies have demonstrated
that cell motion is possible in magnetic field gradients if the cell
has internalized magnetic capsules.266 Magnetic capsules can
bring genetic materials inside the cells and reprogram the cells in
such a way that the follow-up sorting of altered and nonmodified
cells can easily be done by magnetic sorting.267 Such magnetic
targeting is biocompatible. The ability of mesenchymal stem
cells (MSCs) to differentiate was not affected by magnetic
manipulation.268 This is important, as MSCs impregnated with
capsules could be used as natural cargo transporters. Also,
whereas many applications focus on systemic delivery, local
delivery may offer new approaches, which deliberately avoid
the “targeting” issue. One interesting example is LbL particles
that were designed for transdermal delivery of vaccine and
adjuvant peptides via hair follicles. In contrast to dissolved
molecules, particles in sizes ranging between 300 and 900 nm
can be inserted in hair follicles by intense massage.269 The
diffusion of vaccines to the Langerhans cells in the skin is much
easier through the follicle membrane than through the epidermis.
In order to transport the vaccine peptides into the hair follicle,
600 nm silica particles were coated with polymethacrylate with
LbL assembly, with an outermost layer having a pKa value of 6.2.
The pH difference between skin (pH 5−5.5) and follicle center
(pH 7.4) was selected for the delivery of the peptides, which
were tagged with four glutamic amino acids bearing negative
total charge. The vaccines were efficiently adsorbed at pH 4.5
onto the partly positively charged particles and kept stably
attached during the skin massage. After arriving at the follicle
center where the pH was 7.4, the zeta-potential of the particles
switched and became highly negative and the vaccines were
released due to electrostatic repulsion. In general, LbL capsules
have made the step from in vitro demonstration to in vivo
experiments. For example, these particle systems can induce
bone formation in vivo (when loaded with growth factors),249

target atherosclerotic plaques in vivo,270 and generate a signifi-
cant immune response in vivo (when loaded with immunogenic
peptides).271 Both peptide- and protein-antigen-loaded LbL
capsules generate a significant immune response in vitro and

in vivo.254 It was demonstrated that ovalbumin (OVA) (a model
vaccine)-specific CD4 and CD8 T cells were activated to
proliferate in vivo following intravenous271 and subcutaneous272

vaccination of mice with OVA protein- and OVA peptide-loaded
LbL capsules. The OVA encapsulated within the capsules
resulted in greatly enhanced antigen presentation and prolif-
eration of antigen-specific CD4 and CD8 T cells that provided
enhanced protection against viral infection and tumor growth.
Furthermore, LbL capsules could be further engineered on
their surface with immune-stimulatory molecules to boost the
antigen-specific immune responses against encapsulated
antigen.273 The latter work was carried out with the idea of
using LbL-coated microneedles for transdermal vaccination.
Indeed, several groups have investigated codelivery of antigen and
immune stimuli, both on colloidal and planar substrates.273−275

Imaging and Sensing. In diagnostic imaging, highly
developed methods/modalities are applied, such as ultrasound
imaging (US), X-ray computed tomography (CT), magnetic
resonance imaging (MRI), near-infrared imaging (NIR),
photoacoustic imaging (PAI) and nuclear imaging methods
such positron emission tomography (PET) or single photon
emission computed tomography (SPECT). Each of these
imaging methods has advantages, but also drawbacks, such
as limited spatial or time resolution, sensitivity, impairment of
the patient, etc. Therefore, several methods must be combined
in order to optimize the images and information obtained.276

Instruments for this purpose are already under development,
but suitable contrast agents providing contrast for different
imaging modalities and methods are also necessary. These
agents can be based on molecular materials or on particles.
Solid particles should be in the nanometer range, whereas
flexible particles could be used at the micron scale of erythro-
cytes. By means of LbL technology, such multifunctional
contrast agents can be produced in a controlled way. One
example was recently developed, which is simultaneously appli-
cable for US, MRI, SPECT, and NIR imaging.277 The core of
the flexible 3 μm particles consisted of an air bubble, which is
stably encapsulated by cross-linked poly(vinyl alcohol) (PVA)
for US imaging. Positive charges were introduced in the PVA
matrix in order to achieve controlled LbL coating. Two double
layers of PSS/PAH-1,4,7-triazacyclononane-1,4,7-triacetic acid
(NOTA) were assembled. The NOTA label complexes tech-
netium for SPECT imaging. On top, double layers of citrate-
stabilized iron oxide nanoparticles (SPION)/PAH were
assembled for dark contrast in MRI imaging.278 For NIR
imaging, further fluorescent layers of PAH-Cy5/PSS were
assembled. Finally, targeting was demonstrated by biotinylated
antibodies coupled to an outermost PAH/streptavidin layer.279,280

Thus, LbL enables convenient integration of different contrast
modalities in one single particle. Apart from simple imaging,
where contrast depends on the local concentration of contrast
agent, functional imaging, i.e., sensing, is possible. In this case,
the signal of the contrast agent also depends on the local
environment. There are several examples of encapsulated,
analyte-sensitive fluorophores,281−283 which enable the detection
of local ion concentrations. The changes in environment must
be taken into account when designing these multimodal
particles. For example, many ion-sensitive fluorophores also
respond to local pH, so one severe challenge concerning future
in vivo applications is that particles will undergo massive local
pH changes along their trajectories in the body, for example,
upon endocytosis by macrophages. One solution might be to use
more complex systems, such as sensors with distance-dependent
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quenching of optical or magnetic signals. In order to protect
these systems from agglomeration, they could be encapsulated.
The LbL shell around the sensors would then enable analytes to
diffuse in and out, whereas it would retain and protect the actual
sensor system. One developed glucose microsensor is depicted
in Figure 8. Due to the possibility of multicompartment encap-
sulation of different molecules in different locations within one
particle by LbL,284 even feedback-controlled systems might
be developed. A drug could be encapsulated for delivery in one
compartment, whereas a sensor monitoring the action of the
drug could be placed in an adjacent compartment.285,286

Challenges for Layer-by-Layer Coated Particles
Intended for in Vivo Use. Following the above-outlined
possibilities for applying LbL-based particles to in vivo delivery
and imaging/sensing, one can summarize a number of key chal-
lenges for the future. (1) Highly biocompatible and biodegradable
materials need to be developed and used. (2) Further fundamental
studies need to be undertaken to understand the interactions of
LbL particles and biological systems in order to probe parameters
such as elasticity and shape and how these influence biological

responses. (3) Automation of the preparation of LbL particles
should be further developed, as this capability is critical to
reproducibility and streamlining preparation. (4) More focus
should be placed on such particles for local delivery applications
(e.g., their use as depots) and their interactions with the local
cellular and protein environment, not only limiting their studies
to systemic delivery applications. Thus, the development of LbL-
based vehicles continues and important breakthroughs lie ahead.
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(48) Möhwald, H.; Lichtenfeld, H.; Moya, S.; Voigt, A.; Sukhorukov,
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C. V.; Borre, F.; Daḧne, L.; Laakso, T.; Pihlajamak̈i, A.; Wessling, M.
Regenerable Polymer/Ceramic Hybrid Nanofiltration Membrane
Based on Polyelectrolyte Assembly by Layer-by-Layer Technique. J.
Membr. Sci. 2016, 520, 924−932.
(204) Cho, K. L.; Hill, A. J.; Caruso, F.; Kentish, S. E. Chlorine
Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer
Membranes for Desalination. Adv. Mater. 2015, 27, 2791−2796.
(205) Irigoyen, J.; Politakos, N.; Murray, R.; Moya, S. E. Design and
Fabrication of Regenerable Polyelectrolyte Multilayers for Applica-
tions in Foulant Removal. Macromol. Chem. Phys. 2014, 215, 1543−
1550.
(206) Singer, S. J.; Nicolson, G. L. The Fluid Mosaic of the Structure
of Cell Membranes. Science 1972, 175, 720−731.
(207) Palankar, R.; Pinchasik, B. E.; Khlebtsov, B. N.; Kolesnikova,
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