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Abstract
Background: Searching a biological sequence database with a query sequence looking for
homologues has become a routine operation in computational biology. In spite of the high degree
of sophistication of currently available search routines it is still virtually impossible to identify
quickly and clearly a group of sequences that a given query sequence belongs to.

Results: We report on our developments in grouping all known protein sequences hierarchically
into superfamily and family clusters. Our graph-based algorithms take into account the topology of
the sequence space induced by the data itself to construct a biologically meaningful partitioning. We
have applied our clustering procedures to a non-redundant set of about 1,000,000 sequences
resulting in a hierarchical clustering which is being made available for querying and browsing at
http://systers.molgen.mpg.de/.

Conclusions: Comparisons with other widely used clustering methods on various data sets show
the abilities and strengths of our clustering methods in producing a biologically meaningful grouping
of protein sequences.

Background
With the overwhelming growth of biological sequence
databases, handling of these amounts of data has increas-
ingly become a problem. Protein sequences constitute one
such data type. The number of unique entries in all pro-
tein sequence databases together exceeds now about a
million. However, biological evolution lets proteins fall
into so-called families, thus imposing a natural grouping.
A protein family contains sequences that are evolutionar-
ily related. Generally, this is reflected by sequence similar-
ity. Therefore, one aims at organizing the set of all protein
sequences into clusters based on their sequence similarity.

Clustering a large set of sequences as opposed to dealing
only with the individual sequences offers several advan-
tages. A frequent problem is the identification of
sequences that are similar to a new query sequence. This
task can be executed much quicker when only one com-
parison to an entire cluster has to be performed rather
than one comparison per database sequence. Another
application lies in the possibility of analyzing evolution-
ary relationships among the sequences in a cluster and of
the species they come from. Moreover, the presence or
absence of sequences of a group of species can give useful
information about their evolutionary relationship, if their
complete set of protein sequences is known.
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The aim of clustering protein sequences is to get a biolog-
ically meaningful partitioning. One of the simplest well-
studied and computationally cheap methods to construct
a clustering of data points is single linkage clustering. Start-
ing with the pair of data points of least distance, one incre-
mentally merges single data points or already existing
clusters. Such a hierarchical clustering can be viewed as a
tree, called the single linkage tree. The leaves represent the
individual data points, while the root of this tree corre-
sponds to just one large cluster representing the whole
data set. All other layers in between can be seen as cluster
sets at different levels of similarity. However, it is not clear
which layers give a meaningful partitioning of the data.
They should be chosen so that they neither produce small
trivial clusters nor form huge uninformative clusters.

Several approaches already deal with the problem of par-
titioning a protein sequence database into protein fami-
lies. Automatically generated cluster sets like ProtoMap
[1], ProtoNet [2], or CluSTr [3] typically provide a hierar-
chical classification at several different levels of similarity.
Others, like iProClass [4] or PIRSF [5] include further
knowledge, e.g., from domain based classifications, or
require manual interaction. Kawaji et al. [6] recently
developed a graph-based clustering method for the detec-
tion of distantly related sequences of a protein family.
TribeMCL [7] is a method for clustering proteins into 'pro-
tein families' using a Markov Clustering method. It is pri-
marily used for comparing protein sequence sets of
completely sequenced genomes. Reviews of currently
available cluster sets can be found in: Heger et al. [8] and
Liu et al. [9].

In our approach we first exploit the branching structure of
the single linkage tree, which elucidates an unexpected
structuring of the sequence space. Traversing the tree from
a leaf towards the root we inspect the sizes of the merging
subtrees. First one notices relatively small increases that
correspond to very similar proteins. Later on, sequences
merging in correspond to weakly related proteins. At one
point, however, we observe an enormous increase in the
size of the subtree, where a large part of the database
merges in. All sequences below this point in the tree are
assumed to belong to the same superfamily. Each super-
family typically covers several closely related protein fam-
ilies. They can be determined by revealing the connectivity
of the sequences belonging to a superfamily. Since the sin-
gle linkage tree is built using only the smallest distances
connecting subtrees, information about the connectivity
within these subtrees is lost in the hierarchy. For each
superfamily, we construct a superfamily distance graph by
including only those nodes labeled with sequences
belonging to the respective superfamily. These graphs are
then split at reasonable cut sites into highly connected sub-
clusters. For historical reasons [10], we call our procedure

as well as the resulting cluster set SYSTERS, which is short
for SYSTEmatic Re-Searching.

Up to that point, the hierarchy consists of superfamily and
family clusters. However, protein sequences are built up
of smaller entities, called domains. They again can be
grouped independently of a certain order in a protein
sequence. For this level we rely on one of the currently
established domain databases, i.e., the Pfam database
[11]. To allow the user to explore protein sequence space
through the complete hierarchy, we present an interface to
our cluster set on the Internet. It is possible to enter the
hierarchy at each of the layers through various entry
points and change to another layer whenever desired.
Additional information like a multiple alignment or a
phylogenetic tree is given for each of the family clusters.

Here, we explain in more detail the SYSTERS algorithms
developed to determine superfamily and family clusters.
Each step is illustrated by an example. We report our
results on clustering the non-redundant protein sequence
space consisting of about 1,000,000 sequences. An over-
view of the availability and accessibility of the cluster set
is given. Finally, we present a comparison of our cluster-
ing method with two other currently available and widely
used clustering methods, namely single linkage clustering
and TribeMCL.

Results and discussion
Clustering
We have applied our algorithms as described in the Meth-
ods Section to a sequence set consisting of all known pro-
tein sequences from the Swiss-Prot Rel. 41 and TrEMBL
Rel. 23 databases [12], and from several completely
sequenced organisms [13-16]. The original set contains
1,168,542 sequences. Sequences which are too short to
yield a result in the database search are removed from this
set. Sequences which are identical (sub-)sequences of
other sequences are sorted together and only the longest
sequence is retained as the representative. In a pairwise
comparison of all remaining 969,579 non-redundant
sequences, this results in a triangular matrix sparsely filled
with 775,133,144 E-values better than or equal to 0.05.
Comparisons of a sequence to itself are not considered. By
temporarily removing all those sequences which are at
least 80% identical over at least 80% of their entire length
to another sequence, this number decreases. These
sequences are considered redundant, and are added to the
cluster set again later in order to retain their annotation.
By reducing the number of sequences to 546,538 non-
redundant sequences, the remaining number of pairwise
comparisons decreases significantly. Fortunately, the
resulting triangular distance matrix turns out to be
sparsely filled with only 52,618,818 values (0.035% of all
possible pairs). Constructing the distance graph with
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these values, the data splits into 93,918 connected com-
ponents with 76,347 components consisting of only one
sequence. The resulting single linkage tree divides into
147,796 superfamilies with 110,308 of them consisting of
only one sequence. The subclustering splits the data fur-
ther into 158,153 family clusters with an overall number
of 110,322 single sequence clusters.

Access to the cluster set
The SYSTERS cluster set [17] is available over the Internet
at http://systers.molgen.mpg.de/. There it is possible to
explore the protein sequence space by navigating through
the complete hierarchy consisting of superfamilies, family
clusters, and domains. For the last layer in the hierarchy,
the domain level, we rely on one of the currently estab-
lished domain databases, namely the Pfam collection of
protein domains. It is possible to enter the hierarchy at
any layer, e.g., by searching for a keyword, choosing a spe-
cies, or selecting a domain. For each family cluster a con-
sensus sequence is generated. All consensus sequences
together build a database searchable by BLAST. Thus, a
clear assignment of a new protein or nucleotide sequence
to a family and a superfamily is possible. Additional infor-
mation like a multiple alignment or a phylogenetic tree is
given for each of the family clusters. Whenever possible,
links to external resources are provided to allow for fur-
ther information, e.g., about structural properties or
underlying genes.

Validation
For the validation of our clustering procedures we needed
on one hand a "true" biologically verified cluster set and
on the other hand results of other clustering procedures
on this data set. Unfortunately, for large scale analyses
such validated data is not available. Thus, we decided on
performing our evaluations on two biologically meanig-
ful data sets, namely well characterized sequences from
Swiss-Prot and TrEMBL with (a) Pfam domain annota-
tions and (b) ENZYME annotations.

Clustering of such large data sets is not an every day rou-
tine. Normally the software to handle such data sets is not
publicly available and only the results of their application
are published. Although these results are mostly publicly
available for browsing on the web the underlying primary
data differs in all of these data sets. Additionally a system-
atic, unbiased and independent comparison would be
intractable on a large scale by querying the web.

One of the simplest well-studied and computationally
cheap methods to construct a clustering is single linkage
clustering. We implemented procedures to perform a sin-
gle linkage clustering on the two data sets at various differ-
ent cutoffs. This corresponds to performing single
sequence searches with a certain E-value cut-off for all

sequences in the data set with subsequent determination
of the connected components of the results. Additionally
we decided to compare our clustering procedure to one of
the most widely used and publicly available methods for
large scale protein sequence clustering, namely TribeMCL.

We applied the single linkage clustering as well as the SYS-
TERS clustering to the Pfam data set and computed the
Jaccard coeffcient, the sensitivity and the selectivity of the
clustering results in comparison to the "true" cluster set as
described in the Methods Section. All clusterings were per-
formed on the non-redundant data set as described under
Preprocessing in the Methods Section. After the clustering,
redundant sequences were added again to the cluster sets
to allow for a comparison with the "true" cluster sets.

For the Pfam cluster set the best single linkage clustering
with respect to the "true" cluster set can be achieved at an
E-value cutoff of 1e-53 (cf. Table 1). The SYSTERS cluster-
ing results in a slightly higher Jaccard value. Note that the
"best" single linkage clustering result can not be deter-
mined from the clustering itself, but was selected after
comparison with the "true" cluster set, which is not avail-
able when clustering new sequence data. Thus, the SYS-
TERS clustering turns out to be superior to the single
linkage clustering in the sense that it is able to determine
the correct cluster granularity without manual interaction.

In total we get only weak results for the Pfam data set. One
of the reasons is the choice of the "true" cluster set. Figure
1 shows an example where sequences composed of the
same domains and belonging to the same family of ade-
nylate cyclases end up in different "true" clusters. The rep-
etition of one domain and the presence/absence of
another domain lets them fall into different "true" clus-
ters. These sequences are in a biological sense correctly
clustered by SYSTERS but cause a problem when compar-
ing them to the "true" cluster set. In this case the "true"
clusters build subsets of the SYSTERS subclusters.

Another reason for the weak results in comparison with
the Pfam data set are fusion proteins. They bring together
sequences belonging to otherwise unrelated families.

We applied the single linkage clustering, the SYSTERS
clustering and the TribeMCL clustering to the ENZYME
data sets and computed the Jaccard coeffcient, the sensi-
tivity and the selectivity of the clustering results in com-
parison to the "true" cluster sets as described in the
Methods Section. For this data set the SYSTERS clustering
turns out to be superior to both the single linkage cluster-
ing and TribeMCL (cf. Table 1). In both ENZYME data sets
the TribeMCL clustering shows the best ability to reject
unrelated sequences but at the expense of finding dis-
tantly related sequences. As expected, the SYSTERS
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Table 1: Comparison of SYSTERS, TribeMCL and single linkage clustering (SLC) on Pfam and ENZYME data sets (J: Jaccard 
Coeffcient, SE: Sensitivity, SP: Specificity). The best result in each row is shown in bold face. For the single linkage clustering only the 
results of the "best" clustering are shown together with the corresponding cutoff E-value. In the case of Sensitivity/Specificity these 
values were choosen according to the intercept point of the two curves when plotting the values for all possible E-value cutoffs. All 
clustering procedures were applied to the non-redundant data set and redundant sequences were added to the cluster sets again to 
compare to the "true" cluster sets: a33,963,365 pairwise values of 283,113 non-redundant sequences used for clustering and 442,872 
redundant sequences used in comparison; b1,582,948 pairwise values of 38,176 non-redundant sequences used for clustering and 84,405 
redundant sequences used in comparison.

SLC SYSTERS TribeMCL at Inflation
best at cutoff Superfam. Subclust. 1.1 2 3 4 5

Pfama

J 0.19362 1e-53 0.15637 0.20815 --- --- --- --- ---
SE 0.26886 1e-49 0.55272 0.48302 --- --- --- --- ---
SP 0.26536 1e-49 0.17902 0.26781 --- --- --- --- ---

ENZYMEb

A.B.C.D

J 0.88760 1e-21 0.77445 0.89670 0.60390 0.60074 0.59990 0.59942 0.59778
SE 0.92295 1e-08 0.92931 0.92297 0.61323 0.60328 0.60224 0.60164 0.59989
SP 0.93616 1e-08 0.82294 0.96924 0.97543 0.99304 0.99357 0.99388 0.99416

A.B.C.?

J 0.71527 1e-15 0.65915 0.72410 0.48721 0.47900 0.47803 0.47746 0.47600
SE 0.74985 1e-03 0.75320 0.73727 0.49099 0.47996 0.47895 0.47836 0.47688
SP 0.80855 1e-03 0.84073 0.97592 0.98445 0.99586 0.99601 0.99608 0.99617

Multi domain proteinsFigure 1
Multi domain proteins Sequences with different domain compositions belong to the same family of Adenylate cyclases but 
form different "true" clusters (Pfam domains: RA: Ras association (RalGDS/AF-6) domain; LRR: Leucine Rich Repeats; PP2C: 
Protein phosphatase 2C; guanylate_cyc: Adenylate and Guanylate cyclase catalytic domain)
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subclustering shows the best result on the lowest level of
the ENZYME data set where individual enzymes are
identified.

In total all methods perform significantly better on the
ENZYME data set. This data set is much smaller than the
Pfam data set and contains well annotated enzymes. In
contrast to the Pfam data set, the "true" cluster set was
chosen on the basis of enzyme annotation, namely EC
numbers, as described in the Methods section. Sequences
belonging to the same "true" cluster thus may show the
same domain composition but may also differ in this
sense. Although this is a somehow weaker definition of a
"true" cluster set it is more focussing on the functional
properties of the proteins.

Conclusions
We have presented a hierarchical clustering of protein
sequences into biologically meaningful superfamily and
family clusters. A combination of an upward sweep with
dynamic determination of superfamily cutoffs and a
downward pass that divides superfamilies into families
has been introduced. We determine a superfamily by
detecting the largest increase in the size of the merging
subtree traversing from a leaf in a single linkage tree to the
root. We assume that at this point the twilight zone begins
because suddenly a large number of supposedly unrelated
sequences enters the cluster. Each of the superfamilies is
further cut into family clusters by detecting weak connec-
tions in the underlying distance graph.

It is interesting that both the superfamilies as well as the
family clusters are generated solely from the structure of
the single linkage tree (respectively the underlying dis-
tance graph), without any knowledge of the biological
information represented. Such self-structuring properties
have also been observed in other large data sets such as
phone-call or web-link graphs [18].

An alternative approach for cluster determination is pre-
sented by Sharan et al. [19]. Their CLICK algorithm (Clus-
ter Identification via Connectivity Kernels) uses graph-
theoretic and statistical techniques to first identify tight
groups of highly similar elements (kernels), which are
likely to belong to the same cluster. Several heuristic pro-
cedures are then used to expand the kernels into the full
clustering. In our much simpler approach, we produce a
hierarchical clustering based on the partitioning into
superfamilies, which already results in a biologically
meaningful set of family clusters.

Although the vast majority of cases we looked at are in
agreement with biological knowledge, there exist some
inconsistencies due to peculiarities in the data. Distinct
protein families may end up erroneously in the same

superfamily because of a fusion protein covering sequence
information from both families. The same effect can be
seen at multidomain protein families linked together by a
single highly conserved common domain. Although the
subclustering in most cases splits these superfamilies
again into distinct families, we would prefer to take care
of these cases already in the process of superfamily deter-
mination. Nevertheless, comparisons with other methods
showed that our clustering methods are able to produce a
biologically meaningful clustering.

Thus far, our hierarchy consists of two layers representing
protein superfamilies and families. For the third layer
located at the domain level, we currently rely on well-
established domain databases, but intend to follow our
methodology also in the direction of deriving so far
unknown domains.

Future plans also include a regular update of the SYSTERS
cluster set. Since the most time consuming part are the all-
against-all sequence searches, new sequence similarities
will be incrementally added instead of recalculating all
similarity values. The clustering procedures themselves
rely on the topology of the whole sequence space and can
be run on the whole data set whenever the underlying
sequence set changes. Other future developments will be
in the direction of the so called tree of life. We plan to com-
bine the evolutionary information given by each of the
protein clusters to extend the knowledge about the rela-
tionship between different groups of species.

Methods
Clustering procedures
Here we present the methods that we use to compute our
clustering of protein sequences, i.e., selecting super-
families and dividing them into reasonable family clus-
ters. Figure 2 shows a schematic overview.

Preprocessing
The total number of entries in all protein sequence data-
bases together now exceeds about a million. This number
includes fragmental as well as identical (sub-)sequences
from different resources. To reduce the amount of data
without losing information we exclude redundant infor-
mation in the form of identical and nearly identical (sub-
)sequences from the data set prior to the clustering.

We model the remaining protein space as a weighted
undirected graph with pairwise distances attached to the
edges. We decided on using E-values computed from pair-
wise local sequence alignments [20] as distances (all-
against-all database searches were carried out on a Paracel
GeneMatcher™ machine [21]). The E-value (short for
Expectation value) is the number of alignments with sim-
ilarity scores equivalent to or better than the score S that
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one expects to find in a database search by chance. Thus,
the lower the E-value, the more significant is the score.
Typically, matches with an E-value lower than 1e-20 are
assumed to be relevant, while those sequence pairs with
an E-value higher than 0.01 need further experimental
evidence to be accepted as being distantly related. Values
in between belong to the so called twilight zone, and a clear
statement about relatedness cannot be made for them. All
sequence pairs whose E-value was worse than 0.05 were
assumed to be unrelated and their distance was set to
infinity. We are aware that we may miss distantly related
sequences with this E-value threshold in a single sequence
search. However, by using each sequence in the data set as
query in a database search and combining all results we
hope to overcome this problem. The resulting symmetric
distance matrix D contains all pairwise distances d(si, sj)
for each pair of protein sequences si and sj, 1 ≤ i, j ≤ n, for
which d(si, sj) < ∞.

Single linkage tree
The distance matrix D can be represented by an undirected
weighted graph G, which we call the distance graph. G = (V,
E) is defined as follows: V = {vi | vi = {si}, i ∈ {1, ..., n}}
and E = {(vi, vj) | i, j, ∈ {1, ..., n}, i ≠ j, d(si, sj) < ∞}. The
weight w(vi, vj) of an edge (vi, vj) ∈ E is given by w(vi, vj) =
d(si, sj).

The single linkage tree is built based on the distance graph
G in an agglomerative manner. The algorithm starts with

a forest (collection of trees) F where each sequence corre-
sponds to a distinct tree. As long as there are edges in the
graph G, the edge with the smallest weight is selected and
the adjacent nodes in G are merged. Edges linking this
newly created node to adjacent ones in the graph receive
the weight of the smaller of the two original edges. The
two corresponding trees in F are collected together in a
new tree rooted by a parental node labeled with the con-
necting edge weight. Finally, to allow for a better handling
of the data, the resulting unconnected trees are rooted by
connecting their roots to an artificial overall root node
with weight infinity.

Superfamily determination
Different protein superfamilies display a different degree
of conservation. Therefore, for each superfamily, the twi-
light zone starts at a different cutoff. A crucial problem
thus lies in the determination of an appropriate E-value
threshold for each superfamily. To this end we have
devised the following procedure. For an edge of the tree
linking, say, a parent p and a child q, we compute the
quantity

J represents the ratio between the size of all the subtrees
below p without the child q and the size of the subtree
below q. Watching the development of J as one walks up

Schematic overview of the clustering proceduresFigure 2
Schematic overview of the clustering procedures We start with a single linkage tree constructed from pairwise dis-
tances. Each leaf in the tree corresponds to a protein sequence. Superfamilies are determined based on the internal structure 
of the tree. For each superfamily a distinct superfamily distance graph is built. This weighted graph is cut at weak connections 
into subclusters.

Single linkage tree Superfamilies Superfamily distance graph Subclusters

J q p
subtreesize p subtreesize q

subtreesize q
( , )

( ) ( )

( )
.= −
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the tree from a leaf towards the root, one can observe that
J tends to increase dramatically as one leaves the super-
family to which the leaf belongs, and then decreases
again. This intuition is captured by our algorithm. For
each leaf, we determine the maximum J as one proceeds
from the leaf to the root of the single linkage tree. This
strategy is applied to all leaves in the tree, assigning a
superfamily to each leaf. In the end, inclusions are
resolved by keeping the largest superfamilies. We call the
internal node induced by a superfamily the superfamily
root. The E-value linked to this node is called the super-
family cutoff. Refer to Algorithm 1 in Figure 3 for more
details. Figure 4 shows an example of the superfamily
determination. Only a part of the complete single linkage
tree consisting of 290,811 leaves and 186,176 internal
nodes is shown. The superfamily procedure correctly
determines the ephrin family of sequences. Ephrins are
membrane-attached proteins involved in the develop-
ment of the nervous system and can be further distin-
guished into type A and type B ephrins depending on their
membrane binding mechanism.

Subclustering
Stepping down the hierarchy of the single linkage tree
starting at a superfamily root usually splits off one
sequence after another, but does not lead to a meaningful
partitioning into families. Since the single linkage tree is
built using only the best (lowest) E-values connecting
subtrees, information about the connectivity within these
subtrees is lost in the hierarchy. For each superfamily we
construct a distance graph that includes only those nodes
labeled with sequences belonging to the respective super-
family and those of the induced edges which are labeled
with a distance better than or equal to the superfamily cut-
off. Let SF be the set of sequences belonging to the super-
family sf and c the corresponding superfamily cutoff. We
call the connected weighted graph G = (V, E) with V = {vi
| vi = {si}, si ∈ SF} and E = {(vi, vj) | w(vi, vj) = d(si, sj), si, sj
∈ SF, i ≠ j, d(si, sj) ≤ c} the superfamily distance graph of sf.

To split a superfamily distance graph into family clusters,
we use an algorithm that can be seen as a weighted version
of a method presented by Hartuv et al. [22]. First, we
review some standard graph-theoretic definitions. The
edge-connectivity k(G) of a graph G is the minimum
number k of edges whose removal results in a discon-

The SYSTERS algorithmsFigure 3
The SYSTERS algorithms

Algorithm 1: Superfamilies

Input: Single linkage tree T = (V, E)
with n leaves (sequences) and root T root

Output: Superfamilies
1: for each leaf li ∈ V , i ∈ {1, . . . , n} do

2: q ← li
3: I ← 0
4: sfi ← li
5: while q �= T root do

6: p ← parent (q)

7: J ←
subtreesize (p) - subtreesize (q)

subtreesize (q)
8: if J > I then

9: I ← J

10: sfi ← q

11: end if

12: q ← p

13: end while

14: end for

15: Resolve inclusions by keeping
the largest superfamilies

Algorithm 2: weighted HCS

Input: Superfamily distance graph G = (V, E)
Output: Subclusters
1: (H1, H2, C) ← mincut (G)

2: x ← |E| ∗

∑
i∈C

w(i)
∑

j∈E
w(j)

3: if x >
|V |
2 then

4: output G

5: else

6: weighted HCS (H1)
7: weighted HCS (H2)
8: end if

Algorithm 3: Subclustering

Input: Superfamily distance graph G

Output: Family clusters
1: repeatedly merge nodes with degree 1

with their respective adjacent node
2: weighted HCS (G)
3: perform singleton adoption
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nected graph. A cut in a graph is a set of edges C whose
removal disconnects the graph into two disjoint compo-
nents H1 and H2. A minimal cut is a cut with a minimum
number of edges. The length p(u, v) of the shortest path
between nodes u and v in G is the minimum length of a
path from u to v, if such a path exists; otherwise p(u, v) =
∞. The diameter of a connected graph G is the maximum
shortest path length p(u, v) over all pairs of nodes u and v
in G.

The key definition of the algorithm in [22] is the follow-
ing: An undirected unweighted graph G with n > 1 nodes

is called highly connected, if k(G) > . A highly connected

subgraph (HCS) is an induced subgraph H ⊆ G, such that
H is highly connected. In an unweighted graph this defi-
nition results in the following property: The diameter of
every highly connected subgraph is at most two. Thus,
these subgraphs are compact clusters which need not meet
the constraint of being fully connected.

Excerpt from the single linkage treeFigure 4
Excerpt from the single linkage tree The superfamily of sequence O93431 is determined as follows (traversing the tree 
along the branches depicted as bold lines). The first internal node connects this sequence with the four sequences P52794, 
P20827, P52793, and P97553 at an E-value of 1e-52. Thus, the ratio of the size of the merging subtree and the size of the cur-
rent subtree at this point is 4/1. Stepping up the hierarchy, the next node (E-value 4e-38) connects these five sequences with a 
subtree consisting of 13 sequences, resulting in a ratio of 13/5 (= 2.6). Stepping further up the hierarchy, the following ratios 
are 1/18 (= 0.056 at E-value 6e-38), 2/19 (= 0.105 at E-value 2e-37), 15/21 (= 0.714 at E-value 2e-13), 1/36 (= 0.028 at E-value 
5e-10), 211 975/37 (= 5729.054 at E-value 0.022), 259/212 012 (= 0.001 at E-value 0.023), etc. Taking the maximum of the 
ratios we find the superfamily root at E-value 5e-10 as the last node before the largest relative increase (depicted as a bullet in 
the tree). The superfamily of sequence O93431 hence consists of the 37 sequences belonging to the ephrin type A and type B 
families plus a few predicted proteins.

ephrin

type A

238 sequences

259 sequences

4e−38

0.024

6e−38

Q19475

type B

proteins
predicted

211,975 sequences

ephrin

2e−13

5e−10

0.022
0.023

2e−37
1e−52

165 sequences

O44516
Q9V4E1
Q9U3M2
Q9U474
CE21543
Q9W6H9
P98172
O13097
O73612
O73874
P52800
Q9PUJ4
Q9PT69
O35393
Q15768
Q9PTD0
Q9PTD1
P79727
P52802
P52801
JE0322
O43921
P79728
P52804
P97605
O08543
P52803
O08545
P52797
O93431
P52794
P20827
P52793
P97553
O08542
P52798

n

2
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The original HCS algorithm in [22] recursively splits a
connected graph at a minimal cut site until a disjoint set
of highly connected subclusters is reached. For our purposes
we had to modify the algorithm to be able to handle a
weighted graph. Precisely, in our weighted HCS algo-
rithm, if the edge weights covered by the minimal cut are
approximately the same as in the remaining graph, the
graph is assumed to be already highly connected and is
not further split into subclusters (see Algorithm 2 in Fig-
ure 3).

The E-values in our data set range from 0 (corresponding
to any E-value better than 1e-180) to 0.05. To be able to
find a minimal cut in our graph, edge labels should be
positive values with a low value representing a weak con-
nection and a high value representing a strong connec-
tion. Instead of using the raw E-values we label the edges
in our graph with the negative logarithm of the corre-
sponding E-value each. Since the logarithm of 0 is not
defined, we use an arbitrary value (e.g., 181) for these
edges instead of the logarithm. The running time of both
HCS algorithms is bounded by 2N * f(n, m), where N is
the number of clusters found and f(n, m) is the time com-
plexity of computing a minimum cut in a graph with n
nodes and m edges. We use the implementation of the
"mincut" algorithm given in the LEDA [23] distribution,

which has a time complexity of (nm + n2 log n).

To apply this algorithm to our data set we added a pre-
processing as well as a postprocessing step as shown in
Algorithm 3 in Figure 3. First, we describe the preprocess-
ing. Cuts consisting of only one edge in the graph will be
found first by the mincut algorithm, but are as time con-
suming to find as other cuts.

Sequences being connected with the remaining graph by
only one edge are either fragmental or are the so far sole
representative of a protein family in the sequence data-
base. The underlying data of our clustering is known to
contain lots of fragmental sequences. Before applying the
HCS algorithm to our graph, we repeatedly merge all
nodes connected to the remaining graph with only one
edge with their respective adjacent node.

Nevertheless, the HCS algorithm may split off single
sequences as subclusters. Thus, in a postprocessing step,
sequences which ended up after the subclustering as a sin-
gle sequence cluster are assigned to their closest neighbor-
ing cluster (singleton adoption), if there is no contradiction.
When there are several minimum cuts in a graph, the orig-
inal as well as our weighted HCS algorithm might choose
a minimum cut which, from the clustering point of view,
is not optimal. In many cases this process will break clus-
ters into singletons. In the original algorithm in [22] iter-
ations were introduced to handle these cases. Since we are

working on a weighted graph these cases occur very rarely
and mostly are compensated by the subsequent singleton
adoption step.

Figure 5 shows an example of splitting the superfamily
distance graph of the ephrin superfamily (see Fig. 4) into
two subclusters representing ephrin types A and B.

Validation
Pfam sequence set
For our analyses we used all sequences from the Swiss-
Prot and TrEMBL databases annotated with Pfam
domains (Rel. 9). This data set consists of 5,724 single
domain families assigned to 733,830 sequences. Since our
aim is not to cluster single domains but full-length
sequences, we define a "true" cluster consisting of all
sequences having the same domain composition. Frag-
mental sequences will cause a problem in our analyses by
showing a different domain composition than complete
sequences. We restrict our analyses to sequences not
annotated as being fragmental in the Swiss-Prot or
TrEMBL databases. The resulting "true" cluster set thus
consists of 442,872 sequences sorted into 16,990 distinct
families.

ENZYME sequence set
The ENZYME database [24] stores data of a functional
classification system based on function rather than
sequence or structure. Each enzyme of known function is
given an EC (Enzyme Commission) Number of the form
A.B.C.D with

A : type of reaction catalyzed (at present 6 classes)

B : subclass, information about type of compound or
group involved

C : sub-subclass, further specifies the nature of the
reaction

D : serial number to identify individual enzyme within
sub-subclass

Although several distinct proteins may catalyze the same
reaction, they are all ascribed the same EC number, since
the naming system is based upon the reaction catalyzed.
Thus, sequences given the same EC number do not neces-
sarily show sequence similarity.

For our analyses we used all sequences from the Swiss-
Prot and TrEMBL databases annotated with a unique EC
number. We define two different "true" cluster sets repre-
senting different levels of granularity as follow: (1)
sequences having A, B, C, and D in common build a clus-
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ter, (2) sequences having A, B, and C in common build a
cluster. The data set consists of 84,405 sequences.

Clustering coeffcient
Assuming we have a well defined cluster set, we can com-
pare our cluster set with this "true" cluster set based on the
following numbers:

Number of sequence pairs clustered together in

a: both cluster sets ("true positives").

b: the "true" cluster set, but not in our cluster set ("false
negatives").

c: our cluster set, but not in the "true" cluster set ("false
positives").

The superfamily distance graph of the ephrin superfamilyFigure 5
The superfamily distance graph of the ephrin superfamily The graph contains only those edges which represent E-val-
ues of at least the superfamily cutoff 5e-10. The width of an edge is according to its E-value, here ranging from 5e-10 (thinnest 
edge) to 3e-149 (thickest edge). The subclustering procedure first splits off nodes from the bottom right of the graph as single 
sequence clusters. These sequences are predicted proteins which are not yet confirmed as functioning by any experiment. The 
last accepted split in the graph results in the partitioning into the two major groups of ephrin type A (left) and type B (right) 
sequences as shown by the dashed line. Single sequence clusters are added to the ephrin type B family in the subsequent single-
ton adoption step.
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As similarity measure we decided on the Jaccard similarity

[25] defined as follows: . A perfect clustering

which is identical to the "true" cluster set would result in
S = 1.

Additionally we calculated the sensitivity (the ability to

detect distantly related sequences: ) and the

specificity (the ability to reject non-related sequences:

) for all cluster sets.

Single linkage clustering
We performed a single linkage clustering at various static
E-values from 1e-02 to 1e-180. All resulting cluster sets
have in common that when plotting the number of clus-
ters against the cutoff E-value, one observes a continuous,
smooth curve, indicating that there is no obvious (biolog-
ically given) choice of a cutoff (data not shown).

TribeMCL
TribeMCL [7] is a method for clustering proteins into 'pro-
tein families' using a Markov Clustering method. It is
primarily used for comparing protein sequence sets of
completely sequenced genomes. We performed TribeMCL
clustering (Version 03–276) with different inflation value
settings ranging from 1.1 to 5 for all data sets. The infla-
tion parameter is part of the core MCL algorithm and
influences the granularity (or size) of the output clusters.
For very small or 'tight' protein families an inflation value
setting of 4.0 or 5.0 is recommended. For larger (broader)
protein families settings of 1.1, 2.0 and 3.0 can be used.

For the Pfam data set we were not able to perform
TribeMCL clustering due to memory allocation problems
while executing the program.
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