TY - JOUR A1 - Prylutska, Svitlana A1 - Grebinyk, Anna A1 - Ponomarenko, Stanislav A1 - Gövem, Defne A1 - Chumachenko, Vasyl A1 - Kutsevol, Nataliya A1 - Petrovsky, Mykola A1 - Ritter, Uwe A1 - Frohme, Marcus A1 - Piosik, Jacek A1 - Prylutskyy, Yuriy T1 - Toxicity of Water-Soluble D-g-PNIPAM Polymers in a Complex with Chemotherapy Drugs and Mechanism of Their Action In Vitro JF - International Journal of Molecular Sciences N2 - The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology–Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated. KW - star-like copolymer KW - drug KW - Lewis lung carcinoma KW - cytotoxicity Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-18790 SN - 1422-0067 VL - 25 IS - 5 PB - MDPI ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Grebinyk, Sergii A1 - Ponomarenko, Stanislav A1 - Virych, Pavlo A1 - Chumachenko, Vasyl A1 - Kutsevol, Nataliya A1 - Prylutskyy, Yuriy A1 - Ritter, Uwe A1 - Frohme, Marcus T1 - Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer JF - Nanoscale Advances N2 - The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs – doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs’ toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-16749 VL - 4 IS - 23 SP - 5077 EP - 5088 PB - Royal Society of Chemistry (RSC) ER -