TY - CHAP A1 - Geisler, Sebastian A1 - Bauer, Joachim A1 - Haak, Ulrich A1 - Stolarek, David A1 - Schulz, K. A1 - Wolf, H. A1 - Meier, W. A1 - Trojahn, M. A1 - Matthus, E. A1 - Beyer, Harald A1 - Old, G. A1 - Marschmeyer, Steffen A1 - Kuck, B. T1 - Double exposure technology for KrF lithography N2 - The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch. We will use the DEL for the integration of critical layers for dedicated applications requiring resolution enhancement into 0.13 μm BiCMOS technology. In this paper we present the overlay precision and the focus difference of 1st and 2nd exposure as critical parameters of the DEL for k1 ≤ 0.3 lithography (100 nm half pitch) with binary masks (BIM). The realization of excellent overlay (OVL) accuracy is a main key of double exposure and double patterning techniques. We show the DEL requires primarily a good mask registration, when the wafer stays in the scanner for both exposures without alignment between 1st and 2nd exposure. The exposure tool overlay error is more a practical limit for double patterning lithography (DPL). Hence we prefer the DEL for the resolution enhancement, especially if we use the KrF high NA lithography tool for 130 nm generation. Experimental and simulated results show that the critical dimension uniformity (CDU) depends strongly on the overlay precision. The DEL results show CDU is not only affected by the OVL but also by an optical proximity effect of 1st and 2nd exposure and the mask registration. The CD uniformity of DEL demands a low focus difference between 1st and 2nd exposure and therefore requires a good focus repeatability of the exposure tool. The Depth of Focus (DOF) of 490 nm at stable CD of lines was achieved for DEL. If we change the focus of one of the exposures the CD-focus performance of spaces was reduced with simultaneous line position changing. CDU vs. focus difference between 1st and 2nd exposure demands a focus repeatability <100 nm for the exposure tool. Summary, the results show DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation. KW - double exposure lithography KW - double patterning lithography KW - KrF Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15176 SP - 65 EP - 73 PB - Society of Photo-Optical Instrumentation Engineers (SPIE) ER - TY - CHAP A1 - Bauer, Joachim A1 - Heinrich, Friedhelm A1 - Fursenko, Oksana A1 - Marschmeyer, Steffen A1 - Bluemich, Adrian A1 - Pulwer, Silvio A1 - Steglich, Patrick A1 - Villringer, Claus A1 - Mai, Andreas A1 - Schrader, Sigurd T1 - Very high aspect ratio through silicon via reflectometry T2 - Proceedings of SPIE N2 - Through Silicon Via (TSV) technology is a key feature of new 3D integration of circuits by creation of interconnections using vias, which go through the silicon wafer. Typically, the highly-selective Bosch Si etch process, characterized by a high etch rate and high aspect ratio and forming of scallops on the sidewalls is used. As presented in this paper, we have developed an experimental setup and a respective evaluation algorithm for the control and monitoring of very high aspect ratio TSV profiles by spectroscopic reflectometry. For this purpose square via arrays with lateral dimension from 3 to 10 μm were fabricated by a Bosch etch process and analyzed by our setup. By exploiting interference and diffraction effects of waves reflected from the top and bottom surfaces as well as from the side walls of the TSV patterns, the measurements provided etch depths, CD values and scallop periods. The results were compared with data obtained by a commercial wafer metrology tool. Aspect ratios of up to 35:1 were safely evaluable by our setup. Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-13758 SN - 1996-756X ER - TY - CHAP A1 - Pulwer, Silvio A1 - Steglich, Patrick A1 - Villringer, Claus A1 - Bauer, Joachim A1 - Burger, Martin A1 - Franz, M. A1 - Grieshober, K. A1 - Wirth, F. A1 - Blondeau, J. A1 - Rautenberg, J. A1 - Mouti, S. A1 - Schrader, Sigurd T1 - Triangulation-based 3D surveying borescope N2 - In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of ± 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations. KW - borescope KW - 3D measurement KW - triangulation KW - lens design KW - calibration KW - defect Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15307 SP - 51 EP - 56 PB - SPIE ER - TY - CHAP A1 - Geisler, Sebastian A1 - Bauer, Joachim A1 - Haak, Ulrich A1 - Jagdhold, Ulrich A. A1 - Pliquett, R. A1 - Matthus, E. A1 - Schrader, R. A1 - Wolf, H. A1 - Baetz, U. A1 - Beyer, Harald A1 - Niehoff, Martin T1 - Optical proximity correction for 0.13 um SiGe:C BiCMOS N2 - We present results for a rule based optical proximity (RB-OPC) and a model based optical proximity correction (MB-OPC) for 0.13 μm SiGe:C BiCMOS technology. The technology provides integrated high performance heterojunction bipolar transistors (HBTs) with cut-off frequencies up to 300 GHz. This requires an optical proximity correction of critical layers with an excellent mask quality. This paper provides results of the MB-OPC and RB-OPC using the Mentor Calibre software in comparison to uncorrected structures (NO-OPC). We show RB- and MB-OPC methods for the shallow trench and gate layer, and the RB-OPC for the emitter window-, contact- and metal layers. We will discuss the impact of the RB- and MB-OPC rules on the process margin and yield in the 0.13 μm SiGe:C BiCMOS technology, based on CD-SEM data obtained from the evaluation of the RB- and MB-OPC corrected SRAM cells. KW - optical proximity correction KW - 0.13µm SiGe:C BiCMOS Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15194 SP - 376 EP - 381 PB - Society of Photo-Optical Instrumentation Engineers (SPIE) ER - TY - JOUR A1 - Bauer, Joachim A1 - Fursenko, Oksana A1 - Marschmeyer, Steffen A1 - Heinrich, Friedhelm A1 - Villasmunta, Francesco A1 - Villringer, Claus A1 - Zesch, Christoph A1 - Schrader, Sigurd T1 - Spectroscopic reflectometry for characterization of Through Silicon Via profile of Bosch etching process JF - Journal of Vacuum Science & Technology B N2 - Through Silicon Via (TSV) technology is a key in 3D integration of circuits by the creation of interconnects using vias, which go through the full silicon wafer. Typically, a highly-selective Bosch Si etch process is used. It is characterized by a high etch rate at a high aspect ratio, whereby scallops on the sidewalls are generated. In this work, square via arrays with dimensions from 3 to 50 μm and up to 300 μm depth were fabricated and analyzed by spectroscopic reflectometry. The reflectometric data are compared to simulations by a novel theoretical approach. In order to simulate the reflectance spectra of TSV arrays, a combination of 2D and 3D rigorous coupled wave analysis was applied. Besides the via depth, the sidewall angle and the corner radius of the bottom profile were considered in the model. The general requirements on spectral resolution in TSV metrology are discussed. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-16093 VL - 37 IS - 6 PB - American Vacuum Society (AVS) ER - TY - GEN A1 - Steglich, Patrick A1 - Villringer, Claus A1 - Pulwer, Silvio A1 - Bauer, Joachim A1 - Heinrich, Friedhelm A1 - Casalboni, Mauro A1 - Schrader, Sigurd T1 - Advanced Nanophotonics: Silicon-Organic Hybrid Technology T2 - Wissenschaftliche Beiträge 2016 N2 - Integrated photonic devices have gained increasing research interests. Especially silicon photonics have become very attractive for various optical applications. Using silicon-on-insulator as a material platform provides the ability to fabricate photonic devices with electronic devices on a single chip. Driven by substantial research investments, the integration of photonic devices on silicon-on-insulator substrates has reached a degree of maturity that already permits industrial adoption. However, silicon has the disadvantage of linear electro-optical effects, and, therefore, advanced modulation formats are difficult to realize when using silicon-based high-speed modulators. Hence, a new approach was proposed: the silicon-organic hybrid technology. This technology is a viable extension of the silicon-on-insulator material system for efficient high-speed modulation. We herewith present our theoretical and experimental investigations of the silicon-organic hybrid slot-waveguide ring resonator. The advanced device design is described in detail, which allows using both, the efficient silicon-on-insulator strip-waveguides and the silicon-organic hybrid slot-waveguides in single ring resonator. For the first time, we report the transmission spectra of such a resonator covered with an electro-optical polymer. N2 - Integrierte photonische Bauelemente werden in der Forschung immer bedeutender. Besonders die Siliziumphotonik ist für verschiedene optische Anwendungen sehr attraktiv. Die Verwendung von Silizium-auf-Isolator-Materialsystemen bietet die Möglichkeit, photonische Bauelemente mit elektronischen Geräten auf einem einzelnen Chip zu entwickeln. Durch erhebliche Forschungsinvestitionen hat die photonische Integration auf Silizium-auf-Isolator-Substraten einen Reifegrad, der bereits Industriemaßstäben genügt. Jedoch hat Silizium keinen linearen elektrooptischen Effekt und damit sind moderne Modulationsformate nur schwierig zu realisieren. Daher wird seit eingen Jahren ein neuer Ansatz, die Silizium-Organik Hybridtechnologie, verfolgt. Diese Technologie ist eine tragfähige Ausdehnung des Silizium-auf-Isolator-Materialsystems für eine effiziente Hochgeschwindigkeitsmodulation und optische Signalverarbeitung. In diesem Artikel präsentieren wir unsere theoretischen und experimentellen Untersuchungen zu einem Silizium-Organik Hybrid Ringresonator. Das Design und die Herstellung des neuartigen nanophotonischen Bauelements werden im Detail beschrieben. Der demonstrierte Ringresonator kombiniert die Vorteile zweier verschiedener Wellenleiterarten in einem einzelnen Ring, dem verlustarmen Kanal-Wellenleiter und dem Silizium-organischen Hybridschlitzwellenleiter. Wir demonstrieren erstmals ein Transmissionsspektrum eines solchen Ringresonators, der mit einem elektro-optischen Polymer beschichtet ist. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-5337 SN - 0949-8214 VL - 20 SP - 45 EP - 48 ER - TY - JOUR A1 - Steglich, Patrick A1 - Mai, Christian A1 - Villringer, Claus A1 - Dietzel, Birgit A1 - Bondarenko, Siegfried A1 - Ksianzou, Viachaslau A1 - Villasmunta, Francesco A1 - Zesch, Christoph A1 - Pulwer, Silvio A1 - Burger, Martin A1 - Bauer, Joachim A1 - Heinrich, Friedhelm A1 - Schrader, Sigurd A1 - Vitale, Francesco A1 - De Matteis, Fabio A1 - Prosposito, Paolo A1 - Casalboni, Mauro A1 - Mai, Andreas T1 - Silicon-organic hybrid photonics: an overview of recent advances, electro-optical effects and CMOS integration concepts JF - Journal of Physics: Photonics N2 - In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-13882 SN - 2515-7647 VL - 3 IS - 2 ER - TY - CHAP A1 - Steglich, Patrick A1 - Mai, Christian A1 - Stolarek, David A1 - Lischke, Stefan A1 - Kupijai, Sebastian A1 - Villringer, Claus A1 - Pulwer, Silvio A1 - Heinrich, Friedhelm A1 - Bauer, Joachim A1 - Meister, Stefan A1 - Knoll, Dieter A1 - Casalboni, Mauro A1 - Schrader, Sigurd T1 - Partially slotted silicon ring resonator covered with electro-optical polymer T2 - Proceedings of SPIE N2 - In this work, we present for the first time a partially slotted silicon ring resonator (PSRR) covered with an electro-optical polymer (Poly[(methyl methacrylate)-co-(Disperse Red 1 acrylate)]). The PSRR takes advantage of both a highly efficient vertical slot waveguide based phase shifter and a low loss strip waveguide in a single ring. The device is realized on 200 mm silicon-on-insulator wafers using 248 nm DUV lithography and covered with the electro-optic polymer in a post process. This silicon-organic hybrid ring resonator has a small footprint, high optical quality factor, and high DC device tunability. A quality factor of up to 105 and a DC device tunability of about 700 pm/V is experimentally demonstrated in the wavelength range of 1540 nm to 1590 nm. Further, we compare our results with state-of-the-art silicon-organic hybrid devices by determining the poling efficiency. It is demonstrated that the active PSRR is a promising candidate for efficient optical switches and tunable filters. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-13771 SN - 1996-756X ER - TY - JOUR A1 - Bauer, Joachim A1 - Gutke, Marko A1 - Heinrich, Friedhelm A1 - Edling, Matthias A1 - Stoycheva, Vesela A1 - Kaltenbach, Alexander A1 - Burkhardt, Martin A1 - Gruenefeld, Martin A1 - Gamp, Matthias A1 - Gerhard, Christoph A1 - Steglich, Patrick A1 - Steffen, Sebastian A1 - Herzog, Michael A1 - Dreyer, Christian A1 - Schrader, Sigurd T1 - Novel UV-transparent 2-component polyurethane resin for chip-on-board LED micro lenses JF - Optical Materials Express N2 - In this work we present a novel optical polymer system based on polyurethane elastomer components, which combines excellent UV transparency with high thermal stability, good hardness, high surface tension and long pot life. The material looks very promising for encapsulation and microlensing applications for chip-on-board (CoB) light-emitting diodes (LED). The extinction coefficient k, refractive index n, and bandgap parameters were derived from transmission and reflection measurements in a wavelength range of 200-890 nm. Thermogravimetry and differential scanning calorimetry were used to provide glass transition and degradation temperatures. The surface tension was determined by means of contact angle measurements. As proof of concept, a commercial InGaN-CoB-LED is used to demonstrate the suitability of the new material for the production of microlenses. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-13472 SN - 2159-3930 VL - 10 IS - 9 SP - 2085 EP - 2099 ER - TY - JOUR A1 - Fursenko, Oksana A1 - Lukosius, Mindaugas A1 - Bauer, Joachim A1 - Villringer, Claus A1 - Lux, Helge A1 - Bärwolf, Florian A1 - Lisker, Marco A1 - Mai, Andreas T1 - Diagnostic of graphene on Ge(100)/Si(100) in a 200 mm wafer Si technology environment by spectroscopic ellipsometry/reflectometry JF - Journal of Vacuum Science & Technology B N2 - Comprehensive diagnostics is a prerequisite for the application of graphene in semiconductor technologies. Here, the authors present long-term investigations of graphene on 200-mm Ge(100)/Si(100) wafers under clean room environmental conditions. Diagnostic of graphene was performed by a fast and nondestructive metrology method based on the combination of spectroscopic ellipsometry and reflectometry (SE/R), realized within a wafer optical metrology tool. A robust procedure for unambiguous thickness monitoring of a multilayer film stack, including graphene, interface layer GeOx underneath graphene, and surface roughness is developed and applied for process control. The authors found a relationship between the quality of graphene and the growth of GeOx beneath graphene. Enhanced oxidation of Ge beneath graphene was registered as a long-term process. SE/R measurements were validated and complemented using atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and secondary ion mass spectrometry. This comparative study shows a high potential for optical metrology of graphene deposited on Ge/Si structures, due to its great sensitivity, repeatability, and flexibility, realized in a nondestructive way. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-16083 VL - 37 IS - 6 PB - American Vacuum Society (AVS) ER - TY - CHAP A1 - Fursenko, Oksana A1 - Bauer, Joachim A1 - Marschmeyer, Steffen T1 - 3D through silicon via profile metrology based on spectroscopic reflectometry for SOI applications N2 - Through-silicon via (TSV) technology is a key feature for 3D circuit integration. TSVs are formed by etching a vertical via and filling them with a conductive material for creation of interconnections which go through the silicon or silicon-on-insulator (SOI) wafer. The Bosch etch process on Deep Reactive Ion Etching (DRIE) is commonly used for this purpose. The etch profile defined by the critical dimensions (CDs) at the top and at the bottom, by the depth and by the scallop size on the sidewall needs to be monitored and well controlled. In this work a nondestructive 3D metrology of deeply-etched structures with an aspect ratio of more than 10 and patterns with lateral dimensions from 2 to 7 μm in SOI wafer is proposed. Spectroscopic reflectometry in the spectral range of 250-800 nm using a production metrology tool was applied. The depth determinations based on different algorithms are compared. The Pearson correlation coefficient between measured and calculated reflection is suggested as the most appropriate method. A simple method for top CD evaluation is proposed by the measurement of reflection and using the polynomial approximation of reflection versus TSV filling coefficient which is determined as ratio of CD to pitch. The 3D RCWA simulations confirm this dependence. KW - semiconducting wafer KW - etching KW - reflectance spectroscopy KW - silicon KW - 3D metrology KW - metrology KW - scanning electron microscopy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15272 SP - 268 EP - 273 PB - Society of Photo-Optical Instrumentation Engineers (SPIE) ER - TY - CHAP A1 - Fursenko, Oksana A1 - Lukosius, Mindaugas A1 - Lupina, G. A1 - Bauer, Joachim A1 - Villringer, Claus A1 - Mai, Andreas T1 - Development of graphene process control by industrial optical spectroscopy setup N2 - The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots (~ 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated. This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility. KW - graphene KW - spectroscopic ellipsometry KW - optical constant KW - reflectometry KW - optical metrology KW - AFM KW - Raman spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15319 SP - 250 EP - 259 PB - SPIE ER - TY - CHAP A1 - Geisler, Sebastian A1 - Bauer, Joachim A1 - Haak, Ulrich A1 - Stolarek, David A1 - Schulz, K. A1 - Wolf, H. A1 - Meier, W. A1 - Trojahn, M. A1 - Matthus, E. T1 - 100 nm half–pitch double exposure KrF lithography using binary masks N2 - In this paper we investigate the process margin for the 100nm half - pitch double exposure KrF lithography using binary masks for different illumination settings. The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch e.g. for the integration of dedicated layers into 0.13 μm BiCMOS with critical dimension (CD) requirements exceeding the standard 248 nm lithography specification. The DEL was carried out with a KrF Scanner (Nikon S207D, NALens = 0.82) for a critical dimension (CD) of 100nm half pitch. The chemical amplified positive resists SL4800 or UV2000 (Rohm & Haas) with a thickness of 325nm were coated on a 70 nm AR10L (Rohm & Haas) bottom anti-reflective coating (BARC). With a single exposure and using binary masks it is not possible to resolve 100nm lines with a pitch of 200 nm, due to the refraction and the resolution limit. First we investigated the effect of focus variation. It is shown that the focus difference of 1st and 2nd exposure is one critical parameter of the DEL. This requires a good focus repeatability of the scanner. The depth of focus (DOF) of 360 nm with the coherence parameter σ = 0.4 was achieved for DEL with SL4800 resist. The influence of the better resist resolution of UV2000 on the process window will be shown (DOF = 460 nm). If we change the focus of one of the exposures the CD and DOF performance of spaces is reduced with simultaneous line position changing. Second we investigated the effect of different illumination shapes and settings. The results for conventional illumination with different values for σ and annular illumination with σinner = 0.57 and σouter = 0.85 will be shown. In summary, the results show that DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation. KW - KrF lithography KW - double exposure lithography KW - binary masks Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15169 SP - 698 EP - 705 ER - TY - JOUR A1 - Bauer, Joachim A1 - Fursenko, Oksana A1 - Heinrich, Friedhelm A1 - Gutke, Marko A1 - Kornejew, Eckhart A1 - Brödel, Oliver A1 - Dietzel, Birgit A1 - Kaltenbach, Alexander A1 - Burkhardt, Martin A1 - Edling, Matthias A1 - Steglich, Patrick A1 - Herzog, Michael A1 - Schrader, Sigurd T1 - Determination of optical constants and scattering properties of transparent polymers for use in optoelectronics JF - Optical Materials Express N2 - Knowledge of optical constants, i.e. refractive index n and extinction coefficient k, and light scattering properties of optical polymers are required to optimize micro-optics for light-emitting diodes in terms of efficiency, color properties and light distribution. We present here a model-based diagnostic approach to determine the optical properties of polymers, which should be particularly useful in the development of plastics for optical applications. Optical constants and scattering coefficients were obtained from transmission and reflection measurements in a wavelength range from UV to NIR taking into account scattering effects due to rough surfaces and volume inhomogeneity. Based on the models for the dielectric function, the molecular optical transition energies Eg, critical point energies, Urbach energies and exciton transition energies were determined. Rayleigh and Mie scattering model and van de Hulst's anomalous diffraction theory were applied to characterize scattering due to volume inhomogeneities. Scalar diffraction theory was applied to account for surface roughness scattering. Atomic force microscopy with nanomechanical characterization was used to characterize domains in size and shape and to assign optical scattering to a suitable morphological model. The combined optical and mechanical characterization help to improve the qualification of new polymer materials for optical applications. KW - diffraction theory KW - light property KW - optical constant KW - optical material KW - optical property KW - scattering theory Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15666 VL - 12 IS - 1 SP - 204 EP - 224 PB - Optica Publishing Group ER -