TY - JOUR A1 - Wegerich, F. A1 - Turano, Paola A1 - Allegrozzi, Marco A1 - Möhwald, H. A1 - Lisdat, Fred T1 - Superoxide Biosensing with Engineered Cytochrome c JF - Procedia Chemistry N2 - Several mutation positions have been chosen for introducing positively charged lysines in human cytochrome c (cyt c) with the aim of increasing the reaction rate with superoxide radicals (SO) and thus, the sensitivity of an electrochemical cyt c based SO biosensor. The impact of the mutations on structural and redox properties as well as on the reaction rate with SO are verified. Four mutants show a higher reaction rate with the radical compared to the wild type. These mutants are used for the construction of SO sensors based on thiol-modified gold electrodes and covalently fixed proteins. The E66K mutant electrode has a clearly higher sensitivity in comparison to the wildtype based sensor. KW - biosensor KW - cytochrome c KW - superoxide KW - protein engineering Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-6523 SN - 1876-6196 VL - 1 IS - 1 SP - 1287 EP - 1290 ER -