TY - JOUR A1 - Bauer, Joachim A1 - Gutke, Marko A1 - Heinrich, Friedhelm A1 - Edling, Matthias A1 - Stoycheva, Vesela A1 - Kaltenbach, Alexander A1 - Burkhardt, Martin A1 - Gruenefeld, Martin A1 - Gamp, Matthias A1 - Gerhard, Christoph A1 - Steglich, Patrick A1 - Steffen, Sebastian A1 - Herzog, Michael A1 - Dreyer, Christian A1 - Schrader, Sigurd T1 - Novel UV-transparent 2-component polyurethane resin for chip-on-board LED micro lenses JF - Optical Materials Express N2 - In this work we present a novel optical polymer system based on polyurethane elastomer components, which combines excellent UV transparency with high thermal stability, good hardness, high surface tension and long pot life. The material looks very promising for encapsulation and microlensing applications for chip-on-board (CoB) light-emitting diodes (LED). The extinction coefficient k, refractive index n, and bandgap parameters were derived from transmission and reflection measurements in a wavelength range of 200-890 nm. Thermogravimetry and differential scanning calorimetry were used to provide glass transition and degradation temperatures. The surface tension was determined by means of contact angle measurements. As proof of concept, a commercial InGaN-CoB-LED is used to demonstrate the suitability of the new material for the production of microlenses. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-13472 SN - 2159-3930 VL - 10 IS - 9 SP - 2085 EP - 2099 ER - TY - JOUR A1 - Lux, Helge A1 - Edling, Matthias A1 - Siemroth, Peter A1 - Schrader, Sigurd T1 - Fast and Cost-Effective Synthesis of High-Quality Graphene on Copper Foils Using High-Current Arc Evaporation JF - Materials N2 - In this paper, we present an innovative and ultra-fast process for the deposition of high-quality graphene on different metal foils and thin metal films. The graphene layer can be homogeneously deposited in only 30 s process time. Due to the weak adhesion to the substrate material, the monolayer graphene is easy to transfer using the established processes. For the production, we use magnetic filtered high-current arc evaporation (Φ-HCA) with a solid, graphitic carbon source. This ultra-fast growth process can pave the way towards a cost-effective graphene synthesis for the mass production e.g., in a roll-to-roll process, avoiding time consuming established processes. KW - graphene KW - PVD KW - arc evaporation KW - copper KW - transfer KW - Φ-HCA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-10359 SN - 1996-1944 VL - 11 IS - 5 SP - 1 EP - 10 ER - TY - JOUR A1 - Lux, Helge A1 - Edling, Matthias A1 - Lucci, Massimiliano A1 - Kitzmann, Julia A1 - Villringer, Claus A1 - Siemroth, Peter A1 - De Matteis, Fabio A1 - Schrader, Sigurd T1 - The Role of Substrate Temperature and Magnetic Filtering for DLC by Cathodic Arc Evaporation JF - Coatings N2 - Diamond-like carbon (DLC) films were deposited using two different types of high current arc evaporation. The first process used a magnetic particle filter to remove droplets from the plasma. For the second process, the samples were put into a metallic cage which was placed directly above the plasma source. For both processes, we varied the substrate temperature from 21 to 350 °C in order to investigate the temperature effect. The samples were characterized using SEM, AFM, XPS, Raman Spectroscopy, Ellipsometry, Photometry, and Nano Indentation in order to compare both methods of deposition and provide a careful characterization of such DLC films. We found that the sp3 content and the hardness can be precisely adjusted by changing the substrate temperature. Furthermore, in the case of unfiltered deposition, the optical constants can be shifted in the direction of higher absorbance in order to produce black and hard carbon coatings. KW - DLC KW - ta-C KW - arc evaporation KW - substrate temperature KW - hardness KW - optical constant KW - ellipsometry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-12295 SN - 2079-6412 VL - 9 IS - 5 SP - 345 ER - TY - JOUR A1 - Bauer, Joachim A1 - Fursenko, Oksana A1 - Heinrich, Friedhelm A1 - Gutke, Marko A1 - Kornejew, Eckhart A1 - Brödel, Oliver A1 - Dietzel, Birgit A1 - Kaltenbach, Alexander A1 - Burkhardt, Martin A1 - Edling, Matthias A1 - Steglich, Patrick A1 - Herzog, Michael A1 - Schrader, Sigurd T1 - Determination of optical constants and scattering properties of transparent polymers for use in optoelectronics JF - Optical Materials Express N2 - Knowledge of optical constants, i.e. refractive index n and extinction coefficient k, and light scattering properties of optical polymers are required to optimize micro-optics for light-emitting diodes in terms of efficiency, color properties and light distribution. We present here a model-based diagnostic approach to determine the optical properties of polymers, which should be particularly useful in the development of plastics for optical applications. Optical constants and scattering coefficients were obtained from transmission and reflection measurements in a wavelength range from UV to NIR taking into account scattering effects due to rough surfaces and volume inhomogeneity. Based on the models for the dielectric function, the molecular optical transition energies Eg, critical point energies, Urbach energies and exciton transition energies were determined. Rayleigh and Mie scattering model and van de Hulst's anomalous diffraction theory were applied to characterize scattering due to volume inhomogeneities. Scalar diffraction theory was applied to account for surface roughness scattering. Atomic force microscopy with nanomechanical characterization was used to characterize domains in size and shape and to assign optical scattering to a suitable morphological model. The combined optical and mechanical characterization help to improve the qualification of new polymer materials for optical applications. KW - diffraction theory KW - light property KW - optical constant KW - optical material KW - optical property KW - scattering theory Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15666 VL - 12 IS - 1 SP - 204 EP - 224 PB - Optica Publishing Group ER -