TY - CHAP A1 - Pulwer, Silvio A1 - Steglich, Patrick A1 - Villringer, Claus A1 - Bauer, Joachim A1 - Burger, Martin A1 - Franz, M. A1 - Grieshober, K. A1 - Wirth, F. A1 - Blondeau, J. A1 - Rautenberg, J. A1 - Mouti, S. A1 - Schrader, Sigurd T1 - Triangulation-based 3D surveying borescope N2 - In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of ± 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations. KW - borescope KW - 3D measurement KW - triangulation KW - lens design KW - calibration KW - defect Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-15307 SP - 51 EP - 56 PB - SPIE ER - TY - JOUR A1 - Steglich, Patrick A1 - Mai, Christian A1 - Villringer, Claus A1 - Dietzel, Birgit A1 - Bondarenko, Siegfried A1 - Ksianzou, Viachaslau A1 - Villasmunta, Francesco A1 - Zesch, Christoph A1 - Pulwer, Silvio A1 - Burger, Martin A1 - Bauer, Joachim A1 - Heinrich, Friedhelm A1 - Schrader, Sigurd A1 - Vitale, Francesco A1 - De Matteis, Fabio A1 - Prosposito, Paolo A1 - Casalboni, Mauro A1 - Mai, Andreas T1 - Silicon-organic hybrid photonics: an overview of recent advances, electro-optical effects and CMOS integration concepts JF - Journal of Physics: Photonics N2 - In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:526-opus4-13882 SN - 2515-7647 VL - 3 IS - 2 ER -