@article{GrebinykYashchukBashmakovaetal.2019, author = {Grebinyk, Anna and Yashchuk, Valeriy and Bashmakova, Nataliya and Gryn, Dmytro and Hagemann, Tobias and Naumenko, Antonina and Kutsevol, Nataliya and Dandekar, Thomas and Frohme, Marcus}, title = {A new triple system DNA-Nanosilver-Berberine for cancer therapy}, series = {Applied Nanoscience}, volume = {9}, journal = {Applied Nanoscience}, publisher = {Springer}, issn = {2190-5517}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-16105}, pages = {945 -- 956}, year = {2019}, abstract = {The isoquinoline quaternary alkaloid Berberine possesses a variety of pharmacological properties that suggests its promising application for an anticancer delivery system design utilizing its ability to intercalate DNA. In the current work, we have investigated the effects of Berberine on the human T cell leukemia cell line in vitro. Fluorescent microscopy of leukemic cells revealed Berberine nuclear localization. The results showed that Berberine inhibited leukemic cell growth in a time- and dose-dependent manner, that was associated with reactive oxygen species production intensification and caspase 3/7 activity increase with followed apoptosis induction. Berberine was used as a toxic and phototoxic agent for triple system synthesis along with DNA as a carrier and nanosilver as a plasmonic accelerator of Berberine electronic transitions and high energy emission absorbent centers. The proposed method allows to obtain the complex of DNA with Berberine molecules and silver nanoparticles. The optical properties of free components as well as their various combinations, including the final triple system DNA-Nanosilver-Berberine, were investigated. Obtained results support the possibility to use the triple system DNA-Nanosilver-Berberine as an alternative therapeutic agent for cancer treatment.}, language = {en} } @article{GrebinykYashchukBashmakovaetal.2019, author = {Grebinyk, Anna and Yashchuk, Valeriy and Bashmakova, Nataliya and Gryn, Dmytro and Hagemann, Tobias and Naumenko, Antonina and Kutsevol, Nataliya and Dandekar, Thomas and Frohme, Marcus}, title = {A New Triple System DNA-Nanosilver-Berberine for Cancer Therapy}, series = {Applied Nanoscience}, journal = {Applied Nanoscience}, issn = {2190-5517}, doi = {10.1007/s13204-018-0688-x}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10628}, year = {2019}, abstract = {The isoquinoline quaternary alkaloid Berberine possesses a variety of pharmacological properties that suggests its promising application for an anticancer delivery system design utilizing its ability to intercalate DNA.In the current work we have investigated the effects of Berberine on the human T-cell leukemia cell line in vitro.Fluorescent microscopy of leukemic cells revealed Berberine nuclear localization. The results showed that Berberine inhibited leukemic cell growth in a time-and dose-dependent manner, that was associated with reactive oxygen species production intensification and caspase 3/7 activity increase with followed apoptosis induction.Berberine was used as a toxic and phototoxic agent for triple system synthesis along with DNA as a carrier and nanosilver as a plasmonic accelerator of Berberine electronic transitions and high energy emission absorbent centers.The proposed method allows to obtain the complex of DNA with Berberine molecules and silver nanopoarticles. The optical properties of free components as well as their various combinations, including the final triple system DNA-Nanosilver-Berberine, were investigated. Obtained results support the possibility to use the triple system DNA-Nanosilver-Berberine as an alternative therapeutic agent for cancer treatment.}, language = {en} } @article{KagelBierFrohmeetal.2019, author = {Kagel, Heike and Bier, Frank Fabian and Frohme, Marcus and Gl{\"o}kler, J{\"o}rn}, title = {A Novel Optical Method To Reversibly Control Enzymatic Activity Based On Photoacids}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/s41598-019-50867-w}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-12685}, year = {2019}, abstract = {Most biochemical reactions depend on the pH value of the aqueous environment and some are strongly favoured to occur in an acidic environment. A non-invasive control of pH to tightly regulate such reactions with defined start and end points is a highly desirable feature in certain applications, but has proven difficult to achieve so far. We report a novel optical approach to reversibly control a typical biochemical reaction by changing the pH and using acid phosphatase as a model enzyme. The reversible photoacid G-acid functions as a proton donor, changing the pH rapidly and reversibly by using high power UV LEDs as an illumination source in our experimental setup. The reaction can be tightly controlled by simply switching the light on and off and should be applicable to a wide range of other enzymatic reactions, thus enabling miniaturization and parallelization through non-invasive optical means.}, language = {en} } @article{KoberSchaeferHollertetal.2023, author = {Kober, Liane and Schaefer, Paul and Hollert, Henner and Frohme, Marcus}, title = {A novel strategy for high-throughput sample collection, analysis and visualization of explosives' concentrations for contaminated areas}, series = {International Journal of Environmental Science and Technology}, volume = {20}, journal = {International Journal of Environmental Science and Technology}, number = {2}, publisher = {Springer Nature}, issn = {1735-2630}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-15981}, pages = {1399 -- 1410}, year = {2023}, abstract = {The use of explosives has led to a widespread distribution of 2,4,6-trinitrotoluene (TNT) and its by- and degradation products in the soil on former production and testing sites. The investigation of those large contaminated sites is so far based on a few selected soil samples, due to high costs of conventional HPLC and GC analysis, although huge differences in concentrations can already be found in small areas and different collection depths. We introduce a novel high-throughput screening system for those areas, which combines a smartphone-based collection of GPS data and soil characteristics with a fast MALDI-TOF MS quantification of explosives in soil sample extracts and finally a heatmap visualization of the explosives' spread in soil and an analysis of correlation between concentrations and soil characteristics. The analysis of a 400 m2 area presented an extensive contamination with TNT and lower concentrations of the degradation and by-products aminodinitrotoluenes (ADNT) and dinitrotoluenes (DNT) next to a former production facility for TNT. The contamination decreased in deeper soil levels and depended on the soil type. Pure humus samples showed significantly lower contaminations compared to sand and humus/sand mixtures, which is likely to be caused by an increased binding potential of the humic material. No correlation was found between the vegetation and the concentration of explosives. Since the results were obtained and visualized within several hours, the MALDI-TOF MS based comprehensive screening and heatmap analysis might be valuable for a fast and high-throughput characterization of contaminated areas.}, language = {en} } @article{HornemannSinningCortesetal.2017, author = {Hornemann, Andrea and Sinning, Denise and Cortes, Sofia and Campino, Lenea and Emmer, Peggy and Kuhls, Katrin and Ulm, Gerhard and Frohme, Marcus and Beckhoff, Burkhard}, title = {A pilot study on fingerprinting Leishmania species from the Old World using Fourier transform infrared spectroscopy}, series = {Analytical and Bioanalytical Chemistry}, journal = {Analytical and Bioanalytical Chemistry}, issn = {1432-1130}, doi = {10.1007/s00216-017-0655-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10080}, year = {2017}, abstract = {Leishmania species are protozoan parasites and the causative agents of leishmaniasis, a vector borne disease that imposes a large health burden on individuals living mainly in tropical and subtropical regions. Different Leishmania species are responsible for the distinct clinical patterns, such as cutaneous, mucocutaneous, and visceral leishmaniasis, with the latter being potentially fatal if left untreated. For this reason, it is important to perform correct species identification and differentiation. Fourier transform infrared spectroscopy (FTIR) is an analytical spectroscopic technique increasingly being used as a potential tool for identification of microorganisms for diagnostic purposes. By employing mid-infrared (MIR) spectral data, it is not only possible to assess the chemical structures but also to achieve differentiation supported by multivariate statistic analysis. This work comprises a pilot study on differentiation of Leishmania species of the Old World (L. major, L. tropica, L. infantum, and L. donovani) as well as hybrids of distinct species by using vibrational spectroscopic fingerprints. Films of intact Leishmania parasites and their deoxyribonucleic acid (DNA) were characterized comparatively with respect to their biochemical nature and MIR spectral patterns. The strains' hyperspectral datasets were multivariately examined by means of variance-based principal components analysis (PCA) and distance-based hierarchical cluster analysis (HCA). With the implementation of MIR spectral datasets we show that a phenotypic differentiation of Leishmania at species and intra-species level is feasible. Thus, FTIR spectroscopy can be further exploited for building up spectral databases of Leishmania parasites in view of high-throughput analysis of clinical specimens.}, language = {en} } @article{MarcosZambranoLopezMolinaBakirGungoretal.2023, author = {Marcos-Zambrano, Laura Judith and L{\´o}pez-Molina, V{\´i}ctor Manuel and Bakir-Gungor, Burcu and Frohme, Marcus and Karaduzovic-Hadziabdic, Kanita and Klammsteiner, Thomas and Ibrahimi, Eliana and Lahti, Leo and Loncar-Turukalo, Tatjana and Dhamo, Xhilda and Simeon, Andrea and Nechyporenko, Alina and Pio, Gianvito and Przymus, Piotr and Sampri, Alexia and Trajkovik, Vladimir and Lacruz-Pleguezuelos, Blanca and Aasmets, Oliver and Araujo, Ricardo and Anagnostopoulos, Ioannis and Aydemir, {\"O}nder and Berland, Magali and Calle, M. Luz and Ceci, Michelangelo and Duman, Hatice and G{\"u}ndoğdu, Aycan and Havulinna, Aki S. and Kaka Bra, Kardokh Hama Najib and Kalluci, Eglantina and Karav, Sercan and Lode, Daniel and Lopes, Marta B. and May, Patrick and Nap, Bram and Nedyalkova, Miroslava and Paci{\^e}ncia, In{\^e}s and Pasic, Lejla and Pujolassos, Meritxell and Shigdel, Rajesh and Sus{\´i}n, Antonio and Thiele, Ines and Truică, Ciprian-Octavian and Wilmes, Paul and Yilmaz, Ercument and Yousef, Malik and Claesson, Marcus Joakim and Truu, Jaak and Carrillo de Santa Pau, Enrique}, title = {A toolbox of machine learning software to support microbiome analysis}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, publisher = {Frontiers}, issn = {1664-302X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-18271}, year = {2023}, abstract = {The human microbiome has become an area of intense research due to its potential impact on human health. However, the analysis and interpretation of this data have proven to be challenging due to its complexity and high dimensionality. Machine learning (ML) algorithms can process vast amounts of data to uncover informative patterns and relationships within the data, even with limited prior knowledge. Therefore, there has been a rapid growth in the development of software specifically designed for the analysis and interpretation of microbiome data using ML techniques. These software incorporate a wide range of ML algorithms for clustering, classification, regression, or feature selection, to identify microbial patterns and relationships within the data and generate predictive models. This rapid development with a constant need for new developments and integration of new features require efforts into compile, catalog and classify these tools to create infrastructures and services with easy, transparent, and trustable standards. Here we review the state-of-the-art for ML tools applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on ML based software and framework resources currently available for the analysis of microbiome data in humans. The aim is to support microbiologists and biomedical scientists to go deeper into specialized resources that integrate ML techniques and facilitate future benchmarking to create standards for the analysis of microbiome data. The software resources are organized based on the type of analysis they were developed for and the ML techniques they implement. A description of each software with examples of usage is provided including comments about pitfalls and lacks in the usage of software based on ML methods in relation to microbiome data that need to be considered by developers and users. This review represents an extensive compilation to date, offering valuable insights and guidance for researchers interested in leveraging ML approaches for microbiome analysis.}, language = {en} } @article{D'EliaTruuLahtietal.2023, author = {D'Elia, Domenica and Truu, Jaak and Lahti, Leo and Berland, Magali and Papoutsoglou, Georgios and Ceci, Michelangelo and Zomer, Aldert and Lopes, Marta B. and Ibrahimi, Eliana and Gruca, Aleksandra and Nechyporenko, Alina and Frohme, Marcus and Klammsteiner, Thomas and Carrillo de Santa Pau, Enrique and Marcos-Zambrano, Laura Judith and Hron, Karel and Pio, Gianvito and Simeon, Andrea and Suharoschi, Ramona and Moreno-Indias, Isabel and Temko, Andriy and Nedyalkova, Miroslava and Apostol, Elena-Simona and Truică, Ciprian-Octavian and Shigdel, Rajesh and Telalović, Jasminka Hasić and Bongcam-Rudloff, Erik and Przymus, Piotr and Jordamović, Naida Babić and Falquet, Laurent and Tarazona, Sonia and Sampri, Alexia and Isola, Gaetano and P{\´e}rez-Serrano, David and Trajkovik, Vladimir and Klucar, Lubos and Loncar-Turukalo, Tatjana and Havulinna, Aki S. and Jansen, Christian and Bertelsen, Randi J. and Claesson, Marcus Joakim}, title = {Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, publisher = {Frontiers}, issn = {1664-302X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-18004}, year = {2023}, abstract = {The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.}, language = {en} } @article{GrebinykPrylutskaGrebinyketal.2021, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Evstigneev, Maxim and Krysiuk, Iryna and Skaterna, Tetiana and Horak, Iryna and Sun, Yanfang and Drobot, Liudmyla and Matyshevska, Olga and Prylutskyy, Yuriy and Ritter, Uwe and Frohme, Marcus}, title = {Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo}, series = {Cancer Nanotechnology}, volume = {12}, journal = {Cancer Nanotechnology}, publisher = {BioMed Central}, issn = {1868-6966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-14749}, pages = {24}, year = {2021}, abstract = {Background Berberine (Ber) is a herbal alkaloid with pharmacological activity in general and a high anticancer potency in particular. However, due to its low bioavailability, the difficulty in reaching a target and choosing the right dose, there is a need to improve approaches of Ber use in anticancer therapy. In this study, Ber, noncovalently bound to a carbon nanostructure C60 fullerene (C60) at various molar ratios of the components, was explored against Lewis lung carcinoma (LLC). Methods C60-Ber noncovalent nanocomplexes were synthesized in 1:2, 1:1 and 2:1 molar ratios. Ber release from the nanocomplexes was studied after prolonged incubation at different pH with the liquid chromatography-mass spectrometry analysis of free Ber content. Biological effects of the free and C60-complaxated Ber were studied in vitro towards LLC cells with phase-contrast and fluorescence microscopy, flow cytometry, MTT reduction, caspase activity and wound closure assays. The treatment with C60-Ber nanocomplex was evaluated in vivo with the LLC-tumored C57Bl mice. The mice body weight, tumor size, tumor weight and tumor weight index were assessed for four groups, treated with saline, 15 mg C60/kg, 7.5 mg Ber/kg or 2:1 C60-Ber nanocomplex (15 mg C60/kg, 7.5 mg Ber/kg). Results Ber release from C60-Ber nanocomplexes was promoted with medium acidification. LLC cells treatment with C60-Ber nanocomplexes was followed by enhanced Ber intracellular uptake as compared to free Ber. The cytotoxicity of the studied agents followed the order: free Ber < 1:2 < 1:1 < 2:1 C60-Ber nanocomplex. The potency of cytotoxic effect of 2:1 C60-Ber nanocomplex was confirmed by 21.3-fold decrease of IC50 value (0.8 ± 0.3 µM) compared to IC50 for free Ber (17 ± 2 µM). C60-Ber nanocomplexes induced caspase 3/7 activation and suppressed the migration activity of LLC cells. The therapeutic potency of 2:1 C60-Ber nanocomplex was confirmed in a mouse model of LLC. The tumor growth in the group treated with 2:1 C60-Ber nanocomplex is suppressed by approximately 50\% at the end of experiment, while in the tumor-bearing group treated with free Ber no therapeutic effect was detected. Conclusions This study indicates that complexation of natural alkaloid Ber with C60 may be a novel therapeutic strategy against lung carcinoma.}, language = {en} } @article{GossingFrohmeRadke2020, author = {Gossing, Wilhelm and Frohme, Marcus and Radke, Lars}, title = {Biomarkers for Liquid Biopsies of Pituitary Neuroendocrine Tumors}, series = {Biomedicines}, volume = {8}, journal = {Biomedicines}, number = {6}, issn = {2227-9059}, doi = {10.3390/biomedicines8060148}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-13307}, year = {2020}, abstract = {Pituitary neuroendocrine tumors (PitNET) do not only belong to the most common intracranial neoplasms but seem to be generally more common than has been thought. Minimally invasive liquid biopsies have the potential to improve their early screening efficiency as well as monitor prognosis by facilitating the diagnostic procedures. This review aims to assess the potential of using liquid biopsies of different kinds of biomarker species that have only been obtained from solid pituitary tissues so far. Numerous molecules have been associated with the development of a PitNET, suggesting that it often develops from the cumulative effects of many smaller genetic or epigenetic changes. These minor changes eventually pile up to switch critical molecules into tumor-promoting states, which may be the key regulatory nodes representing the most potent marker substances for a diagnostic test. Drugs targeting these nodes may be superior for the therapeutic outcome and therefore the identification of such pituitary-specific cellular key nodes will help to accelerate their application in medicine. The ongoing genetic degeneration in pituitary adenomas suggests that repeated tumor profiling via liquid biopsies will be necessary for personalized and effective treatment solutions.}, language = {en} } @article{GrebinykGrebinykPrylutskaetal.2018, author = {Grebinyk, Anna and Grebinyk, Sergii and Prylutska, Svitlana and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {C60 fullerene accumulation in human leukemic cells and perspectives of LED-mediated photodynamic therapy}, series = {Free Radical Biology and Medicine}, volume = {124}, journal = {Free Radical Biology and Medicine}, issn = {1873-4596}, doi = {10.1016/j.freeradbiomed.2018.06.022}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10588}, pages = {319 -- 327}, year = {2018}, abstract = {Recent progress in nanobiotechnology has attracted interest to a biomedical application of the carbon nanostructure C60 fullerene since it possesses a unique structure and versatile biological activity. C60 fullerene potential application in the frame of cancer photodynamic therapy (PDT) relies on rapid development of new light sources as well as on better understanding of the fullerene interaction with cells. The aim of this study was to analyze C60 fullerene effects on human leukemic cells (CCRF-CEM) in combination with high power single chip light-emitting diodes (LEDs) light irradiation of different wavelengths: ultraviolet (UV, 365 nm), violet (405 nm), green (515 nm) and red (632 nm). The time-dependent accumulation of fullerene C60 in CCRF-CEM cells up to 250 ng/106 cells at 24 h with predominant localization within mitochondria was demonstrated with immunocytochemical staining and liquid chromatography mass spectrometry. In a cell viability assay we studied photoexcitation of the accumulated C60 nanostructures with ultraviolet or violet LEDs and could prove that significant phototoxic effects did arise. A less pronounced C60 fullerene phototoxic effect was observed after irradiation with green, and no effect was detected with red light. A C60 fullerene photoactivation with violet light induced substantial ROS generation and apoptotic cell death, confirmed by caspase3/7 activation and plasma membrane phosphatidylserine externalization. Our work proved C60 fullerene ability to induce apoptosis of leukemic cells after photoexcitation with high power single chip 405 nm LED as a light source. This underlined the potential for application of C60 nanostructure as a photosensitizer for anticancer therapy.}, language = {en} } @article{GrebinykPrylutskaBuchelnikovetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Buchelnikov, Anatoliy and Tverdokhleb, Nina and Grebinyk, Sergii and Evstigneev, Maxim and Matyshevska, Olga and Cherepanov, Vsevolod and Prylutskyy, Yuriy and Yashchuk, Valeriy and Naumovets, Anton and Ritter, Uwe and Dandekar, Thomas and Frohme, Marcus}, title = {C60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {11}, publisher = {MDPI}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11110586}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-12932}, year = {2019}, abstract = {A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.}, language = {en} } @article{GrebinykPrylutskaGrynyuketal.2018, author = {Grebinyk, Anna and Prylutska, Svitlana and Grynyuk, I. and Kolp, Benjamin and Hurmach, V. and Sliva, T. and Amirkhanov, V. and Trush, V. and Matyshevska, Olga and Slobodyanik, M. and Prylutskyy, Yuriy and Frohme, Marcus and Ritter, Uwe}, title = {C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro}, series = {Nanoscale Research Letters}, volume = {2018}, journal = {Nanoscale Research Letters}, issn = {1556-276X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10515}, pages = {1 -- 9}, year = {2018}, abstract = {New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C60 fullerene. According to molecular simulation results, C60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl3 group by ion-π bonds with C60 molecule and by electrostatic bonds with DNA G nucleotide. With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C60 fullerene and HL, the value of IC50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CЕM cells proliferation. Application of C60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.}, language = {en} } @article{FalckenhaynBoerjanRaddatzetal.2013, author = {Falckenhayn, Cassandra and Boerjan, Bart and Raddatz, G{\"u}nter and Frohme, Marcus and Schoofs, Liliane and Lyko, Frank}, title = {Characterization of genome methylation patterns in the desert locust Schistocerca gregaria}, series = {The Journal of Experimental Biology}, volume = {216}, journal = {The Journal of Experimental Biology}, issn = {0022-0949}, doi = {10.1242/jeb.080754}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-6350}, pages = {1423 -- 1429}, year = {2013}, abstract = {DNA methylation is a widely conserved epigenetic modification. The analysis of genome-scale DNA methylation patterns in various organisms suggests that major features of animal methylomes are widely conserved. However, based on the variation of DNA methyltransferase genes in invertebrates, it has also been proposed that DNA methylation could provide a molecular mechanism for ecological adaptation. We have now analyzed the methylome of the desert locust, Schistocerca gregaria, which represents an organism with a high degree of phenotypic plasticity. Using genome-scale bisulfite sequencing, we show here that the S. gregaria methylome is characterized by CpG- and exon-specific methylation and thus shares two major features with other animal methylomes. In contrast to other invertebrates, however, overall methylation levels were substantially higher and a significant fraction of transposons was methylated. Additionally, genic sequences were densely methylated in a pronounced bimodal pattern, suggesting a role for DNA methylation in the regulation of locust gene expression. Our results thus uncover a unique pattern of genome methylation in locusts and provide an important foundation for investigating the role of DNA methylation in locust phase polyphenism.}, language = {en} } @misc{MichelJorkRockmannetal.2013, author = {Michel, Stephanie and Jork, Nadine and Rockmann, Christian and Grohme, Markus and Franke, Philipp and Menzel, Detlef and Frohme, Marcus}, title = {Charakterisierung des mikrobiellen Symbioms von Blutegeln}, series = {Wissenschaftliche Beitr{\"a}ge 2013}, volume = {17}, journal = {Wissenschaftliche Beitr{\"a}ge 2013}, issn = {0949-8214}, doi = {10.15771/0949-8214_2013_1_1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3084}, pages = {8 -- 12}, year = {2013}, abstract = {Die medizinischen Blutegel, Hirudo medicinalis und Hirudo verbana, werden wegen ihrer kurativen Wirkung in der Humanmedizin angewandt. W{\"a}hrend des Blutsaugens injizieren sie {\"u}ber ihren Speichel eine Vielzahl bioaktiver, derzeit noch unbekannter Molek{\"u}le. Eine vollst{\"a}ndige Aufkl{\"a}rung aller Inhaltsstoffe mit Wirkmechanismen ist f{\"u}r die Entwicklung von neuen Pharmaka von großem Interesse. Vor diesem Hintergrund wurden verschiedene Organe beider Arten auf ihre Besiedlung durch symbiontische Bakterien untersucht. Dazu wurden die Bakterien zun{\"a}chst unter geeigneten Bedingungen kultiviert und mittels biochemischer Methoden charakterisiert. Die Identifizierung der Symbionten erfolgte durch Polymerasekettenreaktion (PCR) und Sequenzierung der 16S rDNA. Die biochemischen Tests ergaben, dass die kultivierbaren Bakterien Amylase positiv, Gram negativ und Ornithin Decarboxylase negativ sind. Mit Hilfe von datenbankgest{\"u}tzten Analysen der 16S rDNA-Sequenzen konnte Aeromonas veronii biovar sobria nachgewiesen werden. Hochdurchsatzsequenzierungen der gesamtgenomischen DNA des Bakteriums aus H. medicinalis zeigten deutliche Abweichungen zum Referenzgenom von Aeromonas veronii B565.}, language = {de} } @article{PfeilSiptrothPospisiletal.2023, author = {Pfeil, Juliane and Siptroth, Julienne and Pospisil, Heike and Frohme, Marcus and Hufert, Frank T. and Moskalenko, Olga and Yateem, Murad and Nechyporenko, Alina}, title = {Classification of Microbiome Data from Type 2 Diabetes Mellitus Individuals with Deep Learning Image Recognition}, series = {Big Data and Cognitive Computing}, volume = {7}, journal = {Big Data and Cognitive Computing}, number = {1}, publisher = {MDPI}, issn = {2504-2289}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-17184}, year = {2023}, abstract = {Microbiomic analysis of human gut samples is a beneficial tool to examine the general well-being and various health conditions. The balance of the intestinal flora is important to prevent chronic gut infections and adiposity, as well as pathological alterations connected to various diseases. The evaluation of microbiome data based on next-generation sequencing (NGS) is complex and their interpretation is often challenging and can be ambiguous. Therefore, we developed an innovative approach for the examination and classification of microbiomic data into healthy and diseased by visualizing the data as a radial heatmap in order to apply deep learning (DL) image classification. The differentiation between 674 healthy and 272 type 2 diabetes mellitus (T2D) samples was chosen as a proof of concept. The residual network with 50 layers (ResNet-50) image classification model was trained and optimized, providing discrimination with 96\% accuracy. Samples from healthy persons were detected with a specificity of 97\% and those from T2D individuals with a sensitivity of 92\%. Image classification using DL of NGS microbiome data enables precise discrimination between healthy and diabetic individuals. In the future, this tool could enable classification of different diseases and imbalances of the gut microbiome and their causative genera.}, language = {en} } @article{SchokraieWarnkenHotzWagenblattetal.2012, author = {Schokraie, Elham and Warnken, Uwe and Hotz-Wagenblatt, Agnes and Grohme, Markus and Hengherr, Steffen and F{\"o}rster, Frank and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas and Schn{\"o}lzer, Martina}, title = {Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state}, series = {PLoS ONE}, volume = {7}, journal = {PLoS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0045682}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-6392}, pages = {25}, year = {2012}, abstract = {Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.}, language = {en} } @article{RadivoievychPrylutskaZolketal.2023, author = {Radivoievych, Aleksandar and Prylutska, Svitlana and Zolk, Oliver and Ritter, Uwe and Frohme, Marcus and Grebinyk, Anna}, title = {Comparison of Sonodynamic Treatment Set-Ups for Cancer Cells with Organic Sonosensitizers and Nanosonosensitizers}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {11}, publisher = {MDPI}, issn = {1999-4923}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-18223}, year = {2023}, abstract = {Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups—"sealed well" and "transducer in well"—in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates—carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a "transducer in well" set-up than a "sealed well" set-up underlined its promising application for SDT in vitro studies. The "transducer in well" set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.}, language = {en} } @article{GrebinykPrylutskaGrebinyketal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Complexation with C60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro}, series = {Nanoscale Research Letters}, volume = {14}, journal = {Nanoscale Research Letters}, issn = {1556-276X}, doi = {10.1186/s11671-019-2894-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-11415}, year = {2019}, abstract = {Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells. Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C60 fullerene considerable nanocarrier function. The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.}, language = {en} } @article{GrebinykPrylutskaGrebinyketal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Complexation with C60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro}, series = {Nanoscale Research Letters}, volume = {14}, journal = {Nanoscale Research Letters}, issn = {1556-276X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10966}, year = {2019}, abstract = {Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells. Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C60 fullerene considerable nanocarrier function. The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.}, language = {en} } @article{PrylutskaGrynyukGrebinyketal.2017, author = {Prylutska, Svitlana and Grynyuk, I. and Grebinyk, Anna and Hurmach, V. and Shatrava, Iu. and Sliva, T. and Amirkhanov, V. and Prylutskyy, Yuriy and Matyshevska, Olga and Slobodyanik, M. and Frohme, Marcus and Ritter, Uwe}, title = {Cytotoxic Effects of Dimorfolido-N-Trichloroacetylphosphorylamide and Dimorfolido-N-Benzoylphosphorylamide in Combination with C60 Fullerene on Leukemic Cells and Docking Study of Their Interaction with DNA}, series = {Nanoscale Research Letters}, volume = {12}, journal = {Nanoscale Research Letters}, number = {124}, issn = {1556-276X}, doi = {10.1186/s11671-017-1893-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-9273}, year = {2017}, abstract = {Dimorfolido-N-trichloroacetylphosphorylamide (HL1) and dimorfolido-N-benzoylphosphorylamide (HL2) as representatives of carbacylamidophosphates were synthesized and identified by the methods of IR, 1H, and 31P NMR spectroscopy. In vitro HL1 and HL2 at 1 mM concentration caused cell specific and time-dependent decrease of leukemic cell viability. Compounds caused the similar gradual decrease of Jurkat cells viability at 72 h (by 35\%). HL1 had earlier and more profound toxic effect as compared to HL2 regardless on leukemic cell line. Viability of Molt-16 and CCRF-CEM cells under the action of HL1 was decreased at 24 h (by 32 and 45\%, respectively) with no substantial further reducing up to 72 h. Toxic effect of HL2 was detected only at 72 h of incubation of Jurkat and Molt-16 cells (cell viability was decreased by 40 and 45\%, respectively). It was shown that C60 fullerene enhanced the toxic effect of HL2 on leukemic cells. Viability of Jurkat and CCRF-CEM cells at combined action of C60 fullerene and HL2 was decreased at 72 h (by 20 and 24\%, respectively) in comparison with the effect of HL2 taken separately. In silico study showed that HL1 and HL2 can interact with DNA and form complexes with DNA both separately and in combination with C60 fullerene. More stable complexes are formed when DNA interacts with HL1 or C60 + HL2 structure. Strong stacking interactions can be formed between HL2 and C60 fullerene. Differences in the types of identified bonds and ways of binding can determine distinction in cytotoxic effects of studied compounds.}, language = {en} }