@misc{BolleHeesMaechtleretal.1998, author = {Bolle, Philipp and Hees, Holger and Maechtler, Tobias and Wasser, Peter}, title = {Wintertraining - Virtueller Bootssimulator f{\"u}r Schubschiffahrt}, series = {Wissenschaftliche Beitr{\"a}ge 2/1998}, volume = {4}, journal = {Wissenschaftliche Beitr{\"a}ge 2/1998}, number = {2}, issn = {0949-8214}, doi = {10.15771/0949-8214_1998_2_4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-7491}, pages = {24 -- 26}, year = {1998}, abstract = {In einer ersten Phase wurde in den Jahren 1995/96 ein Simulator f{\"u}r Motorboote unter Federf{\"u}hrung der Projektlogistik GmbH Berlin entwickelt. Aufbauend auf den Erkenntnissen aus der Umsetzung dieses Projektes entstand im Jahr 1997 der Gedanke, einen „Virtuellen Bootssimulator f{\"u}r die Schubschiffahrt" zur Ausbildung von Bootsf{\"u}hrern zu realisieren. Damit sollte sichergestellt werden, daß eine Ausbildung auch in den Wintermonaten m{\"o}glich ist. Weitere Aspekte waren die entfallenden Kosten f{\"u}r den Kraftstoff und die Betriebskosten des Schubkahnes, sowie die M{\"o}glichkeit, Extremsituationen zu {\"u}ben ohne Sch{\"a}den hervorzurufen. Innerhalb ihres Praxissemesters bzw. ihrer Studienausbildung wurden zwei Studenten des Fachgebietes Wirtschaftsinformatik in die Aufgabenstellung eingebunden. Ihre Aufgabe war insbesondere die programmtechnische Umsetzung des Projektes.}, language = {de} } @article{WalterKubicaRocco2023, author = {Walter, Andreas and Kubica, Stefan and Rocco, Vittorio}, title = {Optimized fuel values for emission reduction}, series = {IOP Conference Series: Earth and Environmental Science}, volume = {1254}, journal = {IOP Conference Series: Earth and Environmental Science}, publisher = {Institute of Physics Publishing (IOP)}, issn = {1755-1315}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-18148}, year = {2023}, abstract = {Aviation is an integral and vital part of modern society. The growth over the last decades has consequences for greenhouse gas emissions and reducing this through efficiency within the same framework is difficult. Precision flight planning is crucial for reliably and optimized real environment aircraft operation. The presented study gives an overview of the status of the legal requirements for flight planning under the current fuel requirements of the European Union Aviation Safety Agency (EASA) and the emerging opportunities for fuel savings. As part of the larger study, planned and actual fuel figures of an international cargo airline were statistically analyzed. The overall analysis showed that there was no significant deviation between planned and consumed fuel. Based on the results, an adjustment of the planned alternative fuel quantity can be considered within the framework of an individual fuel plan. The possible savings potential using the example of Destination Alternate Airport fuel is presented.}, language = {en} } @article{Walter2023, author = {Walter, Andreas}, title = {IT-Assisted Optimisation of Fuel Consumption in Air Transport}, series = {Anwendungen und Konzepte der Wirtschaftsinformatik}, journal = {Anwendungen und Konzepte der Wirtschaftsinformatik}, number = {17}, publisher = {Hochschule Luzern}, issn = {2296-4592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-18408}, pages = {59 -- 68}, year = {2023}, abstract = {Aviation continues to be an essential means of transport for passengers and cargo. In recent years, the COVID-19 pandemic led to a collapse. In 2022 Europe was back up to around 85\% of 2019 levels(EASA, 2022).In 2021 van der Sman et al. predicted an recovery to 2019 levels in 2024 (van der Sman et al., 2021). However, fuel savings and emissions reduction have become increasingly important in recent years. As part of a PhD thesis, possibilities for reducing fuel consumption by reducing the final reserve fuel were investigated. A smaller amount of tanked fuel required leads to a reduction in the transported (fuel) weight and, thus, a reduction in overall fuel consumption. This is because fuel consumption for a given route depends, among other factors, on the aircraft's weight. The more an aircraft weighs, the higher the fuel consumption. To keep fuel consumption as low as possible, carrying only the minimum weight required for the route in question is the most economical. Carrying more or even unnecessary weight increases the amount of fuel required and consumed in flight. The overarching research aims to explore and evaluate how to reduce the fuel carried by aircraft and, thus, the total fuel required for a given flight. The main focus of this paper is on the opportunities and challenges that have arisen with introducing new fuel regulations in European aviation regulations. Operators with appropriate safety levels can apply more tailored provisions. This requires the demonstration of the safety level. This is achieved by defining specific safety performance indicators (SPIs), compliance with which is then continuously monitored and evaluated during operation. This requires the collection and evaluation of correspondingly large amounts of data. This is only possible using appropriate IT applications. Example belowshows the amount of data that accumulates during flight operations. Recording, processing and saving pose a challenge in this respect. On the other hand, performance-based regulations allow for a more individualised implementation on and by the respective companies via the demonstration of a corresponding level of safety. Safety indicators are used for this purpose, which must be obtained and evaluated from various existing data. A large amount of data, which can only be collected and processed with the help of various IT applications, represents a challenge. However, companies can benefit from the corresponding advantages if they can cope with this. The following is an excerpt of the requirements and possible implementation, focusing on the amount of data and the associated challenges and opportunities.}, language = {en} } @article{ArangoPerez2019, author = {Arango P{\´e}rez, Andr{\´e}s}, title = {Implementing Augmented Reality in the Flight Deck for Single Pilot Operations}, series = {Anwendungen und Konzepte der Wirtschaftsinformatik}, volume = {9}, journal = {Anwendungen und Konzepte der Wirtschaftsinformatik}, publisher = {Arbeitskreis Wirtschaftsinformatik (AKWI)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-16649}, pages = {60 -- 72}, year = {2019}, abstract = {Single Pilot Operations is a current topic with the potential to significantly affect the future of commercial aviation. While financially attractive for airlines, Single Pilot Operations bring forth important safety concerns, especially regarding the lack of human redundancy in the flight deck, an increased workload for the single pilot, reduced situational awareness and a higher risk of human error. It is assumed that potential problems affecting Single Pilot Operations could be addressed by implementing an Augmented Reality (AR) device in the flight deck, by presenting additional information and supporting hints within the pilot's field of view. Concretely, AR could be used to help reduce the single pilot's workload, improve situational awareness and reduce the risk of human error. This paper sets out to demonstrate two use cases for augmented reality in the flight deck. A system, called Pilot Assist, was developed that allows pilots to conduct checklists interactively with a Microsoft HoloLens. The system also provides a holographic Head-up-Display. Pilot Assist was developed and demonstrated with a fixed base Airbus A320 simulator at the Technical University of Wildau. With the HoloLens' spatial mapping capabilities - scanning and recognizing the environment around the user - it was possible to create a system that guides the pilot through the conduction of checklists. This is done by prompting the user towards the location of each checklist item in the cockpit, where information regarding necessary actions is projected. Furthermore, Pilot Assist is integrated with the aircraft systems, making it possible to obtain aircraft status data in real time, thus allowing error-checking of the pilot's actions as well as automating the progress through checklists. The holographic Head-up-Display allows the user to look at the surrounding environment while presenting critical flight data within the user's field of view. The holographic Head-up-Display is intended to contribute to the pilot's situational awareness. Experts in the aviation field, including pilots, researchers and engineers had the chance to qualitatively assess the Pilot Assist tool. They pointed to limitations of both Pilot Assist and the HoloLens itself, but shared optimism as to how this technology and similar applications could indeed impact the future of flight operations. Concerns regarding the HoloLens' weight, comfort and narrow field of view were expressed. However, continued development of head mounted devices (e.g. HoloLens 2) is expected in the coming years. Further research into augmented reality applications in the flight deck is needed to advance this and other use cases. Nonetheless, the experts agreed Pilot Assist provides beneficial support during single pilot operation considering the current prototypical nature of the system.}, language = {en} } @techreport{HartmannMietzner2022, type = {Working Paper}, author = {Hartmann, Frank and Mietzner, Dana}, title = {Die Flughafenregion Berlin-Brandenburg: Analyse des Status quo als Bestandteil einer Szenarioanalyse zur Zukunft der Region als Wissenschafts- und Innovationsstandort}, publisher = {Technische Hochschule Wildau ; Brandenburgische Technische Universit{\"a}t Cottbus-Senftenberg}, doi = {10.15771/innohub_5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-15916}, year = {2022}, abstract = {Internationale Flugh{\"a}fen sind wichtige Infrastrukturkomponenten mit der Funktion, vielf{\"a}ltige internationale Austauschprozesse zu erm{\"o}glichen. Dabei spielen Face-to-Face Kontakte {\"u}ber große Entfernungen hinweg eine Rolle, die f{\"u}r den Austausch vor allem von implizitem Wissen von großer Bedeutung sind. Bei der Realisierung dieser Funktion stehen Flugh{\"a}fen in Wechselbeziehungen mit zahlreichen regionalen Entwicklungsbedingungen. Sie nehmen diese in Anspruch und entfalten hierbei vielf{\"a}ltige direkte und indirekte Wirkung auf ihr Umfeld. Auf diese Weise entstehen funktionale R{\"a}ume, die als Flughafenregionen bezeichnet werden. Das vorliegende Working Paper beschreibt den Status quo der Flughafenregion Berlin-Brandenburg. Dem liegt eine Analyse zugrunde, die von einem Regionenverst{\"a}ndnis geleitet ist, das system- und akteursbezogene Perspektiven aufweist. Sie geht weiterhin von der gemeinsamen These verschiedener Ans{\"a}tze aus der Wirtschaftsgeografie und Innovationsforschung aus, die besagen, dass die Bedeutung r{\"a}umlicher N{\"a}he der Wissenserzeugung und -anwendung sowie des regionalen, interorganisationalen Lernens f{\"u}r Innovationsprozesse vorteilhaft sind. Charakterisiert wird die Flughafenregion deshalb als Wissenschafts-und Innovationsstandort. Gefragt wird dar{\"u}ber hinaus nach Ans{\"a}tzen f{\"u}r eine Spezialisierung. Im Ergebnis wird deutlich, dass die Region bereits {\"u}ber starke Potenziale in diesen Bereichen verf{\"u}gt, gegenw{\"a}rtig eine hohe Ansiedlungsdynamik aufweist, aber noch kein typisches wirtschaftliches Spezialisierungsmuster ausgepr{\"a}gt hat. Die zuk{\"u}nftige Entwicklung ist diesbez{\"u}glich offen. Im weiteren Verlauf der Szenarioanalyse wird daher der Frage nachgegangen, ob sich Spezialisierungspfade entwickeln werden, welche das sein k{\"o}nnten und wie regionale Entwicklungsbedingungen und Akteurskonstellationen beschaffen sein m{\"u}ssten, um einen solchen Profilierungsprozess zu bef{\"o}rdern.}, language = {de} }