@article{RadivoievychPrylutskaZolketal.2023, author = {Radivoievych, Aleksandar and Prylutska, Svitlana and Zolk, Oliver and Ritter, Uwe and Frohme, Marcus and Grebinyk, Anna}, title = {Comparison of Sonodynamic Treatment Set-Ups for Cancer Cells with Organic Sonosensitizers and Nanosonosensitizers}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {11}, publisher = {MDPI}, issn = {1999-4923}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-18223}, year = {2023}, abstract = {Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups—"sealed well" and "transducer in well"—in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates—carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a "transducer in well" set-up than a "sealed well" set-up underlined its promising application for SDT in vitro studies. The "transducer in well" set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.}, language = {en} } @article{RadivoievychKolpGrebinyketal.2023, author = {Radivoievych, Aleksandar and Kolp, Benjamin and Grebinyk, Sergii and Prylutska, Svitlana and Ritter, Uwe and Zolk, Oliver and Gl{\"o}kler, J{\"o}rn and Frohme, Marcus and Grebinyk, Anna}, title = {Silent Death by Sound: C60 Fullerene Sonodynamic Treatment of Cancer Cells}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {2}, publisher = {MDPI}, issn = {1422-0067}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-16877}, year = {2023}, abstract = {The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure's sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60′s ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.}, language = {en} }