@misc{RiedelSchaeferParaketal.2019, author = {Riedel, Marc and Sch{\"a}fer, Daniel and Parak, Wolfgang J. and Ruff, Adrian and Schuhmann, Wolfgang and Lisdat, Fred}, title = {Quantum Dot-modifizierte TiO2-Strukturen f{\"u}r die Licht-gesteuerte Bioelektrokatalyse}, series = {Wissenschaftliche Beitr{\"a}ge 2019}, volume = {23}, journal = {Wissenschaftliche Beitr{\"a}ge 2019}, issn = {0949-8214}, doi = {10.15771/0949-8214_2019_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10773}, pages = {11 -- 17}, year = {2019}, abstract = {Die funktionale Kopplung von photoaktiven Nanostrukturen mit Enzymen stellt eine neue Strategie zum Aufbau lichtgesteuerter biohybrider Systeme dar. Hier sind Untersuchungen zusammengefasst, welche die effiziente Kontaktierung der FAD-abh{\"a}ngigen Glukosedehydrogenase (FAD-GDH) mit Hilfe eines Osmium-Redoxpolymers (P Os ) an PbS-Quantum Dots (PbS QDs) zeigen, welche direkt auf dreidimensionalen TiO 2 -Elektrodenstrukturen synthetisiert wurden. Diese biohybriden Strukturen erlauben die Licht-induzierte Oxidation von Glukose. Dazu wird zun{\"a}chst ein Verfahren vorgestellt, bei welchem durch den Aufbau invers-opaler TiO 2 (IO-TiO 2 ) Strukturen hohe Bindungskapazit{\"a}ten f{\"u}r die Integration von QDs, Redoxpolymer und Enzym erreicht werden. In Folge wird gezeigt wie elektrochemische Signalketten durch Licht gesteuert werden k{\"o}nnen, indem Ladungstr{\"a}ger in den QDs unter Beleuchtung erzeugt werden. Diese Aktivierung erm{\"o}glicht dann die Ausbildung einer Elektrontransferkaskade vom Enzym {\"u}ber das Redoxpolymer zu den QDs und final zur IO-TiO 2 -Elektrode. Die resultierenden anodischen Photostr{\"o}me k{\"o}nnen durch das Potential, die Lichtintensit{\"a}t und die Glukosekonzentration moduliert werden. So k{\"o}nnen in Anwesenheit von Glukose Photostr{\"o}me von bis zu 207 μA/cm2 und erste Oxidationssignale bereits bei einem Potential von -540 mV vs Ag/AgCl, 1 M KCl erhalten werden. Dies entspricht einem Potentialgewinn von {\"u}ber 500 mV im Vergleich zu nicht lichtsensitiven Elektroden. Das vorgestellte biohybride System kombiniert Vorteile einer großen Oberfl{\"a}che (durch IO-TiO 2 -Struktur), die effiziente Ladungstr{\"a}gergenerierung und -trennung an der QD/TiO 2 -Schnittstelle sowie die effiziente Kontaktierung von FAD-GDH mit den QDs mit Hilfe eines Redoxpolymers. Die Ergebnisse verdeutlichen das Potential dieser leistungsf{\"a}higen Photobioanode f{\"u}r die Sensorik und die Erzeugung von Energie aus Licht und Glukose.}, language = {de} } @misc{TanneSchaeferKhalidetal.2012, author = {Tanne, Johannes and Sch{\"a}fer, Daniel and Khalid, Waqas and Parak, Wolfgang J. and Lisdat, Fred}, title = {Lichtgesteuerter bioelektrochemischer Sensor basierend auf CdSe/ZnS-Quantum Dots}, series = {Wissenschaftliche Beitr{\"a}ge 2012}, volume = {16}, journal = {Wissenschaftliche Beitr{\"a}ge 2012}, issn = {0949-8214}, doi = {10.15771/0949-8214_2012_1_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus-1357}, pages = {15 -- 22}, year = {2012}, abstract = {Diese Studie besch{\"a}ftigt sich mit der Untersuchung der Sauerstoffsensitivit{\"a}t von QD-Elektroden auf Basis von CdSe/ZnS-Nanopartikeln. Das Verhalten des sauerstoffabh{\"a}ngigen Photostroms wurde dabei in Abh{\"a}ngigkeit des pH-Wertes und des Potentials untersucht. Auf Grundlage dieser Sauerstoffabh{\"a}ngigkeit wurde die Enzymaktivit{\"a}t von GOD {\"u}ber Photostrommessungen evaluiert. F{\"u}r die Konstruktion eines photobioelektrochemischen Sensors, der durch Beleuchtung der entsprechenden Elektrodenfl{\"a}che ausgelesen werden kann, wurden Multischichten auf die CdSe/ZnS-modifizierten Elektroden aufgetragen. Die Layer-by-Layer Deposition von GOD mit Hilfe des Polyelektrolyten PAH zeigte, dass eine Sensorkonstruktion m{\"o}glich ist. Die Sensoreigenschaften dieser Elektroden werden drastisch durch die Menge an immobilisiertem Enzym auf der Quantum Dot-Schicht beeinflusst. Durch die Pr{\"a}paration von vier Bilayern [GOD/PAH]4 an CdSe/ ZnS Elektroden kann ein schnell ansprechbarer Sensor f{\"u}r Konzentrationen zwischen 0.1 - 5 mM Glukose hergestellt werden. Dies er{\"o}ffnet neue M{\"o}glichkeiten f{\"u}r die Multianalytdetektion mit nichtstrukturierten Sensorelektroden, lokalisierten Enzymen und r{\"a}umlich aufgel{\"o}ster Auslesung durch Licht.}, language = {de} } @misc{SchubertKhalidZhaoetal.2010, author = {Schubert, Kirsten and Khalid, Waqas and Zhao, Yue and Parak, Wolfgang J. and Lisdat, Fred}, title = {Halbleiternanopartikel-modifizierte Elektrode zum Nachweis von Substraten von NADH-abh{\"a}ngigen Enzymreaktionen}, series = {Wissenschaftliche Beitr{\"a}ge 2009/2010}, volume = {14}, journal = {Wissenschaftliche Beitr{\"a}ge 2009/2010}, issn = {0949-8214}, doi = {10.15771/0949-8214_2010_1_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus-810}, pages = {13 -- 22}, year = {2010}, abstract = {Es wurde ein Elektrodensystem entwickelt, das aufbauend auf Halbleiternanopartikeln (so genannte Quantenpunkte) die sensitive Detektion des Enzymkofaktors NADH (nicotinamide adenine dinucleotide) erlaubt. Kolloidale halbleitende CdSe/ZnS-Nanokristalle sind durch ein Dithiol {\"u}ber Chemisorption an Gold gebunden. Das Stromsignal kann durch die Beleuchtung der Quantenpunkt modifizierten Oberfl{\"a}che beeinflusst werden. Durch Photoanregung entstehen Elektron-Loch- Paare in den Nanopartikeln, die als anodischer oder kathodischer Photostrom detektiert werden k{\"o}nnen. Die Immobilisierung der Nanokristalle ist durch amperometrische Photostrom- und Quarzmikrowaage-Messungen (quartz crystal microbalance) verifiziert. Diese Studie zeigt, dass CdSe/ZnS-Quantenpunktmodifizierte Elektroden eine konzentrationsabh{\"a}ngige NADH-Detektion im Bereich von 20μM bis 2mM bei relativ niedrigem Potential (um 0V vs Ag/AgCl, 1 M KCl) erm{\"o}glichen. Somit k{\"o}nnen solche Elektroden in Kombination mit NADH-produzierenden Reaktionen f{\"u}r die lichtgesteuerte Analyse der entsprechenden Substrate des Biokatalysators genutzt werden. Es wird gezeigt, dass mit einem solchen Elektrodensystem und Photostrommessungen ein Glukosenachweis m{\"o}glich ist.}, language = {de} } @article{ZhaoRiedelPatarroyoetal.2022, author = {Zhao, Shuang and Riedel, Marc and Patarroyo, Javier and Bast{\´u}s, Neus G. and Puntes, Victor and Zhao, Yue and Lisdat, Fred and Parak, Wolfgang J.}, title = {Tailoring of the photocatalytic activity of CeO₂ nanoparticles by the presence of plasmonic Ag nanoparticles}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry (RSC)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-16361}, pages = {12048 -- 12059}, year = {2022}, abstract = {The present study investigates basic features of a photoelectrochemical system based on CeO2 nanoparticles fixed on gold electrodes. Since photocurrent generation is limited to the absorption range of the CeO2 in the UV range, the combination with metal nanoparticles has been studied. It can be shown that the combination of silver nanoparticles with the CeO2 can shift the excitation range into the visible light wavelength range. Here a close contact between both components has been found to be essential and thus, hybrid CeO2@Ag nanoparticles have been prepared and analyzed. We have collected arguments that electron transfer occurs between both compositional elements of the hybrid nanoparticles.The photocurrent generation can be rationalized on the basis of an energy diagram underlying the necessity of surface plasmon excitation in the metal nanoparticles, which is also supported by wavelength-dependent photocurrent measurements. However, electrochemical reactions seem to occur at the CeO2 surface and consequently, the catalytic properties of this material can be exploited as exemplified with the photoelectrochemical reduction of hydrogen peroxide. It can be further demonstrated that the layer-by layer technique can be exploited to create a multilayer system on top of a gold electrode which allows the adjustment of the sensitivity of the photoelectrochemical system. Thus, with a 5-layer electrode with hybrid CeO2@Ag nanoparticles submicromolar hydrogen peroxide concentrations can be detected.}, language = {en} } @article{KhalidGoebelHuehnetal.2011, author = {Khalid, Waqas and G{\"o}bel, Gero and H{\"u}hn, Dominik and Montenegro, Jose-Maria and Rivera-Gil, Pilar and Lisdat, Fred and Parak, Wolfgang J.}, title = {Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode}, series = {Journal of Nanobiotechnology}, volume = {9}, journal = {Journal of Nanobiotechnology}, number = {46}, issn = {1477-3155}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5808}, pages = {10}, year = {2011}, abstract = {An electrochemical sensor for p-aminophenyl phosphate (p APP) is reported. It is based on the electrochemical conversion of 4-aminophenol (4AP) at a quantum dot (QD) modified electrode under illumination. Without illumination no electron transfer and thus no oxidation of 4AP can occur. p APP as substrate is converted by the enzyme alkaline phosphatase (ALP) to generate 4AP as a product. The QDs are coupled via 1,4-benzenedithiol (BDT) linkage to the surface of a gold electrode and thus allow potential-controlled photocurrent generation. The photocurrent is modified by the enzyme reaction providing access to the substrate detection. In order to develop a photobioelectrochemical sensor the enzyme is immobilized on top of the photo-switchable layer of the QDs. Immobilization of ALP is required for the potential possibility of spatially resolved measurements. Geometries with immobilized ALP are compared versus having the ALP in solution. Data indicate that functional immobilization with layer-by-layer assembly is possible. Enzymatic activity of ALP and thus the photocurrent can be described by Michaelis- Menten kinetics. p APP is detected as proof of principle investigation within the range of 25 μM - 1 mM.}, language = {en} } @article{ZhaoCarusoDaehneetal.2019, author = {Zhao, Shuang and Caruso, Frank and D{\"a}hne, Lars and Decher, Gero and De Geest, Bruno G. and Fan, Jinchen and Feliu, Neus and Gogotsi, Yury and Hammond, Paula T. and Hersam, Mark C. and Khademhosseini, Ali and Kotov, Nicholas and Leporatti, Stefano and Li, Yan and Lisdat, Fred and Liz-Marz{\´a}n, Luis M. and Moya, Sergio and Mulvaney, Paul and Rogach, Andrey L. and Roy, Sathi and Shchukin, Dmitry G. and Skirtach, Andre G. and Stevens, Molly M. and Sukhorukov, Gleb B. and Weiss, Paul S. and Yue, Zhao and Zhu, Dingcheng and Parak, Wolfgang J.}, title = {The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth M{\"o}hwald}, series = {ACS Nano}, volume = {13}, journal = {ACS Nano}, number = {6}, issn = {1936-086X}, doi = {10.1021/acsnano.9b03326}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-12356}, pages = {6151 -- 6169}, year = {2019}, abstract = {Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth M{\"o}hwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.}, language = {en} } @inproceedings{RiedelGoebelParaketal.2014, author = {Riedel, Marc and G{\"o}bel, Gero and Parak, Wolfgang J. and Lisdat, Fred}, title = {Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts}, publisher = {Society of Photo-Optical Instrumentation Engineers (SPIE)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-15266}, pages = {195 -- 200}, year = {2014}, abstract = {Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.}, language = {en} }