@article{GrebinykGrebinykPrylutskaetal.2018, author = {Grebinyk, Anna and Grebinyk, Sergii and Prylutska, Svitlana and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {HPLC-ESI-MS method for C60 fullerene mitochondrial content quantification}, series = {Data in Brief}, volume = {19}, journal = {Data in Brief}, issn = {2352-3409}, doi = {10.1016/j.dib.2018.06.089}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10368}, pages = {2047 -- 2052}, year = {2018}, abstract = {The presented dataset describes the quantification of carbon nanoparticle C60 fullerene accumulated in mitochondria of human leukemic cells treated with nanostructure. Firstly, the high performance liquid chromatography-electro spray ionization-mass spectrometry (HPLC-ESI-MS) method was developed for quantitative analysis of pristine C60 fullerene. Then, human leukemic cells were incubated with C60 fullerene, homogenized and subjected to the differential centrifugation to retrieve mitochondrial fraction. The C60 fullerene content was quantified by HPLC-ESI-MS in extracts of cellular fractions. This data article refers to the research article "C60 Fullerene Accumulation in Human Leukemic Cells and Perspectives of LED-mediated Photodynamic Therapy" by Grebinyk et al.}, language = {en} } @article{GrebinykGrebinykPrylutskaetal.2018, author = {Grebinyk, Anna and Grebinyk, Sergii and Prylutska, Svitlana and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {C60 fullerene accumulation in human leukemic cells and perspectives of LED-mediated photodynamic therapy}, series = {Free Radical Biology and Medicine}, volume = {124}, journal = {Free Radical Biology and Medicine}, issn = {1873-4596}, doi = {10.1016/j.freeradbiomed.2018.06.022}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10588}, pages = {319 -- 327}, year = {2018}, abstract = {Recent progress in nanobiotechnology has attracted interest to a biomedical application of the carbon nanostructure C60 fullerene since it possesses a unique structure and versatile biological activity. C60 fullerene potential application in the frame of cancer photodynamic therapy (PDT) relies on rapid development of new light sources as well as on better understanding of the fullerene interaction with cells. The aim of this study was to analyze C60 fullerene effects on human leukemic cells (CCRF-CEM) in combination with high power single chip light-emitting diodes (LEDs) light irradiation of different wavelengths: ultraviolet (UV, 365 nm), violet (405 nm), green (515 nm) and red (632 nm). The time-dependent accumulation of fullerene C60 in CCRF-CEM cells up to 250 ng/106 cells at 24 h with predominant localization within mitochondria was demonstrated with immunocytochemical staining and liquid chromatography mass spectrometry. In a cell viability assay we studied photoexcitation of the accumulated C60 nanostructures with ultraviolet or violet LEDs and could prove that significant phototoxic effects did arise. A less pronounced C60 fullerene phototoxic effect was observed after irradiation with green, and no effect was detected with red light. A C60 fullerene photoactivation with violet light induced substantial ROS generation and apoptotic cell death, confirmed by caspase3/7 activation and plasma membrane phosphatidylserine externalization. Our work proved C60 fullerene ability to induce apoptosis of leukemic cells after photoexcitation with high power single chip 405 nm LED as a light source. This underlined the potential for application of C60 nanostructure as a photosensitizer for anticancer therapy.}, language = {en} } @article{GrebinykPrylutskaGrynyuketal.2018, author = {Grebinyk, Anna and Prylutska, Svitlana and Grynyuk, I. and Kolp, Benjamin and Hurmach, V. and Sliva, T. and Amirkhanov, V. and Trush, V. and Matyshevska, Olga and Slobodyanik, M. and Prylutskyy, Yuriy and Frohme, Marcus and Ritter, Uwe}, title = {C60 Fullerene Effects on Diphenyl-N-(trichloroacetyl)-amidophosphate Interaction with DNA In Silico and Its Cytotoxic Activity Against Human Leukemic Cell Line In Vitro}, series = {Nanoscale Research Letters}, volume = {2018}, journal = {Nanoscale Research Letters}, issn = {1556-276X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10515}, pages = {1 -- 9}, year = {2018}, abstract = {New representative of carbacylamidophosphates - diphenyl-N-(trichloroacetyl)-amidophosphate (HL), which contains two phenoxy substituents near the phosphoryl group, was synthesized, identified by elemental analysis and IR and NMR spectroscopy, and tested as a cytotoxic agent itself and in combination with C60 fullerene. According to molecular simulation results, C60 fullerene and HL could interact with DNA and form a rigid complex stabilized by stacking interactions of HL phenyl groups with C60 fullerene and DNA G nucleotide, as well as by interactions of HL CCl3 group by ion-π bonds with C60 molecule and by electrostatic bonds with DNA G nucleotide. With the use of MTT test, the cytotoxic activity of HL against human leukemic CCRF-CM cells with IC50 value detected at 10 μM concentration at 72 h of cells treatment was shown. Under combined action of 16 μM C60 fullerene and HL, the value of IC50 was detected at lower 5 μM HL concentration and at earlier 48 h period of incubation, besides the cytotoxic effect of HL was observed at a low 2.5 μM concentration at which HL by itself had no influence on cell viability. Binding of C60 fullerene and HL with minor DNA groove with formation of a stable complex is assumed to be one of the possible reasons of their synergistic inhibition of CCRF-CЕM cells proliferation. Application of C60 fullerene in combination with 2.5 μM HL was shown to have no harmful effect on structural stability of blood erythrocytes membrane. Thus, combined action of C60 fullerene and HL in a low concentration potentiated HL cytotoxic effect against human leukemic cells and was not followed by hemolytic effect.}, language = {en} }