@article{LuxEdlingLuccietal.2019, author = {Lux, Helge and Edling, Matthias and Lucci, Massimiliano and Kitzmann, Julia and Villringer, Claus and Siemroth, Peter and De Matteis, Fabio and Schrader, Sigurd}, title = {The Role of Substrate Temperature and Magnetic Filtering for DLC by Cathodic Arc Evaporation}, series = {Coatings}, volume = {9}, journal = {Coatings}, number = {5}, issn = {2079-6412}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-12295}, pages = {345}, year = {2019}, abstract = {Diamond-like carbon (DLC) films were deposited using two different types of high current arc evaporation. The first process used a magnetic particle filter to remove droplets from the plasma. For the second process, the samples were put into a metallic cage which was placed directly above the plasma source. For both processes, we varied the substrate temperature from 21 to 350 °C in order to investigate the temperature effect. The samples were characterized using SEM, AFM, XPS, Raman Spectroscopy, Ellipsometry, Photometry, and Nano Indentation in order to compare both methods of deposition and provide a careful characterization of such DLC films. We found that the sp3 content and the hardness can be precisely adjusted by changing the substrate temperature. Furthermore, in the case of unfiltered deposition, the optical constants can be shifted in the direction of higher absorbance in order to produce black and hard carbon coatings.}, language = {en} } @inproceedings{PadillaMichelLucciCasalbonietal.2015, author = {Padilla-Michel, Yazmin and Lucci, Massimiliano and Casalboni, Mauro and Steglich, Patrick and Schrader, Sigurd}, title = {Mechanical Characterisation of the Four Most Used Coating Materials for Optical Fibres}, series = {Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology : vol. 1}, booktitle = {Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology : vol. 1}, editor = {Ribeiro, Paulo A.}, publisher = {SciTePress}, address = {Set{\´u}bal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-20063}, pages = {96 -- 102}, year = {2015}, abstract = {Optical multimode fibres have a wide variety of applications ranging from industrial to medical use. Therefore, even if they are just used as waveguides or sensors, it is important to characterise the whole fingerprint, including the optical and mechanical properties of such fibres. Since the stiffness/elasticity of a material could influence the optical output of a fibre due to micro-bendings, in this paper we report the calculated Young's Modulus of acrylate, fluorinated acrylate, polyimide and silicone, which are the four most used coating materials for such optical components. The results demonstrate that Young's Modulus does have an impact on the attenuation of propagating light along the optical fibre. However, the refractive index of the coating materials still has a significant impact on the performance of optical fibres.}, language = {en} }