@misc{SchubartGoebelLisdat2013, author = {Schubart, Ivo and G{\"o}bel, Gero and Lisdat, Fred}, title = {Direkte Kontaktierung des Enzyms (PQQ)-GDH und Elektroden mit Hilfe von polymermodifizierten Nanor{\"o}hren f{\"u}r die Anwendung in Biobrennstoffzellen}, series = {Wissenschaftliche Beitr{\"a}ge 2013}, volume = {17}, journal = {Wissenschaftliche Beitr{\"a}ge 2013}, issn = {0949-8214}, doi = {10.15771/0949-8214_2013_1_3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3127}, pages = {17 -- 22}, year = {2013}, abstract = {In dieser Studie pr{\"a}sentieren wir eine Enzymelektrode, bei der ein direkter Elektronentransfer (DET) zwischen der Pyrrolochinolinchinon-abh{\"a}ngigen Glukosedehydrogenase (PQQ)-GDH und einer Elektrode realisiert werden konnte. Hierf{\"u}r wird eine Goldelektrode mit mehrwandigen Kohlenstoffnanor{\"o}hren [engl. multi-walled carbon nanotubes (MWCNT)] modifiziert, anschließend mit einem Copolymer aus Anilinderivaten {\"u}berzogen und dann die (PQQ)-GDH (Acinetobacter calcoaceticus) kovalent immobilisiert. Die gepulste Polymersynthese wird hinsichtlich der Effektivit{\"a}t der bioelektrokatalytischen Umsetzung von Glukose optimiert. Die Glukoseoxidation startet bei einem Potential von -0,1 V vs. Ag/AgCl (1 M KCl) und Stromdichten von bis zu 500 μA/cm² (+0,1 V) k{\"o}nnen erreicht werden. Der Messbereich f{\"u}r Glukose liegt bei 0,1-5 mM (+0,1 V vs. Ag/AgCl). Der dynamische Bereich ist bei h{\"o}herem Potential auf bis zu 100 mM (+0,4 V vs Ag/AgCl) erweitert. Die Elektrode wird als Anode in einer Biobrennstoffzelle (BBZ) mit einer Bilirubinoxidase-modifizierten MWCNT/Gold-Kathode eingesetzt. Beide Elektroden basieren auf einem DET. Das Zellpotential der BBZ betr{\"a}gt 680 ±20 mV und sie erreicht eine maximale Leistungsdichte von 65 μW/cm² (bei einer Zellspannung von 350 mV).}, language = {de} }