@misc{SarauliXuDietzeletal.2014, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {Effekt unterschiedlich substituierter sulfonierter Polyaniline auf den Elektronentransfer mit pyrrolochinolinchinonabh{\"a}ngiger Glukosehydrogenase}, series = {Wissenschaftliche Beitr{\"a}ge 2014}, volume = {18}, journal = {Wissenschaftliche Beitr{\"a}ge 2014}, issn = {0949-8214}, doi = {10.15771/0949-8214_2014_1_1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3285}, pages = {7 -- 15}, year = {2014}, abstract = {Sulfonierte Polyaniline erwiesen sich bereits als geeignete Polymere f{\"u}r den Aufbau von Biosensoren. Aus diesem Grund setzten wir unterschiedlich substituierte Polymerformen f{\"u}r die Untersuchungen der direkten Elektronen{\"u}bertragung zum Redoxenzym PQQ-GDH (Pyrrolochinolinchinon-abh{\"a}ngige Glukosedehydrogenase) ein. Daf{\"u}r wurden zuerst neue Copolymere synthetisiert. Als Basis f{\"u}r die Synthesen wurden 2-Methoxyanilin-5-Sulfons{\"a}ure (MAS), 3-Aminobenzensulfons{\"a}ure (ABS), 3-Aminobenzoes{\"a}ure (AB) und Anilin (AN) ausgew{\"a}hlt und deren Verh{\"a}ltnisse variiert. Alle Copolymere wurden hinsichtlich der direkten Reaktion mit PQQ-GDH untersucht. Diese Wechselwirkung wurde zun{\"a}chst in L{\"o}sung, anschließend auch auf Elektroden beobachtet. Die Ergebnisse zeigen, dass nur die aus MAS- und AN-Einheiten bestehenden Copolymere in der Lage sind, mit dem Enzym in L{\"o}sung direkt zu interagieren, was wahrscheinlich dem Emeraldin Salz (ES) Redoxzustand des Polymers zuzuschreiben ist. Immobilisiert man die Polymere und das Enzym auf Kohlenstoffnanor{\"o}hrenbasierten Elektroden, generiert man direkte Bioelektrokatalyse auch im Falle der aus ABS/AB- und MAS/AB-Einheiten bestehenden Copolymere, die sich nach der Synthese im Pernigranilin Base (PB) Redoxzustand befinden. Im Gegensatz zur Situation in L{\"o}sung kann auf Elektroden das Potential zus{\"a}tzlich genutzt werden, um Elektronen vom Enzym auf das Polymer zu {\"u}bertragen. Solche Polymerbasierten Enzymelektroden besitzen Anwendungspotential in der Sensorik, aber auch in Biobrennstoffzellen.}, language = {de} } @article{FeifelStiegerKappetal.2016, author = {Feifel, Sven Christian and Stieger, Kai Ralf and Kapp, Andreas and Weber, Dennis and Allegrozzi, Marco and Piccioli, Mario and Turano, Paola and Lisdat, Fred}, title = {Insights into Interprotein Electron Transfer of Human Cytochrome c Variants Arranged in Multilayer Architectures by Means of an Artificial Silica Nanoparticle Matrix}, series = {ACS Omega}, volume = {1}, journal = {ACS Omega}, number = {6}, issn = {2470-1343}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-6753}, pages = {1058 -- 1066}, year = {2016}, abstract = {The redox behavior of proteins plays a crucial part in the design of bioelectronic systems. We have demonstrated several functional systems exploiting the electron exchange properties of the redox protein cytochrome c (cyt c) in combination with enzymes and photoactive proteins. The operation is based on an effective reaction at modified electrodes but also to a large extent on the capability of self-exchange between cyt c molecules in a surface-fixed state. In this context, different variants of human cyt c have been examined here with respect to an altered heterogeneous electron transfer (ET) rate in a monolayer on electrodes as well as an enhanced self-exchange rate while being incorporated in multilayer architectures. For this purpose, mutants of the wild-type (WT) protein have been prepared to change the chemical nature of the surface contact area near the heme edge. The structural integrity of the variants has been verified by NMR and UV-vis measurements. It is shown that the single-point mutations can significantly influence the heterogeneous ET rate at thiol-modified gold electrodes and that electroactive protein/silica nanoparticle multilayers can be constructed with all forms of human cyt c prepared. The kinetic behavior of electron exchange for the mutant proteins in comparison with that of the WT has been found altered in some multilayer arrangements. Higher self-exchange rates have been found for K79A. The results demonstrate that the position of the introduced change in the charge situation of cyt c has a profound influence on the exchange behavior. In addition, the behavior of the cyt c variants in assembled multilayers is found to be rather similar to the situation of cyt c self-exchange in solution verified by NMR.}, language = {en} } @misc{StiegerFeifelLoksteinetal.2018, author = {Stieger, Kai Ralf and Feifel, Sven Christian and Lokstein, Heiko and Hejazi, Mahdi and Zouni, Athina and Lisdat, Fred}, title = {Biohybride Architekturen f{\"u}r eine effiziente Umwandlung von Licht in elektrische Energie durch Integration von Photosystem I in skalierbare mesopor{\"o}se 3D Elektroden}, series = {Wissenschaftliche Beitr{\"a}ge 2018}, volume = {22}, journal = {Wissenschaftliche Beitr{\"a}ge 2018}, issn = {0949-8214}, doi = {10.15771/0949-8214_2018_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10220}, pages = {17 -- 24}, year = {2018}, abstract = {Die Kombination von fortschrittlichen Materialien und kontrolliertem Oberfl{\"a}chendesign mit komplexen Proteinen aus der nat{\"u}rlichen Photosynthese ist derzeit eines der Hauptthemen bei der Entwicklung von Biohybridsystemen und Biophotovoltaik. In dieser Studie werden transparente makropor{\"o}se Indium-Zinn-Oxid-(μITO-) Elektroden mit dem trimeren Superkomplex Photosystem I (PSI) aus dem Cyanobakterium Thermosynechococcus elongatus sowie dem kleinen Redoxprotein Cytochrom c (Cyt c) kombiniert, um neuartige und effiziente biohybride Photokathoden herzustellen. Mit diesen bis zu 40 μm hohen 3D-Strukturen k{\"o}nnen beide Proteine in einer ann{\"a}hernden Monolage abgeschieden werden und die elektrische Kommunikation mit der Elektrode kann erzielt werden. Der generierte Photostrom folgt dabei linear der kontrollierbaren Schichtdicke der μITO-Elektrode, wobei Stromdichten von bis zu 150 μA cm -2 erhalten werden. Eine effiziente elektrische Kopplung der Proteine kann durch die hohe interne Quanteneffizienz von 30 \% gezeigt werden.}, language = {de} } @article{FeifelLisdat2011, author = {Feifel, Sven Christian and Lisdat, Fred}, title = {Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers}, series = {Journal of Nanobiotechnology}, volume = {9}, journal = {Journal of Nanobiotechnology}, number = {59}, issn = {1477-3155}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5819}, pages = {12}, year = {2011}, abstract = {For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems.}, language = {en} } @inproceedings{RiedelGoebelParaketal.2014, author = {Riedel, Marc and G{\"o}bel, Gero and Parak, Wolfgang J. and Lisdat, Fred}, title = {Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts}, publisher = {Society of Photo-Optical Instrumentation Engineers (SPIE)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-15266}, pages = {195 -- 200}, year = {2014}, abstract = {Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.}, language = {en} } @article{KoelschHejaziStiegeretal.2018, author = {K{\"o}lsch, Adrian and Hejazi, Mahdi and Stieger, Kai Ralf and Feifel, Sven Christian and Kern, Jan F. and M{\"u}h, Frank and Lisdat, Fred and Lokstein, Heiko and Zouni, Athina}, title = {Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus}, series = {Journal of Biological Chemistry}, volume = {293}, journal = {Journal of Biological Chemistry}, number = {23}, issn = {1083-351X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-12780}, pages = {9090 -- 9100}, year = {2018}, abstract = {The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700. Binding to PS I was found to be the same for reduced and oxidized cyt cHH. Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-{\AA} resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870. This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.}, language = {en} } @misc{WettsteinKanoSchaeferetal.2017, author = {Wettstein, Christoph and Kano, Kenji and Sch{\"a}fer, Daniel and Wollenberger, Ulla and Lisdat, Fred}, title = {Die Flavin-abh{\"a}ngige Fruktosedehydrogenase und Cytochrom c: Elektronentransfer und Sensorstrategien}, series = {Wissenschaftliche Beitr{\"a}ge 2017}, volume = {21}, journal = {Wissenschaftliche Beitr{\"a}ge 2017}, issn = {0949-8214}, doi = {10.15771/0949-8214_2017_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-9379}, pages = {13 -- 21}, year = {2017}, abstract = {Die hier durchgef{\"u}hrten Untersuchungen erm{\"o}glichen ein besseres Verst{\"a}ndnis der Elektronentransferprozesse zwischen der Flavin-abh{\"a}ngigen Fruktosedehydrogenase (FDH) und dem Redoxprotein Cytochrom c (Cyt c). Dies liefert im Hinblick auf sensorische Anwendungen wichtige Erkenntnisse f{\"u}r vorteilhafte Sensorarchitekturen und deren Messbedingungen. Es wurden zwei unterschiedliche pH-Optima f{\"u}r die Redoxreaktion der beiden Proteine untereinander entdeckt. Die Reaktion wurde im Weiteren mit Elektroden kombiniert und so eine Fruktose-abh{\"a}ngige Stromantwort detektiert. Dar{\"u}ber hinaus konnten definierte dreidimensionale Sensorarchitekturen der beiden Proteine, mit Hilfe von DNA als zus{\"a}tzlichen biologischen Baustein erzeugt und f{\"u}r die Sensorik genutzt werden.}, language = {de} } @misc{RiedelSchaeferParaketal.2019, author = {Riedel, Marc and Sch{\"a}fer, Daniel and Parak, Wolfgang J. and Ruff, Adrian and Schuhmann, Wolfgang and Lisdat, Fred}, title = {Quantum Dot-modifizierte TiO2-Strukturen f{\"u}r die Licht-gesteuerte Bioelektrokatalyse}, series = {Wissenschaftliche Beitr{\"a}ge 2019}, volume = {23}, journal = {Wissenschaftliche Beitr{\"a}ge 2019}, issn = {0949-8214}, doi = {10.15771/0949-8214_2019_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10773}, pages = {11 -- 17}, year = {2019}, abstract = {Die funktionale Kopplung von photoaktiven Nanostrukturen mit Enzymen stellt eine neue Strategie zum Aufbau lichtgesteuerter biohybrider Systeme dar. Hier sind Untersuchungen zusammengefasst, welche die effiziente Kontaktierung der FAD-abh{\"a}ngigen Glukosedehydrogenase (FAD-GDH) mit Hilfe eines Osmium-Redoxpolymers (P Os ) an PbS-Quantum Dots (PbS QDs) zeigen, welche direkt auf dreidimensionalen TiO 2 -Elektrodenstrukturen synthetisiert wurden. Diese biohybriden Strukturen erlauben die Licht-induzierte Oxidation von Glukose. Dazu wird zun{\"a}chst ein Verfahren vorgestellt, bei welchem durch den Aufbau invers-opaler TiO 2 (IO-TiO 2 ) Strukturen hohe Bindungskapazit{\"a}ten f{\"u}r die Integration von QDs, Redoxpolymer und Enzym erreicht werden. In Folge wird gezeigt wie elektrochemische Signalketten durch Licht gesteuert werden k{\"o}nnen, indem Ladungstr{\"a}ger in den QDs unter Beleuchtung erzeugt werden. Diese Aktivierung erm{\"o}glicht dann die Ausbildung einer Elektrontransferkaskade vom Enzym {\"u}ber das Redoxpolymer zu den QDs und final zur IO-TiO 2 -Elektrode. Die resultierenden anodischen Photostr{\"o}me k{\"o}nnen durch das Potential, die Lichtintensit{\"a}t und die Glukosekonzentration moduliert werden. So k{\"o}nnen in Anwesenheit von Glukose Photostr{\"o}me von bis zu 207 μA/cm2 und erste Oxidationssignale bereits bei einem Potential von -540 mV vs Ag/AgCl, 1 M KCl erhalten werden. Dies entspricht einem Potentialgewinn von {\"u}ber 500 mV im Vergleich zu nicht lichtsensitiven Elektroden. Das vorgestellte biohybride System kombiniert Vorteile einer großen Oberfl{\"a}che (durch IO-TiO 2 -Struktur), die effiziente Ladungstr{\"a}gergenerierung und -trennung an der QD/TiO 2 -Schnittstelle sowie die effiziente Kontaktierung von FAD-GDH mit den QDs mit Hilfe eines Redoxpolymers. Die Ergebnisse verdeutlichen das Potential dieser leistungsf{\"a}higen Photobioanode f{\"u}r die Sensorik und die Erzeugung von Energie aus Licht und Glukose.}, language = {de} } @misc{RiedelKartchemnikSchoeningetal.2015, author = {Riedel, Marc and Kartchemnik, Julia and Sch{\"o}ning, Michael J. and Lisdat, Fred}, title = {Impedimetrischer DNA Nachweis - Schritte in Richtung sensorischer Anwendung}, series = {Wissenschaftliche Beitr{\"a}ge 2015}, volume = {19}, journal = {Wissenschaftliche Beitr{\"a}ge 2015}, issn = {0949-8214}, doi = {10.15771/0949-8214_2015_1_3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3538}, pages = {21 -- 28}, year = {2015}, abstract = {Diese Studie beschreibt einen labelfreien impedimetrischen Sensor auf der Grundlage von kurzen einzelstr{\"a}ngigen DNA-Erkennungselementen f{\"u}r den Nachweis von Hybridisierungsereignissen. Der Fokus der Arbeit liegt auf der Aufkl{\"a}rung des Einflusses der Ziel-DNA-L{\"a}nge und der Erkennungssequenzposition auf die sensorische Leistungsf{\"a}higkeit. Die impedimetrischen Messungen werden in Anwesenheit des Redoxsystems Kaliumhexacyanoferrat (II/III) durchgef{\"u}hrt und zeigen einen Anstieg des Durchtrittswiderstandes nach der Hybridisierung mit komplement{\"a}rer Ziel-DNA mit einer Nachweisgrenze im unteren nanomolaren Bereich. Nach der Hybridisierung kann die Regeneration des Sensors mit deionisiertem Wasser durch die Einstellung effektiver Konvektionsbedingungen erreicht werden und erm{\"o}glicht somit eine Wiederverwendbarkeit des Sensors. Untersuchungen zu l{\"a}ngeren Ziel-DNA-Str{\"a}ngen mit einem zur L{\"o}sung exponierten {\"U}berhang demonstrieren die Anwendbarkeit des impedimetrischen Nachweises f{\"u}r l{\"a}ngere Sequenzen. Allerdings resultiert eine zunehmende {\"U}berhangl{\"a}nge in einer verringerten Durchtrittswiderstands{\"a}nderung. Um die Impedanz{\"a}nderung f{\"u}r l{\"a}ngere Ziel-DNA zu erh{\"o}hen, wird die Erkennungssequenzposition ver{\"a}ndert, sodass ein kleiner {\"U}berhang zur Elektrode ausgerichtet ist. Die Ergebnisse legen nahe, dass DNA in direkter N{\"a}he zur Elektrode einen gr{\"o}ßeren Einfluss auf das impedimetrische Signal besitzt als weiter entfernte DNA.}, language = {de} }