@article{Lisdat2020, author = {Lisdat, Fred}, title = {Coupling biology to electrochemistry—future trends and needs}, series = {Journal of Solid State Electrochemistry}, volume = {24}, journal = {Journal of Solid State Electrochemistry}, publisher = {Springer Nature}, issn = {1433-0768}, doi = {10.1007/s10008-020-04714-y}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-13639}, pages = {2125 -- 2127}, year = {2020}, abstract = {The coupling of biological entities with electrodes has already quite some history and has reached a status which is not only based on phenomenological descriptions. Nowadays, we are able to effectively couple redox centres within protein molecules to electrochemical transducers. This allows the transduction of a biochemical reaction into an electrode signal with applications mainly in sensing and bioenergetics [1,2,3,4,5,6,7,8]. However, in most cases, this coupling is not direct, and shuttle molecules or side products of the reaction are used. But also for the direct coupling, significant progress has been made, and several enzymes and redox proteins can be addressed directly by electrodes [8,9,10,11,12,13]. The understanding of the functioning of developed systems is, however, in its infancy. Charge and electrostatic interactions have been mostly studied, and for small dipole molecules such as cytochrome c, the situation can be well described [14]. There is a lack of understanding for more complex enzyme molecules which brings a lot of trial and error into research.}, language = {en} } @article{ZhaoRiedelPatarroyoetal.2022, author = {Zhao, Shuang and Riedel, Marc and Patarroyo, Javier and Bast{\´u}s, Neus G. and Puntes, Victor and Zhao, Yue and Lisdat, Fred and Parak, Wolfgang J.}, title = {Tailoring of the photocatalytic activity of CeO₂ nanoparticles by the presence of plasmonic Ag nanoparticles}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry (RSC)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-16361}, pages = {12048 -- 12059}, year = {2022}, abstract = {The present study investigates basic features of a photoelectrochemical system based on CeO2 nanoparticles fixed on gold electrodes. Since photocurrent generation is limited to the absorption range of the CeO2 in the UV range, the combination with metal nanoparticles has been studied. It can be shown that the combination of silver nanoparticles with the CeO2 can shift the excitation range into the visible light wavelength range. Here a close contact between both components has been found to be essential and thus, hybrid CeO2@Ag nanoparticles have been prepared and analyzed. We have collected arguments that electron transfer occurs between both compositional elements of the hybrid nanoparticles.The photocurrent generation can be rationalized on the basis of an energy diagram underlying the necessity of surface plasmon excitation in the metal nanoparticles, which is also supported by wavelength-dependent photocurrent measurements. However, electrochemical reactions seem to occur at the CeO2 surface and consequently, the catalytic properties of this material can be exploited as exemplified with the photoelectrochemical reduction of hydrogen peroxide. It can be further demonstrated that the layer-by layer technique can be exploited to create a multilayer system on top of a gold electrode which allows the adjustment of the sensitivity of the photoelectrochemical system. Thus, with a 5-layer electrode with hybrid CeO2@Ag nanoparticles submicromolar hydrogen peroxide concentrations can be detected.}, language = {en} } @article{KoelschRadonGolubetal.2020, author = {K{\"o}lsch, Adrian and Radon, C. and Golub, M. and Baumert, A. and B{\"u}rger, J{\"o}rg and Mielke, Thorsten and Lisdat, Fred and Feoktystov, A. and Pieper, J. and Zouni, Athina and Wendler, P.}, title = {Current limits of structural biology: The transient interaction between cytochrome c6 and photosystem I}, series = {Current Research in Structural Biology}, volume = {2}, journal = {Current Research in Structural Biology}, issn = {2665-928X}, doi = {10.1016/j.crstbi.2020.08.003}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-13628}, pages = {171 -- 179}, year = {2020}, abstract = {Trimeric photosystem I from the cyanobacterium Thermosynechococcus elongatus (TePSI) is an intrinsic membrane protein, which converts solar energy into electrical energy by oxidizing the soluble redox mediator cytochrome c6 (Cyt c6) and reducing ferredoxin. Here, we use cryo-electron microscopy and small angle neutron scattering (SANS) to characterize the transient binding of Cyt c6 to TePSI. The structure of TePSI cross-linked to Cyt c6 was solved at a resolution of 2.9 {\AA} and shows additional cofactors as well as side chain density for 84\% of the peptide chain of subunit PsaK, revealing a hydrophobic, membrane intrinsic loop that enables binding of associated proteins. Due to the poor binding specificity, Cyt c6 could not be localized with certainty in our cryo-EM analysis. SANS measurements confirm that Cyt c6 does not bind to TePSI at protein concentrations comparable to those for cross-linking. However, SANS data indicate a complex formation between TePSI and the non-native mitochondrial cytochrome from horse heart (Cyt cHH). Our study pinpoints the difficulty of identifying very small binding partners (less than 5\% of the overall size) in EM structures when binding affinities are poor. We relate our results to well resolved co-structures with known binding affinities and recommend confirmatory methods for complexes with KM values higher than 20 μM.}, language = {en} } @misc{SchubartGoebelLisdat2013, author = {Schubart, Ivo and G{\"o}bel, Gero and Lisdat, Fred}, title = {Direkte Kontaktierung des Enzyms (PQQ)-GDH und Elektroden mit Hilfe von polymermodifizierten Nanor{\"o}hren f{\"u}r die Anwendung in Biobrennstoffzellen}, series = {Wissenschaftliche Beitr{\"a}ge 2013}, volume = {17}, journal = {Wissenschaftliche Beitr{\"a}ge 2013}, issn = {0949-8214}, doi = {10.15771/0949-8214_2013_1_3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3127}, pages = {17 -- 22}, year = {2013}, abstract = {In dieser Studie pr{\"a}sentieren wir eine Enzymelektrode, bei der ein direkter Elektronentransfer (DET) zwischen der Pyrrolochinolinchinon-abh{\"a}ngigen Glukosedehydrogenase (PQQ)-GDH und einer Elektrode realisiert werden konnte. Hierf{\"u}r wird eine Goldelektrode mit mehrwandigen Kohlenstoffnanor{\"o}hren [engl. multi-walled carbon nanotubes (MWCNT)] modifiziert, anschließend mit einem Copolymer aus Anilinderivaten {\"u}berzogen und dann die (PQQ)-GDH (Acinetobacter calcoaceticus) kovalent immobilisiert. Die gepulste Polymersynthese wird hinsichtlich der Effektivit{\"a}t der bioelektrokatalytischen Umsetzung von Glukose optimiert. Die Glukoseoxidation startet bei einem Potential von -0,1 V vs. Ag/AgCl (1 M KCl) und Stromdichten von bis zu 500 μA/cm² (+0,1 V) k{\"o}nnen erreicht werden. Der Messbereich f{\"u}r Glukose liegt bei 0,1-5 mM (+0,1 V vs. Ag/AgCl). Der dynamische Bereich ist bei h{\"o}herem Potential auf bis zu 100 mM (+0,4 V vs Ag/AgCl) erweitert. Die Elektrode wird als Anode in einer Biobrennstoffzelle (BBZ) mit einer Bilirubinoxidase-modifizierten MWCNT/Gold-Kathode eingesetzt. Beide Elektroden basieren auf einem DET. Das Zellpotential der BBZ betr{\"a}gt 680 ±20 mV und sie erreicht eine maximale Leistungsdichte von 65 μW/cm² (bei einer Zellspannung von 350 mV).}, language = {de} } @misc{RiedelKartchemnikSchoeningetal.2015, author = {Riedel, Marc and Kartchemnik, Julia and Sch{\"o}ning, Michael J. and Lisdat, Fred}, title = {Impedimetrischer DNA Nachweis - Schritte in Richtung sensorischer Anwendung}, series = {Wissenschaftliche Beitr{\"a}ge 2015}, volume = {19}, journal = {Wissenschaftliche Beitr{\"a}ge 2015}, issn = {0949-8214}, doi = {10.15771/0949-8214_2015_1_3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3538}, pages = {21 -- 28}, year = {2015}, abstract = {Diese Studie beschreibt einen labelfreien impedimetrischen Sensor auf der Grundlage von kurzen einzelstr{\"a}ngigen DNA-Erkennungselementen f{\"u}r den Nachweis von Hybridisierungsereignissen. Der Fokus der Arbeit liegt auf der Aufkl{\"a}rung des Einflusses der Ziel-DNA-L{\"a}nge und der Erkennungssequenzposition auf die sensorische Leistungsf{\"a}higkeit. Die impedimetrischen Messungen werden in Anwesenheit des Redoxsystems Kaliumhexacyanoferrat (II/III) durchgef{\"u}hrt und zeigen einen Anstieg des Durchtrittswiderstandes nach der Hybridisierung mit komplement{\"a}rer Ziel-DNA mit einer Nachweisgrenze im unteren nanomolaren Bereich. Nach der Hybridisierung kann die Regeneration des Sensors mit deionisiertem Wasser durch die Einstellung effektiver Konvektionsbedingungen erreicht werden und erm{\"o}glicht somit eine Wiederverwendbarkeit des Sensors. Untersuchungen zu l{\"a}ngeren Ziel-DNA-Str{\"a}ngen mit einem zur L{\"o}sung exponierten {\"U}berhang demonstrieren die Anwendbarkeit des impedimetrischen Nachweises f{\"u}r l{\"a}ngere Sequenzen. Allerdings resultiert eine zunehmende {\"U}berhangl{\"a}nge in einer verringerten Durchtrittswiderstands{\"a}nderung. Um die Impedanz{\"a}nderung f{\"u}r l{\"a}ngere Ziel-DNA zu erh{\"o}hen, wird die Erkennungssequenzposition ver{\"a}ndert, sodass ein kleiner {\"U}berhang zur Elektrode ausgerichtet ist. Die Ergebnisse legen nahe, dass DNA in direkter N{\"a}he zur Elektrode einen gr{\"o}ßeren Einfluss auf das impedimetrische Signal besitzt als weiter entfernte DNA.}, language = {de} } @misc{SarauliXuDietzeletal.2014, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {Effekt unterschiedlich substituierter sulfonierter Polyaniline auf den Elektronentransfer mit pyrrolochinolinchinonabh{\"a}ngiger Glukosehydrogenase}, series = {Wissenschaftliche Beitr{\"a}ge 2014}, volume = {18}, journal = {Wissenschaftliche Beitr{\"a}ge 2014}, issn = {0949-8214}, doi = {10.15771/0949-8214_2014_1_1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3285}, pages = {7 -- 15}, year = {2014}, abstract = {Sulfonierte Polyaniline erwiesen sich bereits als geeignete Polymere f{\"u}r den Aufbau von Biosensoren. Aus diesem Grund setzten wir unterschiedlich substituierte Polymerformen f{\"u}r die Untersuchungen der direkten Elektronen{\"u}bertragung zum Redoxenzym PQQ-GDH (Pyrrolochinolinchinon-abh{\"a}ngige Glukosedehydrogenase) ein. Daf{\"u}r wurden zuerst neue Copolymere synthetisiert. Als Basis f{\"u}r die Synthesen wurden 2-Methoxyanilin-5-Sulfons{\"a}ure (MAS), 3-Aminobenzensulfons{\"a}ure (ABS), 3-Aminobenzoes{\"a}ure (AB) und Anilin (AN) ausgew{\"a}hlt und deren Verh{\"a}ltnisse variiert. Alle Copolymere wurden hinsichtlich der direkten Reaktion mit PQQ-GDH untersucht. Diese Wechselwirkung wurde zun{\"a}chst in L{\"o}sung, anschließend auch auf Elektroden beobachtet. Die Ergebnisse zeigen, dass nur die aus MAS- und AN-Einheiten bestehenden Copolymere in der Lage sind, mit dem Enzym in L{\"o}sung direkt zu interagieren, was wahrscheinlich dem Emeraldin Salz (ES) Redoxzustand des Polymers zuzuschreiben ist. Immobilisiert man die Polymere und das Enzym auf Kohlenstoffnanor{\"o}hrenbasierten Elektroden, generiert man direkte Bioelektrokatalyse auch im Falle der aus ABS/AB- und MAS/AB-Einheiten bestehenden Copolymere, die sich nach der Synthese im Pernigranilin Base (PB) Redoxzustand befinden. Im Gegensatz zur Situation in L{\"o}sung kann auf Elektroden das Potential zus{\"a}tzlich genutzt werden, um Elektronen vom Enzym auf das Polymer zu {\"u}bertragen. Solche Polymerbasierten Enzymelektroden besitzen Anwendungspotential in der Sensorik, aber auch in Biobrennstoffzellen.}, language = {de} } @misc{VogtLisdat2004, author = {Vogt, Christian and Lisdat, Fred}, title = {BioHyTec: Biohybride Technologien in der Hauptstadtregion - Kompetenzbildung und Aufbau einer regionalen Wertsch{\"o}pfungskette}, series = {Wissenschaftliche Beitr{\"a}ge 2004}, volume = {9}, journal = {Wissenschaftliche Beitr{\"a}ge 2004}, issn = {0949-8214}, doi = {10.15771/0949-8214_2004_1_15}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-4094}, pages = {97 -- 102}, year = {2004}, abstract = {Das Bundesministerium f{\"u}r Bildung und Forschung (BMBF) startete 1999 mit dem InnoRegio-Wettbewerb eine neuartige F{\"o}rderinitiative unter der Leitidee „Innovative Impulse in den Neuen L{\"a}ndern". In zahlreichen Regionen wurden Aktivit{\"a}ten in Gang gesetzt, um neue Formen der Zusammenarbeit von Menschen aus den unterschiedlichsten Bereichen zu entwickeln und damit die Wertsch{\"o}pfung und Wettbewerbsf{\"a}higkeit in den ostdeutschen Regionen zu erh{\"o}hen. An dieser Ausschreibung nahmen in der Anfangsphase 444 Bewerberregionen teil. Nach der ersten Jury-Sitzung im Oktober 1999 wurden 50 InnoRegios ausgew{\"a}hlt, in einer Entwicklungsphase ihre Kernkompetenzen herauszufiltern und tragf{\"a}hige Innovationskonzepte zu erarbeiten. Mit der zweiten Jury-Sitzung im Herbst 2000 fiel der Startschuss zur Umsetzungsphase. Zur Zeit werden vom BMBF 23 InnoRegios in den Neuen L{\"a}ndern gef{\"o}rdert.}, language = {de} } @article{MorlockSubramanianZounietal.2022, author = {Morlock, Sascha and Subramanian, Senthil Kumar and Zouni, Athina and Lisdat, Fred}, title = {Bio-inorganic hybrid structures for direct electron transfer to photosystem I in photobioelectrodes}, series = {Biosensors and Bioelectronics}, volume = {204}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, issn = {1873-4235}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-16770}, year = {2022}, abstract = {Synthetic materials can be combined with biological components in many ways. One example that provides scientists with multiple challenges is a photobioelectrode that converts sunlight into electrons in a biohybrid approach. In the present study several key parameters are evaluated concerning their influence on the direct electron transfer from a 3D indium tin oxide (ITO) electrode material to photosystem I (PSI) as a light-harvesting biomolecule. In contrast to previous investigations, no mediating molecule is added to shuttle the electrons to the luminal side of PSI. Thus, this setup is less complex than foregoing ones. The solution composition drastically influences the interaction of PSI with the ITO surface. Here, the application of higher buffer concentrations and the addition of salts are advantageous, whereas the nature of the buffer ions plays a minor role. The artificial electrode material's thickness is adjustable since a spin-coating procedure is used for preparation. With a 30 μm thick structure and immobilized PSI cathodic photocurrents up to 10.1 μA cm-2 are obtained at 100 mW cm-2 illumination intensity and an applied potential of -0.1V vs. Ag/AgCl. Over a period of three days the photobioelectrodes are illuminated for a total of 90 min and stored between the measurements at ambient temperature. The stability of the setup is noteworthy as still about 90\% of the photocurrent is retained. The photocathode described here offers many positive features, including a high onset potential for the photocurrent starting sligthly above the redox potentail of P700, and applicability in a wide pH range from pH 5 to 8.}, language = {en} } @article{KhalidGoebelHuehnetal.2011, author = {Khalid, Waqas and G{\"o}bel, Gero and H{\"u}hn, Dominik and Montenegro, Jose-Maria and Rivera-Gil, Pilar and Lisdat, Fred and Parak, Wolfgang J.}, title = {Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode}, series = {Journal of Nanobiotechnology}, volume = {9}, journal = {Journal of Nanobiotechnology}, number = {46}, issn = {1477-3155}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5808}, pages = {10}, year = {2011}, abstract = {An electrochemical sensor for p-aminophenyl phosphate (p APP) is reported. It is based on the electrochemical conversion of 4-aminophenol (4AP) at a quantum dot (QD) modified electrode under illumination. Without illumination no electron transfer and thus no oxidation of 4AP can occur. p APP as substrate is converted by the enzyme alkaline phosphatase (ALP) to generate 4AP as a product. The QDs are coupled via 1,4-benzenedithiol (BDT) linkage to the surface of a gold electrode and thus allow potential-controlled photocurrent generation. The photocurrent is modified by the enzyme reaction providing access to the substrate detection. In order to develop a photobioelectrochemical sensor the enzyme is immobilized on top of the photo-switchable layer of the QDs. Immobilization of ALP is required for the potential possibility of spatially resolved measurements. Geometries with immobilized ALP are compared versus having the ALP in solution. Data indicate that functional immobilization with layer-by-layer assembly is possible. Enzymatic activity of ALP and thus the photocurrent can be described by Michaelis- Menten kinetics. p APP is detected as proof of principle investigation within the range of 25 μM - 1 mM.}, language = {en} } @article{FeifelLisdat2011, author = {Feifel, Sven Christian and Lisdat, Fred}, title = {Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers}, series = {Journal of Nanobiotechnology}, volume = {9}, journal = {Journal of Nanobiotechnology}, number = {59}, issn = {1477-3155}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5819}, pages = {12}, year = {2011}, abstract = {For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems.}, language = {en} }