@misc{MaliGrohmeWełniczetal.2008, author = {Mali, Brahim and Grohme, Markus and Wełnicz, Weronika and Dandekar, Thomas and Schn{\"o}lzer, Martina and Reuter, Dirk and Schill, Ralph O. and Frohme, Marcus}, title = {Genomic Analyses of Cryptobiotic Tardigrades}, series = {Wissenschaftliche Beitr{\"a}ge 2008}, volume = {13}, journal = {Wissenschaftliche Beitr{\"a}ge 2008}, issn = {0949-8214}, doi = {10.15771/0949-8214_2008_1_5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus-672}, pages = {35 -- 39}, year = {2008}, abstract = {Genomics technologies, especially transcriptional profiling, allows comparisons of gene expression within and across different organisms. By the use of the model group Tardigrada, also known as water bear, we try to understand the phenomenon of cryptobiosis. The dry organisms can survive for years without water. When re-exposed to water, the animals rehydrate and come back to life. The expression of genes in response to dehydratation and rehydratation is being examined in our laboratory through the generation of expressed sequence tags (ESTs), representational difference analysis (RDA) and subsequent microarray analysis. Molecular dissection of this complex phenomenom, including gene regulation, will allow the development of techniques for preservation and stabilisation of biological materials in a dried state.}, language = {en} } @article{MaliGrohmeFoersteretal.2010, author = {Mali, Brahim and Grohme, Markus and F{\"o}rster, Frank and Dandekar, Thomas and Schn{\"o}lzer, Martina and Reuter, Dirk and Wełnicz, Weronika and Schill, Ralph O. and Frohme, Marcus}, title = {Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer}, series = {BMC Genomics}, volume = {11}, journal = {BMC Genomics}, number = {168}, issn = {1471-2164}, doi = {10.1186/1471-2164-11-168}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-6207}, pages = {11}, year = {2010}, abstract = {The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms.}, language = {en} }