@misc{RichterChenKoegleretal.2011, author = {Richter, Asta and Chen, Chun-Liang and K{\"o}gler, Reinhard and Talut, Georg}, title = {Irradiation effects in nanostructured FeCrAl oxide dispersion strengthened steel}, series = {Wissenschaftliche Beitr{\"a}ge 2011}, volume = {15}, journal = {Wissenschaftliche Beitr{\"a}ge 2011}, issn = {0949-8214}, doi = {10.15771/0949-8214_2011_1_10}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus-1112}, pages = {73 -- 79}, year = {2011}, abstract = {Nanostructured ferritic oxide dispersion strengthened (ODS) alloy is an ideal candidate for fission/fusion power plant materials, particularly in the use of a first-wall and blanket structure of a next generation reactor. These steels usually contain a high density of Y-Al-O nanoparticles, high dislocation densities and fine grains. The material contains nanoparticles with an average diameter of 21 nm. Irradiation of these alloys was performed with a dual beam irradiation of 2.5 MeV Fe+/31 dpa and 350 keV He+/18 appm/dpa. Irradiation causes atomic displacements resulting in vacancy and self-interstitial lattice defects and dislocation loops. Additionally to structural changes, the effect of the irradiation generated defects on the mechanical properties of the ODS is investigated by nanoindentation. A clear hardness increase in the irradiated area is observed, which reaches a maximum at a close surface region. This feature is attributed to synergistic effects between the displacement damage and He implantation resulting in He filled vacancies}, language = {en} } @unpublished{RichterAnwandChenetal.2017, author = {Richter, Asta and Anwand, Wolfgang and Chen, Chun-Liang and B{\"o}ttger, Roman}, title = {Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation}, series = {Journal of Nuclear Materials}, journal = {Journal of Nuclear Materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10048}, year = {2017}, abstract = {Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.}, language = {en} }