@article{SteglichMaiVillringeretal.2021, author = {Steglich, Patrick and Mai, Christian and Villringer, Claus and Dietzel, Birgit and Bondarenko, Siegfried and Ksianzou, Viachaslau and Villasmunta, Francesco and Zesch, Christoph and Pulwer, Silvio and Burger, Martin and Bauer, Joachim and Heinrich, Friedhelm and Schrader, Sigurd and Vitale, Francesco and De Matteis, Fabio and Prosposito, Paolo and Casalboni, Mauro and Mai, Andreas}, title = {Silicon-organic hybrid photonics: an overview of recent advances, electro-optical effects and CMOS integration concepts}, series = {Journal of Physics: Photonics}, volume = {3}, journal = {Journal of Physics: Photonics}, number = {2}, issn = {2515-7647}, doi = {10.1088/2515-7647/abd7cf}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-13882}, year = {2021}, abstract = {In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon-organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon-organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given.}, language = {en} } @article{GrytsenkoKsianzouKolomzarovetal.2021, author = {Grytsenko, Kostyantyn and Ksianzou, Viachaslau and Kolomzarov, Yurii and Lytvyn, Peter and Dietzel, Birgit and Schrader, Sigurd}, title = {Fluoropolymer Film Formation by Electron Activated Vacuum Deposition}, series = {Surfaces}, volume = {4}, journal = {Surfaces}, number = {1}, publisher = {MDPI}, issn = {2571-9637}, doi = {10.3390/surfaces4010009}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-13786}, pages = {66 -- 80}, year = {2021}, abstract = {Polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP) and polychlorotrifluoroethylene (PCTFE) were heated to their decomposition temperature in a high vacuum. The emitted fragments passed an electron cloud, condensed on a substrate and formed fluoropolymer film. Growth rate of PTFE and PHFP films increased up to a factor five in the presence of the electron cloud. Mass spectrometry revealed changes in the mass spectra of fragments generated by thermal decomposition only and formed under electron activation. The observed changes were different for each fluoropolymer. Infrared spectroscopy (IRS) showed that the structure of the films was close to the structure of the bulk polymers. Atomic force microscopy (AFM) has revealed different morphologies of PTFE, PHFP and PCTFE films, suggesting a Volmer-Weber growth mechanism for PTFE and PHFP but a Frank-van der Merwe one for PCTFE. All films were smooth at nanoscale and transparent from ultraviolet to near-infrared region. Additional radio frequency (RF) plasma ignited in the emitted fragments at a low pressure increased mechanical characteristics of the films without losing their optical transparency and smoothness.}, language = {en} } @misc{SarauliXuDietzeletal.2014, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {Effekt unterschiedlich substituierter sulfonierter Polyaniline auf den Elektronentransfer mit pyrrolochinolinchinonabh{\"a}ngiger Glukosehydrogenase}, series = {Wissenschaftliche Beitr{\"a}ge 2014}, volume = {18}, journal = {Wissenschaftliche Beitr{\"a}ge 2014}, issn = {0949-8214}, doi = {10.15771/0949-8214_2014_1_1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-3285}, pages = {7 -- 15}, year = {2014}, abstract = {Sulfonierte Polyaniline erwiesen sich bereits als geeignete Polymere f{\"u}r den Aufbau von Biosensoren. Aus diesem Grund setzten wir unterschiedlich substituierte Polymerformen f{\"u}r die Untersuchungen der direkten Elektronen{\"u}bertragung zum Redoxenzym PQQ-GDH (Pyrrolochinolinchinon-abh{\"a}ngige Glukosedehydrogenase) ein. Daf{\"u}r wurden zuerst neue Copolymere synthetisiert. Als Basis f{\"u}r die Synthesen wurden 2-Methoxyanilin-5-Sulfons{\"a}ure (MAS), 3-Aminobenzensulfons{\"a}ure (ABS), 3-Aminobenzoes{\"a}ure (AB) und Anilin (AN) ausgew{\"a}hlt und deren Verh{\"a}ltnisse variiert. Alle Copolymere wurden hinsichtlich der direkten Reaktion mit PQQ-GDH untersucht. Diese Wechselwirkung wurde zun{\"a}chst in L{\"o}sung, anschließend auch auf Elektroden beobachtet. Die Ergebnisse zeigen, dass nur die aus MAS- und AN-Einheiten bestehenden Copolymere in der Lage sind, mit dem Enzym in L{\"o}sung direkt zu interagieren, was wahrscheinlich dem Emeraldin Salz (ES) Redoxzustand des Polymers zuzuschreiben ist. Immobilisiert man die Polymere und das Enzym auf Kohlenstoffnanor{\"o}hrenbasierten Elektroden, generiert man direkte Bioelektrokatalyse auch im Falle der aus ABS/AB- und MAS/AB-Einheiten bestehenden Copolymere, die sich nach der Synthese im Pernigranilin Base (PB) Redoxzustand befinden. Im Gegensatz zur Situation in L{\"o}sung kann auf Elektroden das Potential zus{\"a}tzlich genutzt werden, um Elektronen vom Enzym auf das Polymer zu {\"u}bertragen. Solche Polymerbasierten Enzymelektroden besitzen Anwendungspotential in der Sensorik, aber auch in Biobrennstoffzellen.}, language = {de} } @article{GladischSarauliSchaeferetal.2016, author = {Gladisch, Johannes and Sarauli, David and Sch{\"a}fer, Daniel and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/srep19858}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5846}, pages = {10}, year = {2016}, abstract = {Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials; no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.}, language = {en} } @misc{GladischSarauliSchaeferetal.2016, author = {Gladisch, Johannes and Sarauli, David and Sch{\"a}fer, Daniel and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {Elektrogesponnene Polymerfasern als neuartiges Material f{\"u}r die Bioelektrokatalyse des Enzyms Pyrrolochinolinchinon-abh{\"a}ngige Glucosedehydrogenase}, series = {Wissenschaftliche Beitr{\"a}ge 2016}, volume = {20}, journal = {Wissenschaftliche Beitr{\"a}ge 2016}, issn = {0949-8214}, doi = {10.15771/0949-8214_2016_1_2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5293}, pages = {15 -- 21}, year = {2016}, abstract = {Es wurde ein dreidimensionales Polymerfasernetzwerk aufgebaut, charakterisiert und anschließend daran das Enzym Pyrrolochinolinchinon-abh{\"a}ngige Glukosedehydrogenase (PQQ)GDH gebunden. Das Polymerfasernetzwerk wurde durch Elektrospinnen einer Mischung des Polymers Polyacrylnitril und verschiedener leitf{\"a}higer Polymere der Polyanilin-Familie auf Indium-Zinn-Oxid-Elektroden aufgebracht. Die so hergestellten Fasermatten erwiesen sich bei mikroskopischen Untersuchungen gleichf{\"o}rmig pr{\"a}pariert und die Faserdurchmesser bewegten sich im Bereich weniger hundert Nanometer. Das Redoxpaar Kaliumhexacyanoferrat (II/III) zeigte an diesen Polymer-Elektrodenstrukturen eine quasi-reversible Elektrochemie. Bei weitergehenden Untersuchungen an den enzymmodifizierten Fasern ((PQQ)GDH) konnten unter Substratzugabe (Glukose) bioelektrokatalytische Str{\"o}me nachgewiesen werden. Das Fasernetzwerk fungiert hier nicht nur als Immobilisierungsmatrix, sondern als auch als Teil des Signalwandlers.}, language = {de} } @misc{SteglichVillringerPulweretal.2017, author = {Steglich, Patrick and Villringer, Claus and Pulwer, Silvio and Dietzel, Birgit and Ksianzou, Viachaslau and Schrader, Sigurd}, title = {Chip-integrierte photonische Bauelemente}, series = {Wissenschaftliche Beitr{\"a}ge 2017}, volume = {21}, journal = {Wissenschaftliche Beitr{\"a}ge 2017}, issn = {0949-8214}, doi = {10.15771/0949-8214_2017_7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-9426}, pages = {55 -- 59}, year = {2017}, abstract = {In unserer hochtechnologisierten Gesellschaft spielt die optische Daten{\"u}bertragung aufgrund der stetig wachsenden Informationsvielfalt eine immer bedeutendere Rolle. In den Anf{\"a}ngen der Nachrichtentechnik waren Datenraten von wenigen bit/s realisierbar. Heute werden mittels optischer Technologien {\"U}bertragungsraten von mehreren Gbit/s umgesetzt. M{\"o}glich wird dies durch neue Entwicklungen in der Chip-integrierten Photonik. Beispiele daf{\"u}r sind Chip-integrierte elektrooptische Modulatoren und Schalter. In diesem Artikel werden neue Entwicklungen in der Chip-integrierten Photonik diskutiert und die experimentelle Charakterisierung der Bauelemente in Form eines Ringresonators beschrieben. F{\"u}r die Experimente wird exemplarisch ein photonisches Bauelement genutzt, das aus einem hybriden Silizium-Polymer-Materialsystem besteht. Die Ergebnisse zeigen, dass diese Materialkombination vielversprechend f{\"u}r zuk{\"u}nftige Chip-integrierte photonische Bauelemente mit extrem geringem Energiebedarf ist.}, language = {de} } @article{SteglichHuelsemannDietzeletal.2019, author = {Steglich, Patrick and H{\"u}lsemann, Marcel and Dietzel, Birgit and Mai, Andreas}, title = {Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review}, series = {Molecules}, volume = {24}, journal = {Molecules}, number = {3}, issn = {1420-3049}, doi = {10.3390/molecules24030519}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-10822}, year = {2019}, abstract = {Recent developments in optical biosensors based on integrated photonic devices are reviewed with a special emphasis on silicon-on-insulator ring resonators. The review is mainly devoted to the following aspects: (1) Principles of sensing mechanism, (2) sensor design, (3) biofunctionalization procedures for specific molecule detection and (4) system integration and measurement set-ups. The inherent challenges of implementing photonics-based biosensors to meet specific requirements of applications in medicine, food analysis, and environmental monitoring are discussed.}, language = {en} } @article{SteglichVillringerDietzeletal.2019, author = {Steglich, Patrick and Villringer, Claus and Dietzel, Birgit and Mai, Christian and Schrader, Sigurd and Casalboni, Mauro and Mai, Andreas}, title = {On-Chip Dispersion Measurement of the Quadratic Electro-Optic Effect in Nonlinear Optical Polymers Using a Photonic Integrated Circuit Technology}, series = {IEEE Photonics Journal}, volume = {11}, journal = {IEEE Photonics Journal}, number = {3}, issn = {1943-0655}, doi = {10.1109/JPHOT.2019.2917665}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-12307}, year = {2019}, abstract = {A novel method to determine the dispersion of the quadratic electro-optic effect in nonlinear optical materials by using a silicon-on-insulator microring resonator is presented. The microring consists of a silicon slot waveguide enabling large dc electric field strength at low applied voltages. The dispersion of third-order hyperpolarizability of a linear conjugated dye is approximated by using a two-level model for the off-resonant spectral region. As an example, the dispersion of the resonance wavelength of the resonator filled with a dye doped polymer was measured in dependence of the applied dc voltage. The polymer was poly (methylmethacrylate) doped with 5 wt\% disperse red 1 (DR1), and the measurements have been carried out at the telecommunication wavelength band around 1550 nm (optical C-band). The described measurements represent a new technique to determine the dispersion of the third-order susceptibility and molecular hyperpolarizability of the material filled into the slot of the ring-resonator.}, language = {en} } @article{TanneKracherDietzeletal.2014, author = {Tanne, Johannes and Kracher, Daniel and Dietzel, Birgit and Schulz, Burkhard and Ludwig, Roland and Lisdat, Fred and Scheller, Frieder W. and Bier, Frank Fabian}, title = {Carboxylated or Aminated Polyaniline—Multiwalled Carbon Nanotubes Nanohybrids for Immobilization of Cellobiose Dehydrogenase on Gold Electrodes}, series = {Biosensors}, volume = {4}, journal = {Biosensors}, number = {4}, issn = {2079-6374}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-5826}, pages = {370 -- 386}, year = {2014}, abstract = {Polymer-multiwalled carbon nanotube (MWCNT) nanohybrids, which differ in surface charge have been synthesized to study the bioelectrocatalysis of adsorbed cellobiose dehydrogenase (CDH) from Phanerochaete sordida on gold electrodes. To obtain negatively charged nanohybrids, poly(3-amino-4-methoxybenzoic acid-co-aniline) (P(AMB-A)) was covalently linked to the surface of MWCNTs while modification with p-phenylenediamine (PDA) converted the COOH-groups to positively charged amino groups. Fourier transform infrared spectroscopy (FTIR) measurements verified the p-phenylenediamine (PDA) modification of the polymer-CNT nanohybrids. The positively charged nanohybrid MWCNT-P(AMB-A)-PDA promoted direct electron transfer (DET) of CDH to the electrode and bioelectrocatalysis of lactose was observed. Amperometric measurements gave an electrochemical response with KMapp = 8.89 mM and a current density of 410 nA/cm2 (15 mM lactose). The catalytic response was tested at pH 3.5 and 4.5. Interference by ascorbic acid was not observed. The study proves that DET between the MWCNT-P(AMB-A)-PDA nanohybrids and CDH is efficient and allows the sensorial detection of lactose.}, language = {en} } @article{BauerFursenkoHeinrichetal.2022, author = {Bauer, Joachim and Fursenko, Oksana and Heinrich, Friedhelm and Gutke, Marko and Kornejew, Eckhart and Br{\"o}del, Oliver and Dietzel, Birgit and Kaltenbach, Alexander and Burkhardt, Martin and Edling, Matthias and Steglich, Patrick and Herzog, Michael and Schrader, Sigurd}, title = {Determination of optical constants and scattering properties of transparent polymers for use in optoelectronics}, series = {Optical Materials Express}, volume = {12}, journal = {Optical Materials Express}, number = {1}, publisher = {Optica Publishing Group}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:526-opus4-15666}, pages = {204 -- 224}, year = {2022}, abstract = {Knowledge of optical constants, i.e. refractive index n and extinction coefficient k, and light scattering properties of optical polymers are required to optimize micro-optics for light-emitting diodes in terms of efficiency, color properties and light distribution. We present here a model-based diagnostic approach to determine the optical properties of polymers, which should be particularly useful in the development of plastics for optical applications. Optical constants and scattering coefficients were obtained from transmission and reflection measurements in a wavelength range from UV to NIR taking into account scattering effects due to rough surfaces and volume inhomogeneity. Based on the models for the dielectric function, the molecular optical transition energies Eg, critical point energies, Urbach energies and exciton transition energies were determined. Rayleigh and Mie scattering model and van de Hulst\&\#x0027;s anomalous diffraction theory were applied to characterize scattering due to volume inhomogeneities. Scalar diffraction theory was applied to account for surface roughness scattering. Atomic force microscopy with nanomechanical characterization was used to characterize domains in size and shape and to assign optical scattering to a suitable morphological model. The combined optical and mechanical characterization help to improve the qualification of new polymer materials for optical applications.}, language = {en} }