TY - JOUR A1 - Lisdat, Fred T1 - Coupling biology to electrochemistry—future trends and needs TI - Journal of Solid State Electrochemistry N2 - The coupling of biological entities with electrodes has already quite some history and has reached a status which is not only based on phenomenological descriptions. Nowadays, we are able to effectively couple redox centres within protein molecules to electrochemical transducers. This allows the transduction of a biochemical reaction into an electrode signal with applications mainly in sensing and bioenergetics [1,2,3,4,5,6,7,8]. However, in most cases, this coupling is not direct, and shuttle molecules or side products of the reaction are used. But also for the direct coupling, significant progress has been made, and several enzymes and redox proteins can be addressed directly by electrodes [8,9,10,11,12,13]. The understanding of the functioning of developed systems is, however, in its infancy. Charge and electrostatic interactions have been mostly studied, and for small dipole molecules such as cytochrome c, the situation can be well described [14]. There is a lack of understanding for more complex enzyme molecules which brings a lot of trial and error into research. Y1 - 2020 UR - https://opus4.kobv.de/opus4-th-wildau/frontdoor/index/index/docId/1363 UR - https://nbn-resolving.org/urn:nbn:de:kobv:526-opus4-13639 SN - 1433-0768 VL - 24 SP - 2125 EP - 2127 PB - Springer Nature ER -