TY - CONF A1 - Meister, Stefan A1 - Al-Saadi, Aws A1 - Franke, Bülent A. A1 - Mahdi, Shaimaa A1 - Kuhlow, Berndt A1 - Voigt, Karsten A1 - Tillack, Bernd A1 - Richter, Harald H. A1 - Zimmermann, Lars A1 - Ksianzou, Viachaslau A1 - Schrader, Sigurd A1 - Eichler, Hans J. T1 - Photonic crystal microcavities in SOI waveguides produced in a CMOS environment N2 - We have investigated microcavities in Silicon-on-Insolator (SOI) waveguides. The rectangular waveguides with 500 nm width are fabricated in the 220 nm silicon device layer. The microcavities are formed by one-dimensional photonic crystals in Fabry-Perot structure directly written in the waveguides. The SOI photonic structures are produced in a CMOS environment using 248 nm DUV lithography, where the waveguides as well as the photonic crystals are created in the same step using a single mask. In order to achieve a desired spectral shape of the filter function capable for several applications, a number of different cavities were investigated, e.g. single cavities of first and higher order as well as multi-cavity filters. The experimental results are compared with simulations of photonic crystal microcavities in strip waveguides. The spectral transmission function of such filters dependent on the design parameters are calculated by an analysis based on Finite-Difference-Time-Domain (FDTD) method. KW - silicon photonics KW - SOI waveguide KW - photonic crystal KW - band-pass filter KW - microcavity KW - FDTD simulation Y1 - 2010 UR - https://opus4.kobv.de/opus4-th-wildau/frontdoor/index/index/docId/1522 UR - https://nbn-resolving.org/urn:nbn:de:kobv:526-opus4-15223 SP - 330 EP - 339 PB - Society of Photo-Optical Instrumentation Engineers (SPIE) ER -