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Kinetics of Screening in Optically Excited Semiconductors 

BY 
M. HARTMANN, H. STOLZ, and R. ZIMMERMANN 

Kinetic equations for the density correlation and density-density response function are derived. Solving 
these equations numerically and comparing its solution with the adiabatic approximation the change 
in the transmitted spectrum of a single electronic transition is calculated where a red-shift can be 
observed. 

Es werden kinetische Gleichungen fur die Dichtekorrelationsfunktion und die Dichte-Dichte- 
Responsefunktion abgeleitet. Die numerische Losung dieser Gleichungen wird mit der adiabatischen 
Approximation verglichen. Die Berechnung der Anderung im Transmissionsspektrum fur einen 
einzelnen elektronischen Ubergang ergibt eine Rotverschiebung. 

1. Introduction 

In the Boltzmann equation screening is usually calculated with the actual one-particle 
distribution function. Under short-pulse excitation in semiconductors this adiabatic concept 
is expected to fail, and so we here present first steps towards a kinetics of screening in 
non-equilibrium systems. We focus on a two-band situation in a semiconductor with optically 
excited carriers. In this system the kinetics of screening is connected with the question: 
How fast does the gap shrinkage react to the build-up of charge density? Clearly it means 
to ask for the relevant time scale for building up longitudinal excitations like plasmons or 
LO phonons and their distribution if density is excited in a semiconductor by an external 
field and furthermore to ask for the value of the gap shift which causes changes in the 
transmission spectrum due to the non-equilibrium excitations. 

The layout of the paper is as follows: After deriving kinetic equations for the density 
correlation function and for the density-density response function within the Keldysh 
formalism in Section 2 we summarize in Section 3 the equilibrium properties. In Section 
4 we compare in a simple case the numerically exact solution of these equations with the 
adiabatic approxiamtion and calculate the change in the transmitted intensity for a single 
electronic transition. 

2. The Longitudinal Propagator for Non-Equilibrium Systems 

The definition of the longitudinal propagator within the Keldysh framework and variational 
derivative technique is [l] 
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where I = ql ,  t,, q 1  and q l  = rfrl denotes the double time contour [2]. U ( I )  is the 
longitudinal field which obeys Poisson's equation 

U ( 4  = 4 q 1 )  [ @ ( I )  + @""")I (2) 
with the Coulomb potential u(ql)  and the induced charge density @ ( I ) .  Introducing the 
polarization function 

we obtain from (2)  the equation for the longitudinal propagator for a homogeneous and 
isotropic situation (q  = 141) 

WPlt;) - u ( q )  s dtz P(qt1t2) W P z f l )  = 44 Wl - (4) 
To make the definition (1) of the longitudinal propagator more transparent we decompose 

the Keldysh matrix according to [2] (q  is dropped in the following) 

and the retarded response function 

D'(tlt;) = e(tl - t i )  [DZ(tlt;) - D'(tlt;)] + v(q) 6 ( t ,  - 

were introduced. Sometimes it is convenient to work with the advanced function 

D-(tlt;) = -e(t; - t l )  [D'(tlt;) - ~ ' ( t ~ t ; ) ]  + u(q )  8 ( t ,  - t ; ) .  

D'(tlt;) - D'(tlt'J = D'(tlt;) - D-(tlt;) 

(8) 

(9) 

The four fundamental functions in (6) to (7) are connected by the Keldysh relation 

and fulfil the s rmmetry relations 

As we will see D <  describes the distribution of the longitudinal excitations, whereas the 
imaginary part of the Fourier transform of D+ accounts for the spectral behaviour. For 
D +  and D' we obtain from (4) the following equations: 

f l  

t i  
f l  t i  

D +  (qtlt;) - 4 q )  s dtz P+(qt1t2) D +  (4t2t;) = u ( q )  W I  - t ; )  > 

D'(qtlt;) = .f d t Z  s dt3 D'(q t l t2 )  P'(qt2t3) D-(qt3t;)  > 

(11) 

(12) 
-cc -cc 
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where the polarization functions P +  and P' are introduced according to (5). Restricting 
ourselves to the electron-electron interaction in the random phase approximation and with 
the one-particle Green's function [3], 

i 
h 

G'(kt1t;) = ~ (v+(kt;) ~ ( k t l ) )  > 

we obtain from (3) 

Ps(qt l t ; )  = -ih G s ( q  + k ,  tit;) G*(kt;tl), 
k 

P+(qt,t;) = O(t, - ti) [P>(qtlt;) - P<(qt,t;)l. 

The polarization function (14) exhibits the same symmetries as the longitudinal propagator 
(10). 

3. Equilibrium Situation 

Before solving the kinetic equations (11) and (12) in the general non-equilibrium case we 
will summarize some results for equilibrium. In the latter all quantities depend on the time 
difference only and we can perform the Fourier transformation with respect to it ending 
up with 

The last expression follows from (9). So D +  is the usual dynamically screened Coulomb 
potential where E+ is the dielectric function. For pure electron-electron interaction Im D +  
has a peak at the plasma frequency fo,(q). 

For the interpretation of D' (40) it is useful to introduce a distribution function N ( q o )  
for the longitudinal excitations according to [2] 

D'(qw) = 2iN(qo) Im D + ( q o ) .  (17) 

Then from (16) follows 

In the equilibrium situation the one-particle Green's function obeys the Kubo-Martin- 
Schwinger relation [4] 

G'(ko) = -e-/J@"-P) G' ( k 4  , (19) 
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where p is the chemical potential and 
relation 

= l / kT  So we recover from (14) the well-known 

P' (40) = eflfiw P' (qw) (20) 
which holds, however, quite generally. 

temperature 
Then for the distribution one yields from (18) the well-known Bose function to a given 

4. Non-Equilibrium Excitations 

In the general case of non-equilibrium we introduce as customary central and relative 
coordinates according to 

D(qt,t;)  * D(q tT)  ' 
From (11) and (12) then the kinetic equations follow, 

I 

x D +  ( q ,  t', T - ~ + 2 

Now in the non-equilibrium theory it is usual to make the fundamental assumption that 
all functions in (24) and (25) vary slowly in their central time T on a microscopic scale 
which is determined by the relative time t .  Then one can linearize (24) and (25) with respect 
to the central time derivative. This concept is used e.g. in plasma physics [2], but is works 
well only at the plasma dispersion LO = o,(q) if damping is not too large. Additionally, this 
assumption is expected to fail for short pulse excitation. To avoid this problem we shall 
strictly solve the integral equation numerically in the time domain. For this we have specify 
first the polarization function in (24) and (25). Corresponding to (17) we make for the 
Fourier transform of the one-particle Green's function G'(kw) in (14) the ansatz 

(26) 
G ' ( k o )  = 2 i f ( k ~ )  A(kw) ,  
G ' ( k o )  = -2i(l - f (kw))  A(kw) 

with the spectral function A and the particle distributionfwhich is the solution of a general 
Boltzmann equation. At the moment we are not able to solve the one-particle kinetics and 
the screening kinetics self-consistently and therefore we use for f a Boltzmann distribution 
with total density following from integrating a Gaussian excitation light pulse. For the 
spectral function A ( k o )  we assume a Lorentzian with constant damping y which converts 
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Fig. 1. Density response function d’ in dependence on relative time t for zero wave vector in the adiabatic 
approximation (dashed curve) and exact solution (full curve). The parameters are: one-particle damping 
y = 0.75 ps-’, T = 77 K, density rise time 0.5 ps. a) Non-stationary situation with an actual plasma 
frequency h o p  = 5 meV (see upper figure), b) stationary situation with hop = 7 meV (final density) 

in the time domain into 
A(kt )  = f , - i E , ( k ) t - y  It1 . (27) 

This gives for the polarization function, in the low density limit, 

2 
h 

P + ( q t T )  = -- N ( T )  O(t) sin gt exp 

where q is 

h 2  r = - 4  2m 

2yt - t 2 )  , 

and N ( T )  is the excited density. 
Due to the time convolution in (24) and (25) we expect memory effects which means e.g. 

that the plasma frequency cop does not correspond to the actual excited density in the 
system. In order to illustrate this fact we will compare the numerically exact solution of 
the kinetic equations with the adiabatic approximation which means that the system feels 
only the actual excited density independent of the density history. Mathematically in the 
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adiabatic limit from (24) and (25) follows 

X d q t r )  - 4 q )  s dt' P + ( q ,  t - t', r )  ~ a + ( q t ' T )  = f4q) W), (31) 

(32) 

0 

m m  

D,'(qtT) = d t  s dt' DJd(qiT) P'(q, t + t' - i, 7') DL(qt'7'). 
0 0  

In the case of zero wave vector (q  = 0) we can solve the adiabatic equations (31) and 
(32) analytically ending up with 

(33) d,+(q = 0, t r )  = -O(t)  w,(r) sin (w,(T) t )  e-2yf, 

I c  I 
I I I 

d 1 
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Fig. 2. The imaginary part of the response function d+(w) and the correlation function D'(w) 
for different wave vectors in the non-stationary (left-hand side) and in the stationary situation 
(right-hand side) (dashed curves adiabatic approximation). The parameters are the same as in 
Fig. I .  a) q = 0, hw, = 5 meV; b) q = 0, hw, = 7 meV (final density); c) q = 2 ps-', hw, = 5 meV; 
d) q = 2 ps- ', hw, = 7 meV (final density) 
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where D c  = v6 + v6+ and oi(T) = e2N(‘ l ) /m.  So the response function performs damped 
oscillations with a period depending on the plasma frequency. For two “snapshots” Tin 
Fig. 1 d + ( q  = 0, t r )  is depicted in the adiabatic limit and for the numerically exact solution 
following from (24) and (25). There is a definite difference between the oscillation periods 
for the exact solution and for the adiabatic approximation, respectively. 

In Fig. 1 b stationarity is already reached and no deviation between both curves can be 
seen. This will become more clear if we consider the Fourier transform with respect to the 
relative time, shown in Fig. 2. In the general case the plasma frequency lags behind the 
adiabatic approximation until the stationary situation is reached. This is due to the smaller 
density values at earlier stages. For larger wave vectors there is not much difference between 
both curves due to the fact that plasmons are strongly damped in the electron excitation 
continuum. 

However, can these tiny deviations from the adiabatic approximation be detected? To 
have a rough impression we consider the self-energy shift of a simple electronic transition. 
For this we will calculate the transmitted intensity [5,6] according to 

Z(wT,) = Im J dt‘ e-io(TD-z’) P c&‘) 9 

E, = 2~EO6(t - T D )  

(34) 

(35). 

where the spectrum was probed by an extreme broad-band test beam 

with a delay time TD with respect to the exciting pulse. P,, is the test-beam induced 
polarization. The change in the one-particle Green’s function linear in the excited density 
is 6G, = G, 0 DG, 0 G,, which follows from integrating Dyson’s equation ( 0  means time 
convolution). 

I I I t I I I I I 
0 I0 20 -10 -20 

w (ps -1) - 
Fig. 3. The change of the transmitted intensity with the same parameters as in Fig. 1 for zero delay 
time (dashed curve adiabatic approximation); zero of frequency scale is E,  - E,. Inset a: stationary 
situation, delay TD = 1 ps, inset b: long-pulse excitation (density rise time 1.0 ps) for zero delay 
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The differential transmission spectrum between pump-on and pump-off considering only 
a single electronic transition is then given by 

0 0 0  

Numerical results are shown in Fig. 3. In the stationary situation (inset a) one can 
observe a red shift due to the negative value of the self-energy. For  medium rise 
time of the density (inset b) we find side structures, so-called coherent oscillations, 
which are found in any transmission experiment with rapidly changing optical constants. 
To see the non-adiabatic behaviour we have to use shorter light pulses. Then we obtain 
in the adiabatic approximation a smaller gap shift as for the exact solution and 
so the adiabatic approximation fails. However, there might be problems to detect the 
rapidly changing self-energy shift because the coherent oscillations tend to blur the 
observation [7]. 

5. Conclusion and Outlook 

We have derived kinetic equations for the density correlation function and for the 
density-density response function within the Keldysh framework. Via the polarization 
function there is a coupling to the one-particle kinetics, but for numerical simplicity we 
have assumed an equilibrium one-particle distribution function. The treatment of one- 
particle and screening kinetics self-consistently has to be done in future. In contrast to the 
concepts used previously where kinetic equations were solved only linear in the central 
time derivative we have calculated the equations in the whole time domain numerically. 
The comparison with the adiabatic approximation has shown that memory effects will 
become important if the rise time of the one-particle density is shorter than a few hundred 
fs. In the differential transmission spectrum one can observe a stronger red-shift as in the 
adiabatic approximation but coherent oscillations make the observation difficult. 
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