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ABSTRACT: The central issue in femtosecond (fs) time resolved spectroscopy of
clusters is the investigation of geometric relaxation and internal vibrational redistribution
(IVR) after optical excitation in a nonequilibrium configuration of nuclei by laser
photoelectron excitation, and corresponding time delayed probing by
multiphoton-ionization. For this purpose, we have developed multistate ab initio
molecular dynamics involving adiabatic ground and excited electronic states, as well as
nonadiabatic coupling between them, using the time evolution of initial thermal ensemble
in Wigner representation. The combination of ab initio quantum chemical methods, used
for the adiabatic and nonadiabatic molecular dynamics “on the fly,” and the Wigner
distribution approach for the description of the motion of the nuclei allowed us the
accurate determination of pump-probe and pump-dump signals also under temperature
dependent initial conditions. The connection between simulated pump-probe signals and
the underlying dynamics of nuclei involving adiabatic electronic ground states has been
first established for the example of the Ag−

3 /Ag3/Ag+
3 systems, and compared with

experimental negative-to-neutral-to-positive NeNePo pump-probe signals. Our simulations
reproduced the experimental NeNePo results and determined, in addition to the timescales
of geometric relaxation, the conditions under which the resonant or dissipative IVR, as
well as vibrational coherence, should be found in the experimental pump-probe signals.
This can be realized in the zero electron kinetic energy NeNePo-ZEKE experiments, which
are in progress. The above combination of methods has been recently extended to the
analysis of the timescales as well as of the dynamics in excited electronic states of the
nonstoichiometric NanFn−1 (n = 2–4) clusters with the single excess valence electron. Our
approach allows the simulation of femtosecond NeExPo-pump-probe and
NeExNe-pump-dump signals, based on an analytic formulation which utilizes temperature
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ULTRAFAST SPECTROSCOPY OF SMALL CLUSTERS

dependent ground state initial conditions of neutral system (Ne); an ensemble of
trajectories carried out either on the adiabatic electronic excited state (Ex), or on both the
excited and the ground states through nonadiabatic coupling in connection with the
fewest switching hopping algorithm for the investigation of the dynamics of the system;
and either the cationic (Po) or the neutral ground state (Ne) for the probing step. The choice
of the systems has been made in order to determine the timescales of processes involving
(1) fast geometric relaxation leaving the bonding frame intact versus IVR, as during the
adiabatic dynamics in the first excited state of Na4F3, being the smallest prototype of
F-colored centers in the bulk; and (2) the photo-isomerization process through the conical
intersection during nonadiabatic dynamics due to the long amplitude motion, as in the
Na3F2 cluster after breaking of one metallic and one ionic bond, representing the first
example of a five atomic cluster in the gas phase exhibiting conical intersection
between the ground and the first excited state. In both cases, full complexity of the
problem has been considered taking into account all degrees of freedom. The investigated
systems represent important test cases for providing the conceptual framework of
ultrafast dynamics in finite systems. c© 2001 John Wiley & Sons, Inc. Int J Quantum Chem
84: 714–739, 2001

Key words: nonadiabatic coupling; internal vibrational redistribution;
pump-probe signals

Introduction

F emtosecond spectroscopy allows for the real-
time investigation of intramolecular and in-

termolecular electronic and nuclear dynamics dur-
ing chemical transformations. The basic idea
involves the preparation of a transition state of the
chemical reaction by optical excitation of a stable
species in a nonequilibrium nuclear configuration,
and probing its time evolution by laser induced
techniques (e.g., fluorescence, photoelectron spec-
troscopy, or multiphoton ionization). This approach
was pioneered by Zewail et al. for bimolecular re-
actions [1 – 3]. Transition states can be also gener-
ated by vertical photodetachment of stable negative
ions, where the ground state is characterized by a
geometry close to that of the transition state of the
corresponding neutral species as shown by Neu-
mark et al. [4 – 6]. The vertical photodetachment
can also produce transition states for intramolecu-
lar isomerization of the neutral species as shown
by Lineberger et al. [7 – 9]. Wöste and his col-
leagues [10] advanced the vertical one-photon de-
tachment technique in their negative ion-to-neutral-
to-positive ion (NeNePo) pump-probe experiments.
They were able to prepare neutral Agn clusters in
their transient ground states by one-photon detach-
ment of Ag−

n and to investigate the time evolution of
the neutral species by a delayed ionizing pulse via
two-photon ionization. An extension of the NeNePo
experimental technique by Lineberger et al. [11]
using two-color excitation confirmed important as-
pects of this approach.

However, the theory and the simulations provide
the conceptual framework of the ultrafast dynamics
by determining the timescales and the nature of the
configurational changes and internal vibrational
energy redistributions in vertically excited or
ionized states of molecules and clusters [12 – 15].
In this context, clusters are of particular interest
since their dynamical properties can be studied
as a function of their size or of their degrees
of freedom, and therefore a transition between
resonant and dissipative features of finite systems
might become accessible. The nuclear dynamics of
clusters allows for the separation of timescales of
intracluster and intercluster motions [16, 17].

In this article, we wish to show that the accu-
rate simulation of the femtosecond time resolved
pump-probe and pump-dump signals allows for the
identification of different processes such as geomet-
ric changes of different types and intramolecular
vibrational relaxation (IVR) of different nature, as
well as for determination of their timescales. For
this purpose, we (1) developed an ab initio molec-
ular dynamics for ground [18] and excited [19 – 21]
states including nonadiabatic coupling “on the fly,”
(2) employed it in the context of a multistate nuclear
dynamics for the generation of the initial conditions,
for the system itself and for the probe or dump
step, and (3) combined it with the Wigner distrib-
ution approach to nuclear dynamics which allowed
to simulate fs signals from analytically derived ex-
pressions [14, 15, 19 – 21].

We have chosen to present three types of ex-
amples. (1) The results of the simulations of the
pump-probe signals for Ag−

3 /Ag3/Ag+
3 which in-
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volve multistate dynamics on the corresponding
ground states since the experimental NeNePo sig-
nals are available for comparison, this system also
served as a test for our newly developed ab initio
Wigner distribution approach [14]. (2) The results of
the pump-dump signals for Na4F3 cluster because
the multistate dynamics involve not only ground
but also the first excited electronic state, and also
because for a system of this size the precalcula-
tion of the adiabatic energy surfaces for all degrees
of freedom is not feasible [20]. (3) The results of
the pump-probe signals of Na3F2 cluster because
of nonadiabatic dynamics through conical intersec-
tion are a consequence of radiationless decay of the
first excited state [21]. This means that the nuclear
motion occurs on two potential energy surfaces de-
spite the fact that the process begins and ends on the
ground state potential-energy surface. This circum-
stance, together with the fact that we have to deal
with large vibrational excess energy, simplifies the
situation allowing us to avoid the consideration of
the geometric phase effect around the conical inter-
section, which is the subject of numerous investiga-
tions based on fully quantum mechanical dynamics
(cf. Ref. [22] and references therein). Moreover, since
we consider it necessary to take into account all
degrees of freedom for the nonadiabatic dynamics,
the choice of the treatment is limited either to sur-
face hopping methods or to classical-path methods
characterized by problems arising from the approx-
imation that trajectories propagate in state-specific
or mean potential, respectively (cf. Ref. [23] and
references therein). Due to the conical intersection
passage arising from a long amplitude motion, we
decided to use the fewest-switches surface hopping
approach introduced by Tully [24], which has been
based on the assumption that the fraction of tra-
jectories on each surface is equivalent to the corre-
sponding average quantum probability determined
by coherent propagation of quantum amplitudes,
although we are aware that this internal consistency
is not always maintained [25].

In fact, the investigation of the nonadiabatic dy-
namics at the conical intersection of Na3F2 offers
a unique opportunity to simulate fs pump-dump
signals in the framework of the combination of the
Wigner–Moyal representation of the vibronic den-
sity matrix [26] and an ab initio multistate molecular
dynamics in ground and excited states without the
precalculation of energy surfaces including the com-
putation of the non-adiabatic couplings “on the
fly.” At the same time, it allows for the prediction
and verification of consequences of conical inter-

sections in fs pump-probe signals in the gas phase
without the necessity to consider the environment
which complicates the issue as in the case of photo-
chemistry in solution or in the case of the cis-trans
photo-isomerization of the visual pigment due to
the influence of the protein cavity.

Moreover, for all three examples, the analysis
of the simulated signals accounts for geometric re-
laxation as well as internal vibrational relaxation
both being of different nature. In addition, all pre-
sented examples are of interest in the context of
the investigation of their dynamical behavior on
the fs timescale as a function of their size. The
theoretical and experimental investigation of the
NeNePo fs spectroscopy on silver clusters larger than
trimers, as well as of pump-probe (NeExPo) and
pump-dump (NeExNe) signals of nonstoichiometric
sodium fluoride series NanFn−1, is in progress. Both
series of purely metallic clusters and ionic systems
with single excess electron offer a large diversity of
physical and chemical processes to be studied.

Methodology

Our ab initio Wigner distribution approach com-
bines the Wigner–Moyal representation of the vi-
bronic density matrix with the ab initio molecular
dynamics “on the fly” in ground and/or excited
electronic states under the presence of external op-
tical fields. In particular, this method allows us to
handle femtosecond multistate dynamics in order
to simulate pump-probe and pump-dump signals of
the ultrafast optical spectroscopy of molecular sys-
tems. It is applicable to systems of moderate size
where all degrees of freedom have to be treated
equaly. In the following, we give a brief outline of
this method.

We begin with the exact quantum mechanical
Liouville equation for the vibronic density matrix
�̂ab(q, q′) = ψa(q)ψ∗

b (q′), where ψa(q) (ψ∗
b (q′)) de-

scribes the nuclear wavefunction labeled by the
electronic state a (b), and q (q′) denotes the whole
of the nuclear coordinates:

ih̄
∂�̂ab

∂t
= ĥa�̂ab − �̂abĥb −E(t)

∑
c

(µ̂ac�̂cb − �̂acµ̂cb). (1)

The first two terms on the right-hand side are re-
sponsible for the multistate nuclear dynamics de-
termined by the vibrational Hamiltonians ĥa and ĥb,
respectively, initiated by the field E(t). The last term
on the right-hand side of Eq. (1) describes the cou-
pling of the molecular system to the field where µ
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is the electronic transition dipole moment in Con-
don approximation. Although the system is deter-
mined by pure states, the Liouville equation offers
a convenient starting point for approximate meth-
ods such as semiclassical approaches. Introducing
classical phase space variables (q, p) and perform-
ing a Wigner–Moyal expansion of Eq. (1) in powers
of h̄ [26], equations of motion for the Wigner dis-
tributions Pab(q, p) being the classical analog of the
vibronic density matrix can be obtained. In lowest
order with respect to h̄, one obtains for the occupa-
tion density Paa [14] the equation

ih̄
∂P(i)

aa

∂t
= h̄

i

{
∂ha

∂q
∂P(i)

aa

∂p
− ∂ha

∂p
∂P(i)

aa

∂q

}

− E(t)
∑

c

(
µacP

(i−1)
ca − P(i−1)

ac µca
)
, (2)

and for the transition probabilities Pab

ih̄
∂P(i)

ab

∂t
= (ha − hb)P(i)

ab − E(t)
∑

c

(
µacP

(i−1)
cb − P(i−1)

ac µcb
)
,

a 	= b. (3)

In Eqs. (2) and (3), we additionally performed an ex-
pansion of the Wigner distributions with respect to
the field E(t), giving rise to the superscript (i) label-
ing the order in the field. Thus we restrict ourselves
to low field intensities, which is well justified for the
calculation of pump-probe or pump-dump signals
involving the transitions between electronic states.
Eq. (3) can be straightforwardly integrated yield-
ing Franck–Condon-type coupled dynamics on the
electronic states during the presence of the field,
including the transition between the states. Eq. (2)
describing the dynamics upon an electronic state
after the excitation can be solved by integrating
Hamilton’s equations, e.g., for the state a it is q̇a =
∂ha/∂pa, ṗa = −∂ha/∂qa, which determines classi-
cal trajectories on the electronic states. For this, an
ensemble of initial conditions have to be assumed,
which in the case of the simulation of pump-probe
or pump-dump signals can be naturally determined
from the vibronic Wigner distribution of the ini-
tial electronic state, i.e., before any field is present.
We assume a thermal distribution for the initial en-
semble in order to be able to include temperature
effects in correspondence with the experimental sit-
uations. For higher temperature of the initial ensem-
ble (some hundreds of K), the initial conditions are
generated by sampling a long-time trajectory upon
the initial electronic state with constant averaged ki-
netic energy or constant total energy corresponding
to a canonical or microcanonical ensemble, respec-

tively. This allows us to include anharmonicities
and vibrational couplings of the initially prepared
molecular system at higher temperatures. For low
temperatures, quantum effects of the initial ensem-
ble have to be taken into account and, therefore, we
used the expression for the Wigner distribution of
a canonical ensemble in each of the normal modes.
Initial conditions are then obtained by sampling this
distribution function.

Based on the classical trajectories and assum-
ing Gaussian femtosecond envelopes for the laser
fields, an analytical expression for the time re-
solved NeNePo-ZEKE pump-probe, NeExNe pump-
dump, and NeExPo signals including crossing
through conical intersection can be derived, respec-
tively [14, 20, 21].

S[td]NeNePo–ZEKE

∼
∫

dq0 dp0

∫ ∞

0
dτ1 exp

{
− (τ1 − td)2

σ 2
pu + σ 2

pr

}

× exp
{
−σ

2
pr

h̄2

[
Epr − V+1,0

(
q1(τ1; q0, p0)

)]2
}

× exp
{
−σ

2
pu

h̄2

[
Epu − V0,−1(q0)

]2
}

P(0)
−1,−1(q0, p0),

(4)

S[td]NeExNe

∼
∫

dq0 dp0

∫ ∞

0
dτ1 exp

{
− (τ1 − td)2

σ 2
pu + σ 2

du

}

× exp
{
−σ

2
du

h̄2

[
Edu − V+1,1

(
q1(τ1; q0, p0)

)]2
}

× exp
{
−σ

2
pu

h̄2

[
Epu − V10(q0)

]2
}

P(0)
00 (q0, p0), (5)

S[td]NeExPo

∼
∫

dq0 dp0

∫ ∞

0
dτ1 exp

{
− (τ1 − td)2

σ 2
pu + σ 2

pr

}

× 1
Nhop

∑
ν

exp
{
−σ

2
pr

h̄2

× [
Epr − V+1,x

(
qνx(τ1; q0, p0)

)]2
}

× exp
{
−σ

2
pu

h̄2

[
Epu − V10(q0)

]2
}

P(0)
00 (q0, p0). (6)

Pump-probe time resolved signals for the nega-
tive ion-to-neutral-to-positive ion process (NeNePo)
obtained by photodetachment and photoionization
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are proportional to the Wigner density of the cation,
P+1,+1(q, p), and require a classical trajectory cal-
culation on the adiabatic ground state of the neu-
tral species. Pump-dump or pump-probe signals
between the ground and excited states (NeExNe
or NeExPo) are proportional to the field induced
Wigner density of the ground state P00(q, p), and
require either a classical trajectory calculation on
the adiabatic excited state or, in the case of the
nonadiabatic dynamics, the propagation of the en-
semble starts at the excited state but may hop at
the ground state according to the fewest-switching
hopping algorithm. In the latter case, not only is
the common averaging over the whole ensemble of
the initial conditions due to the Wigner approach
required, but also, for a given initial condition, an
averaging over trajectories obtained from different
random numbers according to the hopping algo-
rithm has to be carried out. Therefore, we denote
the coordinates and momenta of the propagated
state by qνx and pνx, where x is either the excited or
the ground state which is determined by the hop-
ping procedure. The ν numerates the set of random
numbers used in the hopping algorithm obeying
the same initial condition. Consequently, we have
to average over the number of hoppings Nhop. Ac-
cording to Eq. (6), the initial ground state density
P(0)

00 (q0, p0) is promoted to the first excited state with
the Franck–Condon transition probability given by
the last exponential of Eq. (6). The propagation, the
passing of the conical intersection, and the probe
transition to the cationic state are described by the
second exponential. The probe pulse window be-
ing located around the time delay td between the
pump and the probe pulse and the resolution of the
signal determined by the square of the pulse dura-
tions is given by the first exponential. As is required
in the Wigner distribution approach, an ensemble
average over the initial conditions has to be per-
formed. The latter can be obtained from a sampling
of the initial vibronic Wigner distribution P(0)

00 of the
ground electronic state. In the case of pump-dump
signals, probing in the gas phase corresponds to a
transition of the dumped ground state density to the
cation.

As input for the simulation of the signals, the
calculations of the trajectories “on the fly” have to
be carried out. This involves the computation of
the forces with quantum chemical gradient based
methods originally developed for geometry opti-
mization. This is much simpler for ground states
than for excited states. We use our ab initio mole-

cular dynamics with Gaussian atomic basis based
on gradient corrected density functional [18] for the
dynamics involving ground states for NeNePo spec-
troscopy of Ag−

n /Agn/Ag+
n . Of course, for trimers

even more sophisticated methods such as CCSD can
be used, or the energy surfaces can be precalcu-
lated [14].

The excited state ab initio dynamics require for
the calculation of the forces a more complicated
electronic response with respect to the nuclear dis-
placements. Here we present a particularly sim-
ple case for the nonstoichiometric sodium fluorides
with a single excess electron [27, 28]. In these sys-
tems, the n − 1 valence electrons of the alkali atoms
are almost “localized ” at the fluorine atoms, form-
ing strongly polar, nearly ionic bonds which are
not influenced by processes involving the single ex-
cess electron. It is therefore to be expected that only
the excess electron is responsible for the absorption
patterns of these systems, particularly in the low
transition energy region with dominant intensity (in
which the stoichiometric clusters do not give rise to
any intense transition). This has been confirmed by
comparing the results obtained from MRCI [27, 28]
in which excitations of all valence electrons were al-
lowed. The very special character of these systems
has been also recognized by Ahlrichs et al. [29] who
used the unrestricted Hartree–Fock random phase
approximation (UHF-RPA) for the computation of
the absorption spectra of the nonstoichiometric ion-
ically bonded alkali halide clusters. However, we
have introduced an even more simplified treatment
in the framework of the “frozen ionic bond” approx-
imation [28] which has the following advantages.
It allows the accurate computation of the absorp-
tion spectra of the systems with one-electron excess
at low computational demand; it avoids the spin
contamination problem being inherently present in
the UHF based methods; and mainly it permits fast
calculations of analytic gradients in excited states
as well as of nonadiabatic couplings between adi-
abatic states [20, 21]. The two latter aspects are
particularly important in the context of the mul-
tistate fs dynamics. In fact, the analytic gradients
for the geometry optimization of the excited states
in the framework of the RPA method recently be-
came available [30, 31], allowing us to carry out MD
in the excited states at low computational demand,
but the analytic expressions for the calculation of
the nonadiabatic coupling have not yet been de-
rived.

In the “frozen ionic bond” approximation, the
transition density matrices in the MO basis (and
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subsequently the absorption spectrum) can be ob-
tained from an effective one-excess electron Hamil-
tonian containing Coulomb and exchange operators
with core (cf. Appendix A and Ref. [28]). Further-
more, for the dynamics in excited states, we need
the gradients of the energy expression involving the
gradients of the Coulomb energy of the nuclei, and
of the HF energy, which are both well known [32],
as well as the gradients of the energies of the excess
electrons ∇Rεi (cf. Appendix A and Refs. [19, 20]).
The gradients also involve the derivatives of the
one- and two-electron integrals as well as the re-
sponse of the MO coefficients Cαi with respect to the
nuclear displacements

∇R Cαi =
M∑

j = 1

CαjUR
ji (7)

where, in general, the U matrices contain elements
for which the corresponding orbital transforma-
tions either change the Hartree–Fock energy or only
canonicalize the MOs. Since the MO coefficients in
our approach are those of the restricted open shell
Hartree–Fock (ROHF), the U matrices have to be ob-
tained from the solution of the coupled perturbed
Hartree–Fock equations (CPHF) for the open shell
RHF (cf. Ref. [33]). Usually in quantum chemistry,
the CPHF equations are needed as an intermediate
step for the analytic computation of the vibrational
frequencies. Obviously, only those U matrix ele-
ments are required for which the corresponding
orbital transformations do change the HF energy.
For our purpose, however, the calculation of the
derivatives of εi requires the knowledge of all U ma-
trix elements, including those corresponding to the
canonicalization of the MOs [34] (cf. Appendix A).
Therefore, we used the formulation and efficient im-
plementation of the extended CPHF equations due to
Rice et al. [35] and Lee et al. [36] which yields all
U matrix elements as a solution of a system of linear
equations.

Moreover, the use of the extended CPHF equa-
tions allows for the straightforward analytic formu-
lation of nonadiabatic coupling 〈ψj|∇R |ψi〉 as out-
lined in Appendix B and Ref. [21]. Therefore, both
adiabatic and nonadiabatic dynamics can be carried
out “on the fly” at low computational demand in
the framework of the “frozen ionic bond” approxi-
mation.

In the latter case, we need connection between
the analytic formulation of the first order nonadi-
abatic couplings and the MDQT based on Tully’s

stochastic fewest-switches procedure [24], which re-
quires a simultaneous solving of the time dependent
Schrödinger equation for the one-excess electron
and classical equations of motion for the nuclei. The
time dependent wavefunction 
(t, r, R) which de-
scribes the electronic state at the time t is expanded
in terms of the adiabatic electronic basis functions ψj

of the one-electron excess effective Hamiltonian
with complex-valued time dependent coefficients


(t, r, R) =
M∑

j = o

cj(t)ψj(r; R). (8)

The adiabatic states are also time dependent
through the classical trajectory R(t). Substitution of
this expansion into the time dependent Schrödinger
equation, multiplication by ψk from the left, and
integration over r yields a set of linear differen-
tial equations of the first order for the expansion
coefficients which are equations of motion for the
quantum amplitudes:

iċk(t) =
∑

j

[
εjδkj − iṘ(t) · 〈ψk|∇R |ψj〉

]
cj(t), (9)

where the εj are the eigenvalues of the effec-
tive Hamiltonian, and the expression for nona-
diabatic couplings 〈ψk|∇R |ψj〉 has been derived
in Appendix B.

The system of Eq. (9) has to be solved simultane-
ously with the classical equations of motion for the
nuclei

MR̈ = −∇REm(R), (10)

where the force is the negative gradient of the po-
tential energy of the “current” mth adiabatic state

∇R Em(R) = ∇REHF(R) − ∇Rεo(R) + ∇Rεm(R), (11)

and hopping probabilities gij between the states are
determined by

gij = 2
�t
cic∗

i

[�(c∗
i cjεiδij) − �(

c∗
i cjṘ〈ψi|∇R |ψj〉

)]
(12)

and can occur randomly according to the fewest-
switches surface hopping approach introduced by
Tully [24]. The gradients ∇Rεm(R) in Eq. (11) have
been outlined in Appendix A in connection with
adiabatic dynamics. Eqs. (10) and (11) for the prop-
agation of the coordinates and momenta are numer-

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 719
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ically solved by using the velocity-Verlet algorithm
where, as for the integration of Eq. (9), the Bulirsch–
Stoer predictor-corrector method with variably ad-
justed time step has been employed. In such a way,
the molecular dynamics simulations “on the fly” for
Na3F2 were carried out with an energy conservation
better than 10−4 eV.

We derived all analytic expressions needed to
carry out the nonadiabatic MDQT “on the fly” using
the fewest-switches hopping algorithm by Tully [24]
which has been designed to satisfy the statistical dis-
tribution of state populations at each time according
to the quantum probilities |ci|2 using a minimal
number of “hops” necessary to achieve this condi-
tion (for details, cf. Ref. [24]). However, this internal
consistency is not always maintained as shown in
Ref. [25]. Therefore, we draw the conclusion that
in order to obtain the time evolution of the pop-
ulation, the fraction of trajectories is more reliable
than the averaged quantum probabilities, and suffi-
cient accuracy can be expected. Thus we employed
the fraction of trajectories for the simulation of the
pump-probe signals presented later.

In summary, the calculation of the electronic en-
ergies in the “frozen ionic bond” approximation
and the solution of Hamilton’s equation of motion
for the nuclei, together with the solution of the ex-
tended CPHF equations, allow the simulation of the
adiabatic molecular dynamics in an electronically
excited state, as well as of nonadiabatic dynam-
ics involving the propagation in the excited state
and in the ground state after the passage through
the conical intersection in the framework of the
above-described model. This classical treatment of
nuclei is applicable to problems where quantum in-
terference effects are washed out, which is usually
the case, e.g., at high temperatures. In particular,
quantum coherence and tunneling are excluded. In
more sophisticated approaches, e.g., in the semi-
classical initial value representation (SC-IVR), these
effects can be taken into account [37]. Other semi-
classical formulations are the semiclassical mul-
tiple surface hopping propagator approach [38],
the multiple spawning method [39], the quantum-
classical density matrix approach involving a hy-
brid MD–Monte-Carlo algorithm with momentum
jumps [40], and the semiclassical multistate Liou-
ville dynamics in diabatic [41] and adiabatic repre-
sentation [42]. These methods are computationally
more demanding and are usually applied on model
systems.

Simulation of Pump-Probe Signals for
Ag−

3 /Ag3/Ag+
3 and Interpretation of

NeNePo Experiments

In this experiment, a transient linear Ag3 clus-
ter in its ground electronic state was prepared by
one-photon detachment of the linear Ag−

3 , and its
temporal evolution from the linear to the triangu-
lar Ag3 structure was investigated by a delayed
ionizing pulse via two-photon ionization. Figure 1
shows the scheme of the multistate fs dynamics and
the energy gaps for Ag−

3 /Ag3/Ag+
3 in the Franck–

Condon regime, as well as in the minimum of the
neutral Ag3 which will be used for determining
the excitation energies of the pump Epu (2.95 eV ≤
Epu ≤ 3.13 eV) consisting of the vertical detach-
ment VDE = 2.45 eV and the continuum, and for
the probe Epr (6.67 eV ≥ Epr ≥ 5.73 eV) rang-
ing from the vertical ionization potential of the
linear geometry VIPlin to the VIP of the triangular
species. Notice that for trimers we precalculated the
ground state energies of Ag−

3 , Ag3, and Ag+
3 at the

correlated level of theory (cf. Ref. [14]). For initiat-
ing the simulation, initial conditions were prepared
for an ensemble of 1000 coordinates and momenta
sampled at time intervals of 10 fs from a micro-
canonical trajectory of 10 ps obtained from MD of
the anion. Equilibration was achieved by rescaling

FIGURE 1. Scheme of the multistate fs dynamics
on Ag3.
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FIGURE 2. Histograms of the vertical
detachment energies (VDE) of the Ag−

3 for 50 K and
300 K, respectively.

the velocities until the time averaged Ekin was in
correspondence with the derived temperature of,
e.g., T = 50 K or 300 K.

The ensemble of the initial conditions for the dy-
namics of the Ag3 are characterized by the Franck–
Condon transition probabilities in terms of the
abundances of the VDE’s between the Ag3 and
the Ag−

3 (Fig. 2). The maximum of the VDE at
2.45 eV corresponds to the linear geometry of the an-
ion, and therefore represents an upper limit which
is temperature independent. The asymmetric line
broadening for the 300 K ensemble stems from the
energy difference of Ag−

3 and Ag3 along the bending
mode. Using the ensembles with 50 K and 300 K ini-
tial temperatures, we first simulated NeNePo-ZEKE
signals with zero pump-pulse durations (σpu = 0),
which means that the entire anionic initial ensem-
ble prepared at the given temperature is excited
by the pump. In Figure 3 we present the simu-
lated NeNePo-ZEKE signals for the ensemble with
50 K and 300 K initial temperature for three differ-

ent excitation energies and for Gaussian probe pulse
duration of 100 fs corresponding to experimental
conditions. Epr = 6.5 eV is close to the initial Franck–
Condon transition, while Epr = 5.8 eV corresponds
to the probing of the minimum of the neutral (Jahn–
Teller region) and Epr = 6.1 eV has an intermediate
energy. The first two energies have been chosen for
the investigation of the geometrical changes versus
IVR, respectively. In order to illustrate the nature
of IVR, bunches of trajectories of the 50 K and the
300 K ensemble projected on a Qx (bending mode),
Qs (symmetric stretch mode) contour plot of the
cation-neutral energy gap surface are also shown in
Figure 3.

For the simulated signals at low temperature and
for Epr = 6.5 eV close to the Franck–Condon region,
the signal appears after 450 fs and reaches the max-
imum at 700 fs, reflecting the changes of the vertical
ionization energies due to the geometrical change
from the linear to the triangular geometry prior the
onset of IVR for Epr = 5.8 eV close to the Jahn–
Teller region. After geometry relaxation has been
completed, at the closest approach of the terminal
atoms (Jahn–Teller region), a strong repulsion takes
place which we call intracluster collision. It induces
a sudden energy transfer from the bending to the
symmetric stretching mode. The time σON

coll for the
onset of the collision (950 fs) almost coincides with
the onset of the IVR. The pronounced broad peak
with high signal intensity (for T = 50 K) can be
rationalized by the bunches of the trajectories on
the contour plots of the Ag+

3 –Ag3 energy gap hy-
persurface in the lower part of Figure 3. After the
intracluster collision at T = 50 K, the concerted char-
acter of the nuclear motion is preserved between 900
and 1100 fs, with the system moving along the 5.8 eV
contour line with almost constant IP. For the inter-
mediate energy Epr = 6.1 eV, the signal has lower
intensity due to the larger spread of the phase space
density at longer times. In comparison with the low
temperature simulation, for T = 300 K, the onset of
the signals occurs earlier by about 200 fs due to the
higher initial kinetic energy of the bending mode re-
flecting faster geometry relaxation. Moreover, in the
IVR time domain, the T = 300 K ensemble exhibits
spatial spread after the intracluster collision result-
ing in lower signal intensity than for the T = 50 K
ensemble, since in the former case both bending and
stretching modes are simultaneously excited (oscil-
lations of the energy gaps are present). At longer
times (after 2.4 ps at T = 50 K and 1.8 ps at T =
300 K), dissipative IVR results in vibrational equili-
bration. In summary, Figure 3 reveals that geometric
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FIGURE 3. NeNePo-ZEKE probe signals (above) and bunches of 30 trajectories projected on the QxQs contour plot
of the cation-neutral energy gap surface (below) for two different temperatures (left column, 50 K; right column, 300 K).

relaxation and IVR in Ag3 can take place on dif-
ferent timescales being probed by the appropriate
probe energies, and it shows that these timescales
can be changed by the temperature of the initial en-
semble.

Now we will turn our attention to the experimen-
tal NeNePo conditions for which we have included
the continuum of energy for the detached electron
and for the probed cation. We show on Figure 4 the
comparison of the simulated and recorded NeNePo
experiment for the 300 K initial ensemble. The clear

distinction between the geometrical relaxation and
IVR revealed in the NeNePo-ZEKE signals is no
longer present. The simulated signals are in good
agreement with the experimental signals obtained
by Wöste et al., reflecting the fact that the experi-
mental conditions do not allow us to distinguish in-
dividual processes such as geometric relaxation and
IVR. These findings stimulated new experiments in
which the temperature of the initial conditions has
been varied and the corresponding timescales for
the geometrical relaxation have been obtained. Fur-
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FIGURE 4. Comparison between simulated and experimental NeNePo signals of Ag3. The energies labeled refer to
the excitation energies of the probe.

thermore, additional experiments close to NeNePo-
ZEKE conditions are in progress.

Simulation of the Pump-Dump
Signals Illustrated on the Example
of Na4F3 Clusters

In order to study pump-dump time resolved sig-
nals for the ground-to-excited-to-ground state of
the neutral species (NeExPo) using the ab initio
Wigner distribution approach described above, let
us first address the nature of the optical response

FIGURE 5. Optically allowed transitions Te in eV and
oscillator strengths fe for the stable structure of Na4F3
obtained from the one-electron “frozen ionic bond”
approximation.

of the Na4F3 cluster. The optical absorption spec-
trum for the stable structure of Na4F3, which is the
three-dimensional “cuboidal” structure where the
corner defect represents the prototype of the “sur-
face F-center” in finite systems [27, 28], is shown
in Figure 5. The single dominant transition to the
12E state with a large value of the oscillator strength
( fe = 0.62) is located in the infrared region at 1.4 eV.
This is due to the fact that the single excess electron
is located in the large gap between the occupied and
unoccupied one-electron functions (corresponding
to the “valence” and “conductivity” bands in infi-
nite systems) and is well separated from the MO’s
involved in the ionic bonding justifying the “frozen
ionic bonds” approximation. Therefore, the optical
response properties compare well with those calcu-
lated taking into account all valence electrons in our
previous work. We use the effective core potentials
and the basis sets from Ref. [27]. For the dynamics
an even smaller basis set has been employed, since it
provides the accurate description of the first excited
state at lower computational cost.

This convenient situation allowed us to investi-
gate the dynamics of the first adiabatic excited state
as outlined in the second section and Appendix A,
and to determine the timescales of the geometrical
relaxation and of the IVR for the optical excitation
of the single excess electron localized at the corner
defect of the cuboidal structure. The pump-probe
and pump-dump scheme is presented in Figure 6,
with energies and structures of the minima in the
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FIGURE 6. Pump-probe and pump-dump scheme of Na4F3 to monitor the dynamics upon the first excited state.
The energies refer to the energy gaps of the pump, the dump, and the probe step at a given time, where the
corresponding geometry is assumed during the dynamics.

ground (A) and the first excited (B) state. The struc-
ture of the minimum in the excited state is the
strongly deformed “cage” of the cuboidal structure.
The energy lowering from the vertical transition (at
1.4 eV) to the minimum of the excited state is 0.8 eV.
At this point, the energy gap between the ground
and the excited state is 0.6 eV. This energy gap
slightly decreases for even more deformed struc-
ture (C).

The Franck–Condon profile corresponding to the
abundance of the energy gaps between the first ex-
cited and the ground state for a 30 K initial ensemble
is shown in Figure 7. One can detect the largest
abundance close to the vertical transition (≈1.4 eV).
This ensemble serves as an initial condition for the

investigation of the dynamics in the first excited
state. For the characterization of the ensemble dy-
namics, it is instructive to plot the bunches of energy
gaps between the first excited state and the ground
state (cf. Figure 8) since these quantities enter into
the expression for the pump-dump signal. Regular
cage oscillations can be monitored and are reflected
in the periodical change of the gaps. However, for
times beyond 1 ps, the periodicity is distorted due
to the energy redistribution in other modes. This be-
comes clearly evident in the simulated pump-dump
signals (NeExNe) shown in Figure 9. The simulations
have been carried out for three different dump laser
energies: (1) Edu = 1.2 eV is close to the Franck–
Condon region; (2) Edu = 0.6 eV corresponds to the
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FIGURE 7. Franck–Condon profiles represented as
a histogram of the energy gaps between the first excited
electronic state and the ground state of a 30 K initial
ensemble of Na4F3.

transition energy in the minimum of the first excited
state; and (3) Edu = 0.8 eV corresponds to an inter-
mediate value. The time between the first maxima
of the signals calculated for Edu = 1.2 eV and Edu =
0.6 eV corresponds to the geometric relaxation time
from the initially cuboidal structure (A) to the min-
imum of the first excited state [“cage” structure (B)]
which amounts to less than 100 fs indicating a very
fast configurational relaxation. Furthermore, both
the Edu = 1.2 eV-signal and the Edu = 0.8 eV-
signal exhibit strong oscillations with a period of
260 fs, thus these signals are sensitive to dynamical
processes connected with the cage opening mode.
In particular, the amplitudes of the maxima of the
Edu = 1.2 eV-signal (cf. Fig. 9) are decreasing dur-
ing the time evolution of the system, indicating that
the reversion to the cuboidal structure is less likely
to be accomplished from one oscillation period to
the other. The reason for this is the restricted energy
leaving IVR of the cage opening mode which was
introduced above. From the decrease of the signal,
we can roughly estimate the timescale for this type
of IVR of about 1 ps. The “minimum-region” signal
(Edu = 0.6 eV) is aperiodic after 1 ps, and the inten-
sity increases significantly, indicating that the phase
space occupation in the minimum of the first excited
electronic state (open cage structure (B) in Fig. 9)
raises during the propagation caused by the energy
flow into this region. Note that this restricted energy

arriving IVR differs from the one-mode selective en-
ergy, leaving IVR of the cage opening mode since
the “minimum-region” signal cannot be attributed
to one specific vibrational mode in contrast to the
Edu = 1.2 eV signal. Consequently, the timescales of
both IVR processes are different. However, as can
be seen from Figure 9, the simulation time of 2 ps
is too short in order to determine the timescale for
restricted energy arriving IVR. Finally, the average
amplitudes of the oscillations of the Edu = 0.8 eV
signal remain almost constant. This indicates that a
somewhat constant part of the phase space volume
oscillates periodically above the minimum struc-
ture (B). However, the modulation of the oscillations
in the Edu = 0.8 eV signal is due to either the anhar-
monicity of the cage opening mode or resonant IVR
which arises from the coupling of the other modes
to the still dominant cage opening mode. We wish
to emphasize that, although the system has 15 de-
grees of freedom, no features of dissipative IVR
could be found during the propagation time of 2 ps
and for low initial temperature. This analysis of the
restricted IVR processes may be important for the
development of mode selective control mechanisms
of these or similar systems with metallic-ionic and
metallic-covalent bonds.

Simulation and Analysis of the
NeExPo fs Pump-Probe Signals of Na3F2

First we present the optical response and struc-
tural properties of the ground and the first excited
states of Na3F2, then characterize the conical in-
tersection, and finally address dynamics involving
passage through conical intersection.

The optical response properties obtained for both
isomers of Na3F2 are shown in Figure 10 and com-
pare well with those calculated, taking into account
all valence electrons in our previous work [27, 28].
The lowest energy isomer I with the ionic Na2F2

subunit to which the Na atom is bound forming
Na–Na and Na–F bonds gives rise to the low en-
ergy intense transition located at 1.33 eV. This is
a common feature found for NanFn−1 clusters due
to the localization of the one-excess electron either
at the Na atom (e.g., in Na2F and Na3F2) or at the
F-deficient site (e.g., in Na4F3). In contrast, the tran-
sition to the first excited state of isomer II (C2v) with
the Na3 subunit which is bridged by two F atoms
has the energy of ∼1.7 eV being close to the location
of transitions arising from excitations in metallic
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FIGURE 8. Bunches (30 trajectories) of energy gaps between the first excited and the ground state obtained from the
dynamics on the first excited electronic state initiated by a pump excitation of a 30 K ensemble of Na4F3.

subunits. After the vertical transition at the geom-
etry of the isomer I, the geometric relaxation in the
first excited state takes place involving a breaking of
the Na–Na bond leading to the first local minimum
of the excited state [cf. Fig. 11, structure (A)] with
a lowering of the energy by ∼0.17 eV. Afterward,
the relaxation process proceeds to the absolute min-
imum with the linear geometry [cf. Fig. 11, struc-
ture (B)] corresponding to the conical intersection
for which a further decrease of energy by ∼0.50 eV
takes place. The linear geometry of the conical in-
tersection is also reached after vertical transition to
the first excited state at the geometry of the second
isomer with C2v structure. Thus, the investigation of
the dynamics in the first excited state involves the
breaking of metallic and ionic bonds starting from
isomer I, and metallic bonds starting from isomer II,

as well as the passage through the conical intersec-
tion.

As a consequence, one expects strong thermal
motions within the ensemble leading to phase space
spreading and IVR. All processes can be monitored
by a second ionizing probe pulse with excitation en-
ergies between ∼2.9 eV and ∼4.8 eV, as shown by
the NeExPo scheme given on Figure 12. The first
value is close to the initial Franck–Condon transi-
tion region, and probes the relaxation dynamics on
the first excited electronic state before the branching
process due to the conical intersection occurs, while
the latter value allows to monitor the processes
involved in the ground state dynamics after the pas-
sage through the conical intersection.

We have used the algorithm introduced by Robb
et al. [43] for the determination of the linear struc-
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FIGURE 9. Simulated pump-dump signals of a 30 K initial ensemble of Na4F3 for three different excitation energies of
the dump laser. Maxima and minima of the signals can be attributed to the given structures below.

ture (cf. Fig. 11) and the corresponding energy as-
sociated with the intersection point. Moreover, this
algorithm also allows us to analyze the topology
of the intersection in the space spanned by the in-
ternal degrees of freedom. The results obtained for
Na3F2, which has N = 10 internal degrees of free-
dom, show that displacements in eight out of the
ten directions almost do not change the energetic
separation of the surfaces, while displacements in
the orthogonal plane characterized by two direc-
tions X1 and X2 strongly remove the energy de-
generacy. The X1 is the gradient difference vector
and X2 involves the coupling vector between the
states. In other words, the ground state reaction
paths starting in the plane X1X2 connects the excited
state reactants with the two ground state products.
Thus, the intersection of the ground and the first

excited state has the shape of a double cone with
respect to X1 and X2, where the apex spans an eight-
dimensional hyperline along which the energy is
degenerate. The intersection seam is therefore (N-2)
dimensional as it is characteristic for conical intersec-
tions.

The analysis of the wavefunctions of the ground
and the first excited state in the close neighborhood
of the conical intersection yields positive and nega-
tive linear combinations of two “valence bond like”
structures Na+–F−–Na+–F−–

·
Na± ·

Na–F−–Na+–F−–
Na+, with one of them contributing dominantly to
the ground and the other one to the first excited
state, thus giving rise to two states with different
symmetry. The location of the excess electron is indi-
cated by the dot above the sodium atom. Of course,
at the point of conical intersection, the arbitrary
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FIGURE 10. Optically allowed transitions Te in eV and
oscillator strength fe obtained from the one-electron
“frozen ionic bonds” approximation for the stable ground
state isomer I and the second isomer II of Na3F2 which
has ∼0.09 eV higher energy. Bond lengths of the
structures are indicated in Å.

linear combination of the above “valence bonds”
structures is possible due to the degeneracy. The
two “VB” structures differ in the translocation of the
single excess electron or the charge from one end
to the other of the linear system. In other words,
the length of the linear chain is sufficiently long to
allow for energy gap closing in analogy to the dis-
sociation limit of the H+

2 molecule for which the
degeneracy of the ground and excited state occurs
due to equal energies of

·
H –H+ and H+–

·
H struc-

tures. This means that in the case that the linear
molecule is not sufficiently long to minimize the re-
pulsion, avoided crossing will take place as in the
case of Na2F, which turns into the conical inter-
section for Na3F2. In other words, the presence of
the conical intersection in the latter case through
which the isomerization process can take place is the
consequence of the electronic structure, and there-
fore has a general nature which can be found for
other systems by designing the analogic electronic
situation. Therefore, this finding is of general impor-
tance.

In fact, the analogy can be drawn to conical
intersections found in photochemistry involving bi-
radicaloid species, which arise by partial breaking
of double hetero bonds due to geometric relaxation
in the singlet excited states. The condition for the
occurrence of conical intersections in so-called “crit-
ical biradicals” has been formulated in the frame-
work of a two-orbital two-electron model and can
be fulfilled in the case that the electronegativity
difference between the two centers is sufficient to
minimize the repulsion between the ground and
the excited states [44 – 47]. This occurs in the pro-
tonated Shiff bases by twisting the chromophore
H2C–N+H2 bond leading to cis-trans isomeriza-
tion. In this case, the ground and excited states at
the conical intersection are characterized by “VB”
structures H2

·
C–

·
N+H2 and H2C+–

··
NH2 which dif-

fer in translocation of charge from one to the other
center of the chromophore [38 – 41]. In fact, exper-
imentally it has been confirmed that the conical
intersection is responsible for the cis-trans isomer-
ization of the retinal chromophore in the vision
process [48 – 50].

However, the investigation of the nonadiabatic
dynamics through the conical intersection of Na3F2

has advantages. The system has 10 degrees of free-
dom and permits the calculation of an ensemble
of trajectories based on the accurate ab initio de-
scription of the excited and ground electronic states
and corresponding MD, thus providing the con-
ceptual framework for fs-observables such as fs
pump-probe signals which will be addressed be-
low.

In order to obtain initial conditions, we have as-
sumed a canonical thermal ensemble of 50 K which
is determined by the Wigner distribution function
of the electronic ground state including all normal
modes ωi, i = 1, . . . , 10, of the Cs structure cor-
responding to the total minimum of energy. The
set of 100 initial conditions were obtained by sam-
pling the Wigner distribution function with respect
to the coordinates q0 and momenta p0 which were
used for the classical trajectory simulations on the
first excited state of Na3F2. The finite temperature
of 50 K causes thermal deviations from the energy
minimum Cs structure which have been character-
ized by the histogram of abundances of the energy
gaps between the first excited electronic state and
the ground state shown in Figure 13. The maximum
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FIGURE 11. Structures corresponding to the minimum on the first excited state of Na3F2 (A) involving a broken bond
between Na(1) and Na(2) which lies 0.5 eV above the linear minimum energy structure of the conical intersection (B).
Bond lengths are indicated in Å. The lower part shows a sketch of the conical intersection region between the first
excited state (Na3F∗

2) and the ground state characterized by the two vectors X1 and X2, where the apex of the double
cone spans an eight-dimensional seam. The minima on the ground state surface correspond to the Cs and the C2v
structure, respectively.

at ∼1.35 eV corresponds to the energy gap value at
the Cs structure of Na3F2.

Next we wish to outline important parts of the
analysis of the nuclear dynamics. The simulation of
the classical trajectory ensemble consisting of the
100 sampled phase space points has been started
on the first excited electronic state. The geometric
relaxation toward the linear structure correspond-
ing to the conical intersection, its passage, as well
as the subsequent relaxation dynamics on the elec-
tronic ground state can be visualized by considering
the phase space density of the cluster ensemble
shown in Figure 14 for different propagation times.
At the beginning, t = 0 fs, the phase space den-
sity is localized corresponding to the Cs structure

[cf. Fig. 14(a)]. During the subsequent ∼90 fs, the
distance between the Na(1) and Na(2) atoms elon-
gates by about 25%, indicating the bond breaking
between both sodium atoms [cf. Fig. 14(b)]. Con-
secutive ionic bond breaking between the Na(2)
and the F(2) atoms can be observed after 220 fs
[cf. Fig. 14(c)], together with a small delocalization
of the phase space density. After ∼400 fs, the re-
gion of the conical intersection corresponding to
the linear structure is reached [cf. Fig. 14(d)] which
triggers the branching of the phase space den-
sity from the excited electronic state to the ground
state. At this stage, the system gained an additional
kinetic energy of ∼0.67 eV. Due to this large vi-
brational excess energy, strong anharmonicities be-
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FIGURE 12. Scheme of the multistate fs dynamics of Na3F2 in the framework of the NeExPo pump-probe
spectroscopy. The dynamics on the first excited electronic state from the initially Cs geometry after vertical transition
toward the linear minimum energy structure of the conical intersection region, as well as the branching to the ground
state leading to both the Cs and the C2v structure, are indicated by thick arrows. Transition energies between the
ground and excited state, as well as between the cationic and the excited state, are given by thin arrows. All
corresponding geometries are drawn.

tween the vibrational modes must be present which
are responsible for the phase space spreading. The
subsequent relaxation dynamics on the electronic
ground state are characterized by an even larger
phase space spreading, particularly after 1000 fs
since the vibrational excess energy rose to ∼1.3 eV
which would correspond to an equilibrium tem-
perature of ∼3400 K (cf. Fig. 14(e)–(l)]. However,
although there is increasing phase space spread-
ing, one can clearly gain structural information of
the cluster ensemble up to a propagation time of
∼1000 fs by considering the center of mass po-
sitions of the atomic phase space distributions in

Figure 14(e)–(i). In particular, the “center of mass
geometry” at 800 fs is close to the C2v structure,
but due to the phase space spreading there are
also considerable deviations, and even geometries
close to the Cs structure are involved in the phase
space distribution of the cluster ensemble. As will
be shown below, one can obtain detailed informa-
tion about the ratio between these structures as well
as energetic distributions in the cluster ensemble
from pump-probe signals. For times beyond 1 ps,
no structures can be identified in the phase space
distribution [cf. Fig. 14(j)–(l)], thus the ensemble is
geometrically completely delocalized at least up to
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FIGURE 13. Histograms of the energy gaps (transition
energies) between the first excited electronic state and
the ground state of Na3F2 for a 50 K initial temperature
ensemble obtained from 100 sampled phase space
points of the canonical Wigner distribution. The
maximum of the histogram corresponds to the
transition energy for the stable ground state isomer I (Cs)
shown below.

the propagation time of 2.5 ps, which is understand-
able due to the large vibrational excess energy of
∼1.3 eV.

In addition, we have investigated the time-
dependent velocity autocorrelation function which
provides additional information about the dynam-
ics. As can be clearly shown from Figure 15, there
are regular oscillatory features before the conical
intersection is reached at ∼400 fs. The period of
∼95 fs can be attributed to a normal mode of the
Cs structure at 349 cm−1 (cf. Table II) correspond-
ing to a stretching motion between Na(2) and F(1)
(for the meaning of the labels, cf. Fig. 13). Thus,
one can conclude that the large amplitude mo-
tion of the Na(2)-atom toward the linear structure
of the cluster leading to an opening of the Na2F2

rhombic subunit involves the bond breaking of the
metallic Na(1)–Na(2) bond and the ionic Na(2)–F(2)

bond as well as the elongation of the remaining
Na(2)–F(1) ionic bond. After the passage through
the conical intersection, the oscillations disappear
and the amplitude of the velocity autocorrelation
function vanishes beyond 1 ps. This behavior corre-
sponds to the fact that the ensemble is structurally
and energetically delocalized after 1 ps, as was dis-
cussed in the context of the phase space distribution
(cf. Fig. 14).

In summary, we wish to emphasize that the
dynamics through the conical intersection repre-
sent an elementary physical event for the cluster
ensemble in the sense that it initiates the tran-
sition from structurally and energetically local-
ized behavior involving consecutive metallic and
ionic bond breaking processes to delocalized be-
havior, which destroys the correlations in the sys-
tem since the autocorrelation function vanishes.
Thus, the molecular dynamics can be divided
into a reversible and an irreversible part sepa-
rated by the passage through the conical intersec-
tion.

Finally, we have simulated NeExPo pump-probe
signals according to Eq. (6) using energy gaps
obtained from the classical trajectory simulations
based on the fewest switching hopping algorithm
for the ensemble of 50 K initial temperature. In
order to obtain comprehensive information on the
dynamical processes of Na3F2, zero pump pulse du-
ration (σpu = 0) involving a complete excitation of
the ground state ensemble prepared at the initial
temperature was assumed. However, a probe pulse
duration of 50 fs was chosen, which allows us to
resolve the ultrafast structural relaxation processes
involving the bond breaking. The simulations of the
signals have been performed for four different ex-
citation energies (wavelengths) of the probe pulse
(cf. Fig. 16).

Epr = 2.8 eV and Epr = 3.0 eV correspond
to transition energy values between the first
excited and the cationic state at the time of
the Na–Na metallic and the Na–F ionic bond
breaking, respectively. Thus the signals for the
above transition energies provide the informa-
tion on the structural relaxation involving the
bond breaking processes in the first excited
state of Na3F2 before the conical intersection is
reached. In fact, they exhibit maxima at ∼90 fs
and ∼220 fs [cf. Fig. 16(a)] in agreement with
the timescales for the metallic and ionic bond
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FIGURE 14. Snapshots of the phase space distribution (PSD) consisting of 100 phase space points obtained from
classical trajectory simulations based on the fewest-switching surface hopping algorithm of a 50 K initial canonical
ensemble. Na-atoms are indicated by black circles and F-atoms by gray crosses. (a)–(d) Dynamics on the first excited
state starting at the Cs structure (a) proceeds over the structure with broken Na–Na bond (b), and subsequently broken
ionic Na–F bond (c) toward the conical intersection region (d). (e)–(l) Dynamics on the ground state after branching of
the PSD from the first excited state lead to strong spatial delocalization. The C2v isomer can be identified between 800
and 900 fs [(g), (h)] in the “center of mass” distribution.

breaking obtained from the analysis of the
phase space distribution and energy gap val-
ues. Both signal intensities decrease rapidly
after 0.4–0.5 ps, indicating the branching of
the phase space density from the first excited

electronic state to the ground state due to the
conical intersection.

Epr = 4.3 eV and Epr = 4.8 eV [cf. Fig. 16(b)]
correspond to transition energies between the
ground state and the cationic state at the Cs
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FIGURE 14. (Continued)

geometry and the C2v geometry (cf. scheme
on Fig. 12), respectively. In such a way, the
signals monitor the ratio of both isomers in
the phase space distribution after the pas-
sage through the conical intersection up to
a time delay between pump and probe of
∼1 ps. This time represents the limit up to
which structural information can be resolved
in the phase space distribution (cf. Fig. 14).
For larger time delays, the signals provide

only information about the energetic redistri-
bution, i.e., IVR. In fact, the intensities of both
signals start to increase after ∼0.4 ps since
the ground state becomes populated provid-
ing the timescale for the passage of the conical
intersection [cf. Fig. 16(b)]. Furthermore, the
signal at Epr = 4.8 eV exhibits a maximum at
0.8–0.9 ps indicating the larger ratio of the C2v

structure in correspondence with the results
obtained from the phase space distribution
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FIGURE 15. Time-dependent velocity autocorrelation
function obtained for the dynamics of the 50 K initial
temperature Na3F2 ensemble.

[cf. Fig. 14(g)]. This signal drops rapidly after
0.9 ps, and the signal at Epr = 4.3 eV increases
indicating that the Cs structure is more popu-
lated at 0.9–1.0 ps [cf. Fig. 16(b)].

The latter one also exhibits oscillatory features
beyond 1 ps, i.e., corresponding to the IVR regime,
which leads to the conclusion that a somewhat peri-
odic energy flow is present in the cluster ensemble.
Of course, due to the high vibrational excess energy,
these oscillations cannot be attributed to particu-
lar normal modes. These results show that different
physical processes are involved in the dynamics
of Na3F2 cluster initiated by the Frank–Condon
pump pulse transition to the first excited electronic
state, such as geometric relaxation, consecutive
bond breaking of metallic and ionic bonds, passing
through the conical intersection, and IVR processes.
Moreover, the timescales of these processes can be
identified in NeExPo signals, and each of them can
be selectively monitored by tuning of the probe ex-
citation energy.

Conclusion

We have shown that the combination of the ab
initio multistate MD “on the fly” involving ground

and excited electronic states, including nonadiabatic
coupling and the Wigner distribution approach
for simulating the time resolved pump-probe and
pump-dump fs signals, is suitable for the descrip-
tion of different types of relaxation processes and for
the determination of their timescales. This approach
is able to reproduce the available experimental re-
sults, to predict under which experimental con-
ditions different processes such as configurational
relaxation and IVR can take place and to study
the nature of these processes. The investigation on
NanFn−1 clusters allows to identify in pump-dump
or pump-probe signals geometrical changes, break-
ing of bonds, isomerization, conical intersection,
IVR and their nature (e.g., one-mode selective en-
ergy leaving IVR, resonant and restricted energy
arriving IVR) in the context of varying the cluster
size and their structural and electronic properties.
Moreover it serves as stimulation for experimen-
tal work and for further development of theoretical
methods and concepts.

Appendix A: Excited States Energies,
Their Analytic Derivatives, and
Adiabatic Molecular Dynamics

We present the “frozen ionic bonds” approxima-
tion, pointing out its advantages for the calculation
of transition energies and mainly for carrying out
the MD “on the fly” involving low-lying excited
states. The NanFn−1 clusters are characterized by a
large energy gap between the HOMO-1 and LUMO
orbitals (∼14 eV), while the HOMO orbital occupied
by the single excess electron lies roughly ∼10 eV
above HOMO-1 [27]. This situation is suitable to in-
troduce the “frozen ionic bonds” approximation for
n − 1 electrons involved in ionic bonding [28]. This
allows us to describe the ground state of the system
on the restricted open shell Hartree–Fock (ROHF)
level, yielding canonical MOs ϕi. The excited states
are obtained as eigenstates of an effective one-excess
electron Hamiltonian containing Coulomb and ex-
change operators with the core defined as

ĥ′ = ĥ +
∑
c<o

[
2Ĵc(1) − K̂c(1)

]
(A–1)

where the sum extends over all doubly occupied
orbitals c (o labels the open shell single occupied
HOMO), i.e., over the atomic cores as well as over
the bonding orbitals corresponding to the ionic
bonds. The operators ĥ, Ĵc, and K̂c are the one-
electron part of the total Hamiltonian, the Coulomb,
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FIGURE 16. Simulated NeExPo pump-probe signals for the 50 K initial temperature Na3F2 ensemble at different
excitation energies of the probe laser allowing us to monitor geometric relaxation on the first excited state involving
bond breaking processes and passage through the conical intersection, as well as geometric relaxation and IVR
processes on the ground state after the passage.

and the exchange operators (with respect to the
ionic bonds), respectively.

The corresponding matrix elements in the MO
basis ϕi read

h′
ji = hji +

∑
c<o

[
2( ji|cc) − ( jc|ci)

]
( j, i = o, . . . , M)

(A–2)

where hji are one-electron integrals, and ( ji|cc) and
( jc|ci) are two-electron integrals in the MO basis

(containing M functions). The indices j, i run only
through the HOMO and virtual orbitals, since the
lower ones are already occupied and correspond
to the “frozen” ionic bonds. Eq. (A–2) is identical
to the expression for the closed shell Fock matrix
(constructed from the MOs of the neutral open shell
one-excess electron system ϕi)

FMO
ki = hki +

∑
j<o

[
2(ki|jj) − (kj|ji)] (i, k = 1, . . . , M)

(A–3)
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except for the range of indices k, i. Therefore, the ma-
trix of the one-excess electron Hamiltonian h′ is just
a submatrix of the Fock matrix (A–3) and can be ob-
tained straightforwardly by modifying the standard
self-consistent field (SCF) program in such way that
after the convergence of neutral restricted open shell
Hartree–Fock (ROHF) SCF procedure is achieved,
one additional closed-shell SCF iteration can be per-
formed yielding the closed shell Fock matrix. In
analogy, the code for the Fock matrix derivative can
be modified to compute derivatives of the h′ matrix
elements.

The wavefunctions ψi of the individual states of
the one-excess electron are then obtained as eigen-
functions of ĥ′ and can be expressed as

ψi =
M∑

j = o

Djiϕj (i = o, . . . , M) (A–4)

where D is an unitary matrix which diagonalizes h′

h′D = DE, E ≡ diag(εi). (A–5)

The eigenvalues εi are the energies of the one-excess
electron, and their differences correspond to tran-
sition energies. Therefore, the total energy of an
excited state has the following form:

Ei = ESCF + εi − εo, (A–6)

where εo is the ground state energy of the one-excess
electron. Note that despite the fact that the energy
difference εi−εo might resemble a simple Koopmans
theorem, the energy levels of the excess electron εi

are (with the exception of εo) not equal to the SCF
MO energy levels. They correspond to solution of
excited states of the one-excess electron, which feels
the constant field of the remaining electrons, being
“frozen” in the ground state.

The eigenvectors Dji are used to obtain the transi-
tion density matrix γh,l( jk) between hth and lth states

γh,l( j, k) = D∗
jhDk�, (A–7)

from which transition moments and, subsequently,
the oscillator strengths are computed. The total
computational cost for the calculation of the ab-
sorption spectrum involving the transition energies
and oscillator strengths amounts to the ROHF cal-
culation, the single closed-shell iteration, and a
few matrix multiplications needed for the calcula-
tion of transition moments. A comparison between
the, spectra of Na2F and Na4F3 obtained from the
MRCI [27, 28] method correlating all electrons and
those obtained from the “frozen ionic bonds” ap-
proximation is given in Table I, which confirms the
accuracy of the latter.

For the calculation of the gradient of the total en-
ergy given by Eq. (A–6), in addition to the gradient
of the ROHF SCF energy, the derivatives of the ex-
cess electron energies ∇Rεi are needed. Using the
definition of the orbital energies εi

εi = 〈ψih′ψi〉 (A–8)

=
∑

j,k

(D†)ijh′
jkDki (A–9)

one obtains

∇Rεi =
∑

jk

[
(∇RD†)ijh′

jkDki + (D†)ijh′
jk∇R Dki

+ (D†)ij(∇Rh′
jk)Dki

]
(A–10)

=
∑

j

εi
[
(∇RD†)ijDji + (D†)ij∇R Dji+

]

+
∑

jk

(D†)ij(∇Rh′
jk)Dki. (A–11)

Since the term in brackets corresponds to a deriva-
tive of the normalization condition∑

jk

(D†)ijDjk = δik, (A–12)

it remains only second term

∇Rεi =
∑

jk

(D†)ij(∇Rh′
jk)Dki, (A–13)

which requires the calculation of derivatives of
the effective one-excess electron Hamiltonian ∇R h′

jk.
They are identical to the derivatives of the closed
shell Fock-matrix F obtained from the cation with
the converged orbitals of the neutral system. The
gradient

∇Rh′
ij = ∇R hij +

∑
c

[
2∇R(ij|cc) − ∇R(ic|cj)

]
(A–14)

is therefore reduced to known expressions (cf. [32]).

∇R h′
ij = h′R

ij +
∑

k

(
UR

kih
′
kj + UR

kjh
′
ik

)

+
∑

k

∑
l

UR
klAij,kl (A–15)

h′R
ij = hR

ij +
∑

k

{
2(ij|kk)R − (ik|jk)R

}
(A–16)

Aij,kl = 4(ij|kl) − (ik|jl) − (il|jk). (A–17)

In the above equations, the summations over k, l in-
dices run from 1 to M, while i, j indices are confined
to o, . . . , M. The quantities UR

kl in Eq. (A–15) describe
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the influence of geometry changes on the SCF eigen-
vectors Cαi which are defined as

∇R Cαi =
M∑

j = 1

CαjUR
ji (A–18)

and are obtained as solutions of the extended
general restricted open-shell coupled perturbed
Hartree–Fock equations (CPHF) which are part of
program packages for computation of analytic sec-
ond derivatives of the ROHF energy [32]. Notice
that the “extended” CPHF equations are needed
in order to obtain the UR

ki quantities where the k, i
indices may correspond both to occupied or to vir-
tual orbitals, which are not necessary for analytic
second derivatives of the ROHF energy. The ap-
propriate computational procedure is described in
Refs. [35, 36]. The quantities hR

ij , (ij|kk)R , (ik|jk)R in
Eq. (A–16) represent derivatives of one- and two-
electron integrals in the AO basis, transformed into
the MO basis (not including derivatives of the SCF
eigenvectors)

hR
ij =

AO∑
µν

CµiCνj∇Rhµν (A–19)

(ij|kl)R =
AO∑
µνρσ

CµiCνjCρkCσ l∇R (µν|ρσ ). (A–20)

To summarize, the derivative of the effective one-
excess electron Hamiltonian can be built just like the
derivative of the Fock matrix in CPHF for a closed
shell system (of the cation), but using the SCF eigen-
vectors Cαj and the UR

ji coefficients obtained from an
ROHF and extended CPHF calculation of the open
shell neutral system.

Once the analytic gradient of the one-excess elec-
tron energy is known, the velocity Verlet time prop-
agation algorithm can be employed in order to solve
equations of motion

MR̈ = −∇RE(R(t)) (A–21)

and to compute the classical trajectories of the nuclei
in the adiabatic electronic excited states.

The calculation of excited state energies and of
gradients based on the “frozen ionic bonds” ap-
proximation is, from a computational point of view,
considerably less demanding than in the frame-
work of other approaches such as RPA, CASSCF, or
CI by achieving the same accuracy. Therefore, our
approach allows us to carry out adiabatic molec-
ular dynamics in the excited state, calculating the
forces “on the fly” with low computational demand

which is mandatory for constructing of an ensem-
ble of trajectories. Moreover, the fast computation
of the nonadiabatic couplings “on the fly” also al-
lows us to carry out nonadiabatic MD, as will be
shown in Appendix B. Of course, the application
is limited to systems for which the “frozen ionic
bonds” approximation offers an adequate descrip-
tion.

Appendix B: Nonadiabatic Couplings
in the Framework of “Frozen Ionic
Bonds” Approximation

The consideration of nonadiabatic effects in the
molecular dynamics requires the calculation of
the first-order nonadiabatic couplings (∇R)ij ≡
〈ψi|∇R |ψj〉.

The nonadiabatic couplings employing the ex-
pansion of the ψj functions into the MO basis ϕi

(cf. Appendix A) contain two terms:

〈ψj|∇R |ψi〉 =
∑

k

D∗
kj∇R Dki +

∑
kl

D∗
ljDki〈ϕl|∇R |ϕk〉

(B–1)
and we wish to outline the derivation of each of
them.

The first right-hand side term involves the deriv-
atives of the eigenvectors of the effective one-excess
electron Hamiltonian matrix ∇R Dki, which can be
obtained from the derivative of the effective one-
excess electron Hamiltonian ∇R h′

ij (cf. Appendix A).
For this purpose, we introduce the vector E for
the diagonal matrix elements of eigenvalues εi of the
Hamiltonian h′, and D is the unitary matrix of the
corresponding eigenvectors:

h′D = DE (B–2)
D†D = 1. (B–3)

The derivative of the eigenvalues can be obtained
by multiplying Eq. (B–2) by D† from the left and
performing the derivative (taking into account that
the derivative of the normalization condition (B–3)
is zero):

(∇RE)ii = (D†∇Rh′D)ii. (B–4)

Notice that Eq. (B–4) holds only for the diagonal ele-
ments of the matrix E, while an analogous equation
for the whole matrix ∇R E is not valid.

In order to obtain the derivative of eigenvectors
∇RD, we search for the solution in the following
form:

∇R D = DX. (B–5)
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Since D is unitary, X is uniquely defined and the
derivative of the normalization condition (B–3) im-
plies the antihermiticity of X:

X† + X = 0. (B–6)

Performing the derivative of Eq. (B–2)

(∇Rh′)D + h′(∇RD) = (∇R D)E + D∇RE, (B–7)

and multiplying this equation by D† from the left
using Eqs. (B–2) and (B–5), one obtains

XE − EX = D†(∇Rh′)D − ∇RE ≡ Y. (B–8)

The right-hand side matrix is labeled by Y; it can
be easily verified that it is Hermitian, and due to
Eq. (B–4) it has zeros on its diagonal. Since the ma-
trix E is diagonal, Eq. (B–8) can be explicitly solved
for the matrix elements of X

Xij = Yij

Ejj − Eii
(i 	= j); Xii = 0. (B–9)

Notice that this equation is in agreement with the
requirement of the antihermiticity of X, Eq. (B–6).
Furthermore, if the eigenvalues of the h′ matrix are
degenerate, the denominator in Eq. (B–9) becomes
zero, which is in agreement with the fact that eigen-
vectors corresponding to the same eigenvalue are
not uniquely defined. The explicit expression for
the matrix elements of X, Eq. (B–9), together with
Eq. (B–5), yield the needed derivative of eigenvec-
tors ∇RD.

For the second right-hand side term of Eq. (B–1),
we use the expansion from the MO basis into the
AO one

ϕi =
∑
α

Cαiχα (B–10)

and obtain

〈ϕj|∇R |ϕi〉 =
∑
αβ

C∗
βjSβα∇R Cαi +

∑
αβ

C∗
βjCαi〈χβ |∇R |χα〉

(B–11)

where Sβα is the overlap matrix, and the derivatives
of the SCF eigenvectors ∇R Cαi can be obtained from
the extended coupled perturbed Hartree–Fock coef-
ficients UR which have already been outlined for the
adiabatic MD in Appendix A using Refs. [32 – 36].
The first right-hand side term in Eq. (B–11) thus sim-
plifies in the matrix notation to

C†S∇RC = C†SCUR = UR , (B–12)

where the orthonormality of the SCF eigenvectors
C†SC = 1 has been used.

The evaluation of the second right-hand side
term in Eq. (B–11) requires the integrals in the con-
tracted Cartesian Gaussian AO basis:

χα =
∑
γ

Kγαφγ . (B–13)

Since the contraction coefficients Kγα are constant,
the transformation to primitive basis φγ is simple:

〈χβ |∇R |χα〉 =
∑
γ δ

KγαKδβ〈φδ|∇R |φγ 〉. (B–14)

The integrals in the primitive AO basis 〈φδ|∇R |φγ 〉
vanish, unless the derivative is taken with respect
to nuclear coordinate of the atom, at which the φγ
function is centered. Introducing the shorthand no-
tation

S(δ; iγ , jγ , kγ , ζγ )

=
∫

(x − Xδ)iδ (y − Yδ)jδ (z − Zδ)kδe−ζδ |r−Rδ |2

× (x − Xγ )iγ (y − Yγ )jγ (z − Zγ )kγ

× e−ζγ |r−Rγ |2 dx dy dz, (B–15)

the nonvanishing x component can be written as:〈
φδ

∣∣∣∣ ∂

∂Xγ

∣∣∣∣φγ
〉

= −iγS(δ; iγ − 1, jγ , kγ , ζγ )

+ 2ζγS(δ; iγ + 1, jγ , kγ , ζγ ) (B–16)

and analogous equations for the y and z components
hold. The AO derivative coupling integrals are thus
transformed to overlap integrals over Cartesian
Gaussian functions with different angular momen-
tum, which are well known (see, e.g., Ref. [32]).

In summary, the implementation of simple an-
alytic expressions derived for nonadiabatc cou-
plings in the framework of the “frozen ionic
bonds” approximation allows us to carry out
nonadiabatic dynamics at low computational de-
mand.
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