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Abstract 22 

Light backscattering imaging is an advanced technology applicable as a non-23 

destructive technique for monitoring quality of horticultural products. Because of 24 

novelty of this technique, developed algorithms for processing this type of images are 25 

in preliminary stage. Texture is one of the most important characteristics of images 26 

and has been used widely in agro-food industry for assessing qualitative properties of 27 

different types of products. The present study investigates the feasibility of texture-28 

based features to develop better models for predicting mechanical properties (fruit 29 

flesh firmness or elastic modulus) of horticultural products. Images of apple, plum, 30 

tomato, and mushroom were acquired using a backscattering imaging setup capturing 31 

660 nm. After segmenting the backscattering regions of images by variable 32 

thresholding technique, they were subjected to texture analyses and space domain 33 

techniques in order to extract a number of features. Adaptive neuro-fuzzy inference 34 

system models were developed for firmness or elasticity prediction using individual 35 

types of feature sets and their combinations as input for prediction model applicable in 36 

real-time applications. Results showed that fusion of the selected feature sets of image 37 

texture analysis and space domain techniques provide an effective means for 38 

improving the performance of backscattering imaging systems in predicting 39 

mechanical properties of horticultural products. The maximum value of correlation 40 

coefficient in the prediction stage was achieved as 0.887, 0.790, 0.919, and 0.896 for 41 

apple, plum, tomato, and mushroom products, respectively. 42 

Keywords: ANFIS, backscattering, feature fusion, quality evaluation, texture 43 

analysis.  44 

 45 
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1. Introduction 46 

Fruit flesh firmness and elastic modulus are two main mechanical parameters in 47 

determining maturity and harvest time of horticultural products, and they are also key 48 

parameters in evaluation and grading postharvest quality of fruit and some vegetables. 49 

Mechanical properties of fresh produce change during growth and storage processes. 50 

The conventional standard methods, like Magness-Taylor compression test and 51 

Youngs’ modulus of elasticity, are not suitable for real-time applications, such as 52 

grading and sorting machines, because the samples should be per definition or 53 

potentially damaged during the test. Technical advances over the last few decades 54 

considering spectrophotometers, multi- and hyperspectral systems as well as computer 55 

vision systems have led to the development of non-destructive devices capable of 56 

measuring internal qualitative parameters of horticultural products. Garcia-Ramos et 57 

al. (2005) reviewed the non-destructive techniques developed to measure mechanical 58 

properties of agricultural products. They concluded that optical techniques have the 59 

advantage over the others, since they can estimate several internal variables, such as 60 

sugar content, acid content, firmness, and elasticity, with a single sensor. However, it 61 

has been shown that the application of spectroscopic analyses is not capable to build 62 

robust calibrations for predicting the mechanical properties of the produce, while the 63 

composition considering pigments, soluble solids content, dry matter, and moisture 64 

content as well as the detection of internal physiological disorders appeared feasible 65 

in several products (Zude, 2009). 66 

As an optical technique, computer vision-based quality evaluation systems are being 67 

used increasingly in the agro-food industry because of their rapid, non-contact, and 68 

non-destructive manner as well as availability of inexpensive camera systems. Driven 69 
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by considerable improvements in imaging hardware and rapid progression in image 70 

processing techniques, computer vision has established its applications for the internal 71 

surveillance of both fresh and processed agro-food materials. In combination with 72 

multi- or hyperspectral imaging more specific variation of the produce, such as the 73 

detection of distribution of water core and internal browning has been shown. 74 

Horticultural products, as biological materials, are supposed to be turbid and transmit 75 

the light through the tissue depending on the wavelengths (Mireei, 2010). When light 76 

source impinges to a biological tissue, its internal contents reflect most of the passing 77 

light as scattering photons towards the exterior tissue surface. Due to physiochemical 78 

properties of the tissue, photons are scattered at different angles, leading to their 79 

stochastic interaction with the internal components of biological tissue like joint 80 

surfaces of the cell wall, chloroplasts, mitochondria, etc (Nicolai et al., 2007). 81 

Because of this interaction, backscattering photons carry information related to the 82 

morphology and structures of the tissue, such as mechanical properties additionally to 83 

the information on absorbing molecules. Few work groups showed that it is possible 84 

to record backscattered photons by a camera equipped with an imaging sensor 85 

sensitive in the range of visible and short wave near infrared (SWNIR) of 86 

electromagnetic spectrum. The technique focuses on the processing of these types of 87 

images and extracting knowledge from them has been named as backscattering 88 

imaging. Based on the light source and imaging unit used, the technique is divided 89 

into three categories: hyperspectral backscattering imaging (HBI), mutispectral 90 

backscattering imaging (MBI), and laser light (monochromatic) backscattering 91 

imaging (LLBI). The acquired images by these categories are similar, when we speak 92 

about a certain wavelength (Mollazade et al., 2012a). 93 
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In most researches done to date, light intensity-based features in the space domain 94 

were used to establish calibration models between the backscattering images and 95 

reference physical properties. Qing et al. (2007) used the simplest type of features, i.e. 96 

the area of backscattering region that is equal to the total number of pixels in the 97 

segmented backscattering image, to predict firmness of apple. Another simple 98 

technique is to use the mean intensity value (Qing et al., 2008) or some statistical 99 

characteristics of pixels remained after segmenting the backscattering region (Noh 100 

and Lu 2007). Lu (2004) introduced a method, known as radial averaging, in which 101 

scattering region of photons is divided into several circular rings and then average 102 

value of all pixels within each ring is recorded as the features of image. Using the 103 

radial averaging approach, researchers applied different semi-Gaussian mathematical 104 

functions, like exponential, Lorentzian, and Gompertz, to fit one-dimensional (1D) 105 

scattering profiles as a function of distance. The values of parameters of the fitted 106 

functions were then used as the features of images (Peng and Lu 2005, 2006, 2007). 107 

Extracting the absorption and reduced scattering coefficients of 1D profile from the 108 

Farrell’s diffusion theory model is another method used to predict firmness of apple 109 

(Qin and Lu, 2006). 110 

Although the above mentioned techniques have shown relatively fair utility in 111 

describing the backscattering features, their relative performance in predicting 112 

mechanical properties of horticultural products is not quite clear because they were 113 

tested in separate studies, where the samples used were different and the experimental 114 

setups were not the same. Hence, direct comparison of these feature extraction 115 

techniques is required in order to investigate which method is the most suitable for 116 

predicting mechanical properties of horticultural products. Furthermore, previous 117 

techniques are based on some simple statistical features of pixel brightness or analysis 118 
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of 1D scattering profiles, and they did not investigate the pixel intensity pattern from 119 

the overall two-dimensional (2D) scattering images acquired at a specific wavelength. 120 

Use of 2D processing algorithms could present a chance to improve the performance 121 

of backscattering imaging technique in predicting firmness and elasticity of 122 

horticultural produce. Texture, as a 2D processing approach, is an important image 123 

feature that corresponds to both brightness value and pixel locations. Many 124 

researchers reported the feasibility of texture-based features in the food industry for 125 

quality evaluation and inspection (Jackman and Sun, 2012). The distribution pattern 126 

of backscattering photons is unique for each backscattering image, since the spatial 127 

pattern in an image reflects the physiochemical properties of a product. Hence, by 128 

utilizing the texture-based features, researchers may improve the accuracy 129 

performance and take feasibility of backscattering systems in real-time applications. 130 

Therefore, the overall objective of this research was to use LLBI technique for 131 

predicting firmness and elastic modulus (elasticity) of a wide range of horticultural 132 

products. The specific objectives were to: 133 

 Analysis the capability of different texture processing techniques for 134 

firmness/elasticity prediction. 135 

 Compare the texture-based feature extraction techniques with those reported in 136 

the previous researches (space domain techniques). 137 

 Establish intelligent models for firmness/elasticity prediction by adaptive 138 

neuro-fuzzy inference system (ANFIS). 139 

 Suggesting the best feature set for real-time applications. 140 

 141 
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2. Materials and methods 142 

  143 

2.1. Data set 144 

Mechanical properties obtained from two stony fruits (apple and plum), a non-stony 145 

fruit (tomato), and a vegetable (mushroom) were used as data set. Harvested manually 146 

from the garden and greenhouse, samples were visually inspected for appearance and 147 

surface defects. Only those samples free of visual defects (such as scars, cuts, shrivel, 148 

etc.) were selected for the experiments. To generate samples with variations in their 149 

properties, they were separated into several groups and stored at the standard 150 

temperature and relative humidity conditions. Groups of samples were withdrawn 151 

from the storage chamber two hours before the experiments at regular intervals of 15, 152 

3, 7, and 3 days for apple, plum, tomato, and mushroom, respectively. After 153 

acquisition of backscattering images, samples were subjected to compression test. 154 

Firmness was measured as the mechanical signature of stony fruits, while for tomato 155 

and mushroom samples, elasticity was calculated (Mohsenin, 1986). Table 1 156 

summarizes some information related to the samples, measurement conditions, and 157 

mechanical tests. 158 

Table 1.  159 

2.2. Backscattering image acquisition 160 

Backscattering images were acquired using an in-house built LLBI system (Baranyai 161 

and Zude, 2009). The system mainly consisted of a wide dynamic range monochrome 162 

CCD camera (JAI A50IR CCIR, JAI, Denmark) with a zoom lens (model H6Z810, 163 

PENTAX Europe GmbH, Germany), a solid-state laser diode emitting at 660 nm as 164 

the light source (LPM series, Newport Corp., USA), a laser driver, a sample holder 165 

unit, video converter (VRM AVC-1, Stemmer Imaging GmbH, Germany), and a 166 
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computer equipped with an in-house developed software to acquire the backscattering 167 

images. The backscattering images with the spatial resolution of 720×576 pixels were 168 

acquired in a dark room and laser diode spot of 1 mm diameter provided an acceptable 169 

signal to noise ratio. The camera was placed perpendicular to the sample holder while 170 

the incident angle of the laser beam was adjusted to 15º. 171 

 172 

2.3. Image processing 173 

Image processing was carried out using MATLAB R2009a and its image processing 174 

toolbox (The Mathworks, Inc., Natick, MA, USA). 175 

 176 

2.3.1. Segmentation 177 

Segmentation plays a key role in processing of backscattering images. If it does not 178 

perform well, useful information may be omitted. Segmentation operation consists of 179 

segregating the region of interest (ROI), backscattering photons minus those saturate 180 

the CCD of camera, from the background. This operation was carried out in two steps 181 

as following: 182 

1. Removing saturated pixels: Since saturated region in images consists of photons 183 

that directly return to the camera’s sensor, the light intensity of pixels in this region is 184 

close to its maximum value, i.e. 255. By a trial and error procedure, it was found that 185 

saturated regions are segmented successfully by the static threshold value of 252. 186 

2. Segmenting regions consists of backscattering photons from the background: 187 

Variable thresholding by local statistics is a powerful segmentation technique when 188 

background illumination is uneven. At each pixel of image, the threshold value is 189 

defined based on some statistical features extracted from the neighborhood pixels 190 

(Gonzalez and Woods, 2004). In the current study, threshold values were selected 191 
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based on the standard deviation and the average of a 3×3 neighborhood for each pixel. 192 

These features were very useful in setting local thresholds, because they are contrast 193 

and average of local intensity. 194 

 195 

2.3.2. Texture analysis 196 

A wide variety of techniques have been proposed for describing image texture (Zheng 197 

et al., 2006). Approaches to texture analysis are usually classified into four categories: 198 

statistical, structural, transform-based, and model-based. Statistical techniques 199 

represent the texture indirectly by non-deterministic properties that govern the 200 

distribution and relationship between the grey levels of an image. Structural 201 

approaches represent texture through some structural primitives constructed from grey 202 

values of pixels. In the transform methods of texture analysis, an image is represented 203 

in a space whose co-ordinate system has an interpretation that is closely related to the 204 

characteristics of a texture (such as frequency or size). Model-based texture analysis 205 

attempts to interpret an image texture by use of, respectively, generative image model 206 

and stochastic model. The parameters of the model are calculated, based on the 207 

relationship of the grey values between a pixel and its neighboring pixels, and then 208 

these are used for image analysis. 209 

To process backscattering images, texture-based features from four statistical 210 

techniques (first order statistics of image histogram (FOSH), grey level co-occurrence 211 

matrix(GLCM), grey level run length matrix (GLRLM), and local binary pattern 212 

(LBP)), three transform-based techniques (wavelet transform, Gabor transform, and 213 

Tamura), and two model-based techniques (fractal model and simultaneous 214 

autoregressive model), were considered. Structural techniques were not considered in 215 

this research since the structural primitives used in these methods can only describe 216 
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very regular textures (Bharati et. al.,2004). Furthermore, structural techniques are 217 

rarely used in the food industry to describe texture characteristics (Zheng et al., 2006). 218 

A brief description of these techniques is provided in the following subsections. 219 

 220 

2.3.2.1. First order statistics of image histogram 221 

First order statistics of image histogram are considered as the most basic feature 222 

extraction method of image texture. They act based on the probability of occurring 223 

pixel intensity values in the image. They depend only on individual pixel values and 224 

not on interaction of neighboring pixel values. First the histogram of grey level 225 

backscattering images was extracted. The histograms were then normalized according 226 

to the following formula: 227 

                                                                                                                (1) 228 

where H(zi) is the image histogram, p(zi) is the normalized histogram, and NI is the 229 

total number of arrays in the image matrix. Using the normalized histogram and 230 

relations based on the occurrence of grey levels, eight statistical features were 231 

extracted from each backscattering image (Bevk and Kononenko, 2002). The list of 232 

features is presented in Table 2. 233 

 234 

2.3.2.2. Grey level co-occurrence matrix 235 

A GLCM is a matrix in which grey level pixels are considered in pairs with a relative 236 

distance d and orientation θ among them. The entry Gdθ (i, j) of this matrix is the 237 

number of occurrences of a pair of grey levels, i and j, for the specified displacement. 238 

The scattering images were analyzed using the distance d=1 pixel with angles θ = 0, 239 

45, 90, and 135º as suggested by Haralick (1979). After calculating GLCMs, they 240 

were normalized so that sum of arrays in the normalized matrix is equal to 1. Ten 241 
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features were then extracted from each normalized GLCM according to Table 2 242 

(Haralick et al., 1973). Thus, a total of 40 features (4 orientations × 10 statistical 243 

features) were extracted from each image.  244 

 245 

2.3.2.3. Grey level run length matrix 246 

Run length technique records the coarseness of a texture in specified directions by 247 

encoding textural information based on the number each grey level appearing in the 248 

image by itself.  A run is defined as a string of consecutive pixels which have the 249 

same grey level intensity along a specific linear orientation. Fine textures tend to 250 

contain more short runs with similar grey level intensities, while coarse textures have 251 

more long runs with significantly different grey level intensities. A GLRLM is a 252 

matrix in which each element r(i,j) determines the total number of occurrence of run 253 

lengths j in the grey level i in specified direction θ. Run length matrices at four 254 

directions θ = 0, 45, 90, and 135º were extracted for each backscattering image. Once 255 

the GLRLMs were calculated along each direction, 11 texture descriptors, as 256 

suggested by Tang (1998), were calculated to capture the texture properties and 257 

differentiate among different textures (Table 2). For each image, a total of 44 features 258 

(11 GLRLM texture descriptors × 4 directions) were obtained. 259 

 260 

2.3.2.4. Local binary pattern 261 

The LBP texture analysis operator is defined as a grey-scale invariant texture 262 

measure, derived from a general definition of texture in a local neighborhood. For 263 

each pixel in an image, a neighborhood of the image (usually a 3 × 3 window) is 264 

considered and the intensity value of neighboring pixels is compared with that of the 265 

central pixel. If the intensity value of neighboring pixels is greater or equal to the 266 
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central pixel value, they are replaced with ones. Otherwise, their value is zero. 267 

Finally, central pixel is replaced with the binary weighted sum of neighboring pixels 268 

and the neighboring window is transferred to the next pixel. The output of LBP 269 

operator is a P-bit binary number (P is the number of neighboring pixels), which can 270 

take 2
P
 different values. Furthermore, LBP is completely dependent to indexing of 271 

pixels contained in the neighborhood. Thus, in order to assign a unique value to each 272 

private binary pattern, LBP matrices were robust to rotation by clockwise rotation of 273 

the obtained binary number and selecting the maximum possible value (Ojala et al., 274 

2002). Finally, 8 statistical features were extracted from the normalized histogram of 275 

GLRLM of each backscattering image. 276 

 277 

2.3.2.5. Wavelet transform 278 

Wavelet transform is a useful tool for analyzing the texture of agricultural materials. 279 

A discrete wavelet transform (DWT) decomposes an image onto multiple wavelet 280 

components using a filter bank as suggested by Mallat (1989). It provides four sets of 281 

coefficient at each level of decomposition. Rows of the input image are first passed 282 

through the low and high pass filters, followed by down-sampling along the rows by a 283 

factor of 2. The columns of resulting images from both filters are sent through low 284 

and high pass filters followed by down sampling along the columns to obtain four sets 285 

of coefficients; namely, approximation, horizontal, vertical, and diagonal details 286 

(Choudhary et al., 2008). Backscattering images were subjected to six levels of 287 

wavelet decomposition using a fourth-order Daubechies mother wavelet (Db4), which 288 

is the most popular mother wavelet family for image texture analysis. At each level of 289 

decomposition, approximation coefficients and wavelet detail coefficients were 290 

obtained for horizontal, vertical, and diagonal orientations. To determine optimum 291 
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level of decomposition, backscattering images at each level of decomposition were 292 

compared to the original images. As is shown in the Figure 1, an increase in the levels 293 

of decomposition leads to increase the amount of down-sampling, resulting in lower 294 

resolutions at successive levels. So, the wavelet coefficients from first to the fourth 295 

level of decomposition were considered to be used in feature extraction stage. Four 296 

statistical descriptors including mean, standard deviation, energy, and entropy were 297 

extracted from each level of decomposition. A total of 64 features (4 statistical 298 

descriptors × 4 wavelet coefficients × 4 decomposition levels) were obtained from the 299 

DWT of each backscattering image. 300 

 301 

2.3.2.6. Gabor transform 302 

Gabor transform is one of the most effective and most popular filter-based approaches 303 

to extract texture features of an image. Gabor filter is obtained by multiplying a 304 

Gaussian function in a directional sine function. Therefore, this filter generates 305 

powerful responses at locations with specific local direction and frequency (Zhu et al., 306 

2007). Gabor wavelet is a kind of wavelet transform function in which its mother 307 

wavelet is a Gabor filter. After applying the Gabor wavelet on backscattering images, 308 

a new matrix with M×N dimension was obtained. Each dimension represents a 309 

frequency in a specific direction. Since each element of the final image, after applying 310 

the Gabor transform, is a complex number with both real and imaginary parts, the 311 

matrix magnitude was used for feature extraction (Figure 2). Mean, standard 312 

deviation, energy, and entropy were used as statistical descriptors in order to build the 313 

feature vector containing the texture descriptors of backscattering images by Gabor 314 

filter. These statistical operators were then applied on the magnitude of matrices 315 

found in the previous section for each backscattering image in four frequencies 316 
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(0.1768, 0.25, 0.3536, and 0.5 Hz) and four directions (0, /4, /2, and 3 /4 radian). 317 

The size of feature vector based on the Gabor transform was 64 (4 statistical 318 

descriptors × 4 frequencies × 4 directions). 319 

 320 

2.3.2.7. Tamura 321 

Tamura features are designed based on psychological studies on human visual 322 

perception of objects texture (Tamura et al., 1978). These features include coarseness, 323 

contrast, directionality, line-likeness, regularity, and roughness. Since the last three 324 

features are derived from the first three ones, only coarseness, contrast, and 325 

directionality just were extracted from each backscattering image. 326 

 327 

An image contains textures at several scales; coarseness aims to identify the largest 328 

size at which a texture exists, even though a smaller micro texture may exist. To 329 

compute the coarseness, using a 2
k
 ×2

k 
(k=0,1,…,5) window, first a moving average 330 

filter Ak(x,y) was applied on each pixel: 331 

                                                                        (2) 332 

where g(i,j) is the intensity value at pixel (i,j). 333 

Then at each pixel differences between pairs of Ak(x,y) corresponding to non-334 

overlapping neighborhoods on opposite sides of the point in both horizontal and 335 

vertical orientations were calculated: 336 

                                                    (3) 337 

                                                   (4) 338 

In order to determine the filter window size for each pixel which gives the highest 339 

output value, the value of k was taken in which E is maximized in either direction. 340 

The coarseness was then computed by the following formula: 341 
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                                                                                      (5) 342 

Contrast aims to capture the dynamic range of grey levels in an image, together with 343 

the polarization of the distribution of black and white. The first is measured using the 344 

standard deviation of grey levels ( ) and the second from the kurtosis α4. The contrast 345 

measure was therefore defined as: 346 

                                                                                                                   (6) 347 

Directionality is a measure of the orientation of the image grey values. To compute 348 

the directionality, initially two simple masks were used first to detect edges in 349 

backscattering images. At each pixel the angle and magnitude were calculated. A 350 

histogram of edge probabilities was then built up by counting all points with 351 

magnitude greater than a threshold and quantizing by the edge angle. The histogram 352 

reflects the degree of directionality. Finally, the directionality was then computed 353 

from the sharpness of the peaks of histogram using their second moments. 354 

 355 

2.3.2.8. Fractal model 356 

In the image analysis of agro-food materials, fractal dimension can be used to 357 

estimate and quantify the complexity of the shape or texture of images. The fractal 358 

dimension gives a measure of the roughness of an image. Intuitively, the larger the 359 

fractal dimension, the rougher the texture is (Zheng et al., 2006). There are a number 360 

of methods proposed for defining the fractal dimensions, where the most common one 361 

is the Hausdorff’s dimension (D0): 362 

                                                                                                    (7) 363 

where N(ε) is the number of hypercubes of Euclidean dimension E, and length ε that 364 

fill the object. In this research, a new developed algorithm known as segmentation-365 
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based fractal texture analysis (SFTA) was used to extract the Hausdorff’s fractal 366 

dimension of backscattering images (Costa et al., 2012). The SFTA algorithm was 367 

implemented in two steps. In the first step, a set of threshold values was computed 368 

using multi-level Otsu algorithm and distribution of grey levels in the input images. 369 

The number of optimum thresholds was set to 8, as suggested by Costa et al. (2012). 370 

After that, the grey level backscattering images were disintegrated into a set of binary 371 

images by selecting pairs of thresholds from the threshold set and applying the two-372 

threshold binary decomposition (TTBD) algorithm. The number of resulting binary 373 

images was 16. Figure 3 illustrates the decomposition of a backscattering image taken 374 

from a tomato sample at 660 nm using the TTBD algorithm. The threshold set for this 375 

sample was as T=[0, 0.0039, 0.0391, 0.1367, 0.2188, 0.3477, 0.4961, 0.6914]. In the 376 

second step of SFTA, Hausdorff’s dimension was computed from the borders of each 377 

binary image by applying the box counting algorithm (BCA). In the BCA, binary 378 

images were divided into a grid composed of squares of size ε×ε. The number (N(ε)) 379 

of squares of size ε×ε that contains at least one pixel of ROI was counted. A log N(ε) 380 

versus log ε
-1

 curve was drawn for each binary image by varying the value ε. The 381 

curve was approximated by a straight line using the least squares fitting approach. 382 

Then, the slop of this line was recorded as the Hausdorff’s dimension of each binary 383 

image. The size of fractal feature vector for each backscattering image was 16 (Figure 384 

3). 385 

 386 

2.3.2.9. Autoregressive model 387 

Simultaneous autoregressive (SAR), as a model-based texture analysis technique, has 388 

found many applications in image segmentation (Sukissian, 1994, Sukissian et al., 389 

1997). This model acts based on the spatial relationship between the pixels of an 390 
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image. It assumes that intensity of pixels is the weighted sum of intensity from the 391 

neighboring pixels. In fact a SAR models the relationship between a pixel and its 392 

neighboring pixels using the following linear combination (Jain, 1989): 393 

                                                                            (8) 394 

where f(s), f(q), μ, ε(q), N, and θ(q) are image intensity at position s, image intensity at 395 

position q, bias value, noise value, number of neighboring pixels, and model 396 

parameters, respectively. In the current research, the bias value was adjusted to the 397 

average of light intensity of entire image, which was formerly normalized between 0 398 

and 1. A Gaussian random variable with mean zero and variance σ
2
 was used to adjust 399 

the noise value. The number of neighboring pixels considered was equal to four 400 

according to the pattern shown in Figure 4. For each backscattering image, a total of 401 

five SAR model features, including values of θ in four neighboring pixels together 402 

with the minimum prediction error variance, were extracted.  403 

Table 2 404 

Figure 1 405 

Figure 2  406 

Figure 3 407 

Figure 4 408 

 409 

2.3.3. Space domain analysis 410 

In order to assess the effectiveness of texture analysis techniques, backscattering 411 

images were subjected to several space domain techniques proposed by researchers in 412 

literature. These techniques as described in the ―Introduction‖ section, were:  413 

1. Total number of pixels in the segmented backscattering region of image,  414 
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2. Statistical features of segmented backscattering region of image (mean, min, 415 

max, sum, standard deviation, and variance),  416 

3. Radial averaging technique (25 rings with thickness of five pixels),  417 

4. Modified Lorentzian function parameters (four parameters: a, b, c, and d),  418 

5. Modified Gompertz function parameters (four parameters: α, β, ε, and δ), and  419 

6. Farrell’s diffusion theory model parameters (two parameters: absorption (µa) 420 

and reduced scattering coefficients (μs')).  421 

Readers can refer to the references provided in the ―Introduction‖ section to get more 422 

information about these techniques.  423 

 424 

2.4. Adaptive neuro-fuzzy inference system (ANFIS) 425 

A neuro-fuzzy system integrates the advantages of artificial neural networks (ANNs) 426 

with rule-based fuzzy inference systems (FIS). It covers the lacks of these techniques 427 

when they are used individually. ANNs are efficient structures capable of learning 428 

from examples, while fuzzy systems are suitable for uncertain knowledge 429 

representation. These hybrid technique brings learning capability of ANN to FIS. 430 

During the learning process, a number of desired input–output data pairs are used, and 431 

then parameters associated with the membership functions and rules of a Takagi-432 

Sugeno type FIS are tuned by ANN so as to map the inputs to outputs. The 433 

computation and adjustment of these parameters is facilitated by a gradient vector, 434 

which provides a measure of how well the FIS is modeling the input/output data for a 435 

given set of parameters. From the topology point of view, ANFIS is an 436 

implementation of a representative FIS using a feed forward neural network-like 437 

structure (Jang, 1993). 438 
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The fuzzy logic toolbox of MATLAB R2009a was used to create ANFIS models (The 439 

Mathworks, Inc., Natick, MA, USA). The inputs to the models were the normalized 440 

feature sets (in the range 0 to 1) extracted from backscattering images, while the 441 

output was the firmness or elasticity of samples. ANFIS is susceptible to the curse of 442 

dimensionality when number of inputs exceeds three. The training time increases 443 

exponentially with respect to the number of fuzzy sets per input variable used. An 444 

effective procedure to reduce the dimension of the input vector is to use principal 445 

component analysis (PCA). The technique was outlined by authors previously (Omid 446 

et al., 2009 and 2010). Hence, the inputs were subjected to the PCA and only the first 447 

three principal components were fed to the ANFIS. The performance of ANFIS is 448 

highly dependent to its structure. Therefore, four significant adjustments were made in 449 

the structure of ANFIS models in order to find best one for predicting 450 

firmness/elasticity of horticultural produce. Settings include the number of 451 

membership functions (changed from 2 to 5 with step size of 1), types of input 452 

membership functions (triangular, trapezoidal, bell-shaped, Gaussian, and sigmoid), 453 

types of output membership function (constant and linear), and optimization methods 454 

(hybrid and back-propagation). Each ANFIS model with its specific setting was run 455 

20 times and the best was defined as the one with the best overall statistical accuracy 456 

measures. 457 

 458 

2.5. Statistical measures 459 

To ensure the models were not over-fitted and the prediction results truly represent the 460 

model performance, the samples were first divided into three separate parts randomly. 461 

The first part (or 60% of all samples) was used for training, 15% of all samples were 462 

used for cross-validation, and the remaining samples were used for independent test or 463 
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prediction. Calibration models for firmness and elasticity were developed using 464 

ANFIS from the training samples. Cross-validation was used to supervise the training 465 

process in order to prevent the over-training. Thereafter, the calibration models were 466 

used to predict the independent part of samples. The models were evaluated using root 467 

mean squares errors for cross validation (RMSECV) and prediction (RMSEP). 468 

                                                                                                (9) 469 

where  is the actual value, yi is the predicted value, and n is the number of samples 470 

in prediction or calibration stages. In addition, correlation coefficients for calibration 471 

(Rc) and prediction (Rp) were also calculated. Processing time is an important factor 472 

when we want to use a backscattering imaging system in real-time applications. For 473 

each feature extraction technique, the processing time was recorded to be used as an 474 

evaluation criterion. MATLAB codes were implemented and run in a laptop computer 475 

with this configuration: Core 2Duo CPU, 2.53 GHz, 4 GB RAM, Windows 7 OC 476 

configuration. 477 

 478 

3. Results and discussion 479 

3.1. Individual feature set models 480 

The statistical measures of individual texture-based feature models for predicting 481 

firmness/elasticity of apple, plum, tomato, and mushroom by ANFIS are presented in 482 

Table 3. The best firmness prediction of FOSH technique using ANFIS for apple was 483 

the highest (Rp=0.861) followed by the Tamura (Rp=0.846)), fractal (Rp=0.826)), and 484 

wavelet (Rp=0.825)). The highest prediction accuracies for plum, tomato, and 485 

mushroom were obtained by the SAR (Rp=0.757), Gabor (Rp=0.857), and Tamura 486 

(Rp=0.839), respectively, whereas, for the same, the wavelet (Rp=0.554), GLRLM 487 

(Rp=0.675), and SAR (Rp=0.717) produced the lowest prediction performance. 488 
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Comparing to the other texture analysis techniques, Tamura and fractal provided good 489 

results for all samples leading to select them as the best texture-based techniques for 490 

analysis of backscattering images because of their consistency in firmness/elasticity 491 

prediction performance. This reflects the fact that border of segmented regions along 492 

with distribution pattern of light intensity in backscattering images are closely related 493 

to the mechanical properties of horticultural products. On the other hand, LBP in all 494 

cases was one of four techniques showed the lowest correlation with the 495 

firmness/elasticity changes. The poor performance of LBP features can be attributed 496 

to the small changes of run length values in backscattering images when mechanical 497 

properties of products change. Comparing the results obtained for apple, plum, 498 

tomato, and mushroom show that Tamura, fractal, FOSH, and GLCM are the best 499 

texture analysis methods in overall for predicting firmness/elasticity of horticultural 500 

produces when they are used as an individual feature set. 501 

Regarding the space domain features (see Table 4), results showed that statistical, 502 

radial averaging, and Farrell’s features have the highest performance in predicting 503 

firmness/elasticity of apple, plum, tomato, and mushroom compared to the other 504 

techniques. However, for all products, the lowest prediction performance was 505 

recorded for the total number of pixels technique. Lorentizan and Gompertz 506 

techniques did not show the consistency in firmness/elasticity prediction so that they 507 

presented acceptable performance for tomato fruit, while for the plum and mushroom 508 

the accuracy of these techniques was considerably low. The reason for this is that the 509 

area of backscattering region for tomato fruit was bigger than that of mushroom and 510 

plum resulting in the better fitness of 1D backscattering profile by Lorentzian and 511 

Gomperzt functions. Comparing the results obtained in the Tables 3 and 4 512 

demonstrates texture analysis techniques provide better performance than that of 513 
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space domain techniques when they are used individually. However, the differences 514 

are very small.  515 

Table 3 516 

Table 4 517 

3.2. Real-time feature set models 518 

In real-time applications, such as grading/sorting machines, two factors are important: 519 

prediction accuracy and processing time. To compare the capability of different 520 

texture and space domain techniques for real-time applications, processing time 521 

during implementation and feature extraction process for each technique was 522 

recorded. Figures 5 and 6 illustrate, respectively, the time achieved by various texture 523 

and space domain methods on the study data set, respectively. Results show that the 524 

type of sample has no significant impact on the processing time because the image 525 

dimensions are the same. Obviously, Tamura, fractal, Gabor, and GLRLM are 526 

unsuitable for real-time systems since they require considerable much time for 527 

implementation. On the other hand, FOSH, GLCM, LBP, wavelet, and SAR were the 528 

fastest techniques because their processing time was less than 0.5 second. Space 529 

domain techniques, except radial averaging, recognized to be suitable for real-time 530 

purposes since they need processing time lower than that of our threshold, i.e. 0.5 531 

second.  532 

Many researchers reported that the combined feature models perform better than 533 

individual models. Hence, all of the real-time features were combined together to 534 

make two data sets, one for texture analysis methods and the other for space domain 535 

techniques. The combination process leads to produce data sets with large number of 536 

inputs so that the size of new texture analysis and space domain feature vectors was 537 

125 (8 FOSH + 40 GLCM + 8 LBP + 64 wavelet + 5 SAR) and 17 (2 Farrell + 4 538 
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Lorentzian + 4 Gompertz + 6 statistical features + 1 Total number of pixels), 539 

respectively. The large number of model inputs may leads to increase the execution 540 

time and reduce the predictive accuracy. Using feature selection approaches such as 541 

PCA, sensitivity analysis, genetic algorithms (GA), etc., these problems go away by 542 

eliminating redundant features. In this study, genetic algorithm technique (GA) was 543 

used for feature reduction as many researchers reported its suitability for this aim 544 

(Leardi, 2000; Mollazade et al., 2012b). Table 5 shows the list of top texture analysis 545 

and space domain features obtained by GA for apple, plum, tomato and mushroom. 546 

Feature selection process considerably reduced the size of feature vectors so that the 547 

size of texture analysis and time domain feature vectors was 10 and 2 for apple, 7 and 548 

3 for plum, 5 and 4 for tomato, and 5 and 2 for mushroom, respectively. The wavelet 549 

and modified Lorentzian function are superior compared to others since most of the 550 

top features have been selected from the features of these techniques. 551 

The ANFIS model with the selected texture analysis features gave the prediction 552 

correlation coefficient of 0.872, 0.776, 0.853, and 0.827 for apple, plum, tomato, and 553 

mushroom, respectively, which are slightly higher than that obtained by the ANFIS 554 

models with individual texture analysis techniques (Tables 3 and 6). Regarding the 555 

selected real-time space domain features, the same behavior has been observed so that 556 

prediction correlation coefficient for apple, plum, tomato, and mushroom showed an 557 

increase from 0.823 to 0.847, 0.754 to 0.762, 0.796 to 0.864, and 0.744 to 0.764, 558 

respectively (Tables 4 and 7). 559 

 560 

3.3. Fusion of selected real-time feature sets model 561 

The real-time features selected from texture analysis and space domain techniques 562 

(Table 5) were combined together in order to make a single feature set having the 563 
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benefits of two feature sets. Figure 7 presents the statistical measures of combined 564 

feature set model by ANFIS. Using the combined feature set model, the prediction 565 

accuracies of all the products were improved in comparison to the single real-time 566 

selected feature set models (Tables  6 and 7, and Figure 7). The correlation coefficient 567 

in prediction stage for tomato was highest (Rp=0.919) followed by mushroom 568 

(Rp=0.896), apple (Rp=0.887), and plum (Rp=0.790). This indicates that the integration 569 

of space domain and texture-based features considerably improved firmness/elasticity 570 

prediction for tomato and mushroom products but with a lesser degree of accuracy for 571 

apple and plum fruits. With the proposed features for laser induced backscattering 572 

imaging, the system is suitable to be implemented as a non-destructive technique in 573 

real-time machines to grade/sort horticultural products based on their mechanical 574 

properties. More efforts are needed to improve the capabilities of this system to meet 575 

the real-time requirements for monitoring different qualitative properties of 576 

horticultural produce. Works in this direction is in progress by authors. 577 

Figure 5 578 

Figure 6  579 

Table 5  580 

Table 6 581 

Table 7 582 

Figure 7 583 

4. Conclusions 584 

In this research an experimental analysis of a number of different texture analysis 585 

methods along with several space domain techniques was carried out for predicting 586 

mechanical properties of apple, plum, tomato and mushroom. Calibration models 587 

were developed by ANFIS that is an efficient artificial intelligent approach for 588 
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modeling. Texture analysis methods showed slightly better results than those of the 589 

space domain techniques when feature set of each technique was fed independently to 590 

the ANFIS. Results showed that combination of real-time features of texture analysis 591 

techniques was more effective than when they were used individually for predicting 592 

firmness/elasticity. Similar results were observed for the space domain techniques too. 593 

Feature selection process showed that not only it leads to a considerable reduction in 594 

the feature vectors but also improves the prediction accuracy of ANFIS models. 595 

Among all of the techniques used for feature extraction, wavelet transform and 596 

modified Lorentzian function are introduced as the best techniques for analysis of 597 

backscattering images. For all horticultural products in this research, it was found that 598 

integrating selected real-time features of both texture analysis and space domain 599 

techniques provides the best prediction results. The statistical performance for apple, 600 

tomato, and mushroom was in an acceptable range while real-time sensing of firmness 601 

for plum fruit was still poor. Future works should focus on the improving the accuracy 602 

and robustness of methods described in this research by applying the correction of 603 

light scattering distortion algorithms and methods that lead to increase signal to noise 604 

ratio.  605 

 606 

Acknowledgments  607 

The authors are grateful for the financial and technical support received from 608 

University of Tehran, University of Kurdistan, and Leibniz Institute for Agricultural 609 

Engineering Potsdam-Bornim (ATB) for this project. 610 

 611 

References 612 



26 

 

Baranyai, L., Zude, M., 2009. Analysis of laser light propagation in kiwi fruit using 613 

backscattering imaging and Monte Carlo simulation. Comput. Electron. Agric. 614 

69, 33–39. 615 

Bevk, M., Kononenko, I., 2002. A statistical approach to texture description of 616 

medical images: A preliminary study. Proceedings of the 15th IEEE Symposium 617 

on Computer-Based Medical Systems (CBMS 2002), 239-244.  618 

Bharati, M.H., Liu, J.J., MacGregor, J.F., 2004. Image texture analysis: methods and 619 

comparisons. Chemometr. Intell. Lab. 72, 57–71. 620 

Choudhary, R., Paliwal, J., Jayas, D. S., 2008. Classification of cereal grains using 621 

wavelet, morphological, colour, and textural features of non-touching kernel 622 

images. Biosyst. eng. 99, 330-337. 623 

Costa, A.F., Humpire-Mamani, G.E., Traina, A.J.M., 2012. An efficient algorithm for 624 

fractal analysis of textures. In SIBGRAPI 2012: XXV Conference on Graphics, 625 

Patterns, and Images, 39-46. 626 

Garcia-Ramos, F.J., Valero, C., Homer, I., Ortiz-Canavate, J., Ruiz-Altisent, M., 627 

2005. Non-destructive fruit firmness sensors: a review. Span. J. Agric. Res. 3(1), 628 

61-73. 629 

Gonzalez, R.C., Woods, R.E., Eddins, S.L., 2004. Digital Image Processing using 630 

MATLAB. Pearson Prentice Hall, New Jersey, USA. 631 

Haralick, R.M., 1979. Statistical and structural approaches to texture. P. IEEE. 67, 632 

786–804. 633 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image 634 

classification. IEEE. T. Syst. Man. Cyb. 6, 610–621. 635 

Jackman, P., Sun, D.W., 2012. Recent advances in image processing using image 636 

texture features for food quality assessment. Tr. Food. Sci. Tec. 29(1), 35-43. 637 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7905


27 

 

Jain, A., 1989. Fundamentals of Digital Image Processing. Prentice Hall International, 638 

Englewood Cliffs, USA. 639 

Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE. T. 640 

Syst. Man. Cyb. 23(3), 665-685. 641 

Leardi, R., 2000. Application of genetic algorithm-PLS for feature selection in 642 

spectral data set. J. Chemometr. 14, 643-655. 643 

Lu, R., 2004. Multispectral imaging for predicting firmness and soluble solids content 644 

of apple fruit. Postharvest. Biol. Tec. 31, 147–157. 645 

Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet 646 

representation. IEEE. T. Pattern. Anal. 11(7), 674-693. 647 

Mireei, S.A., 2010. Nondestructive Determination of Effective Parameters on 648 

Maturity of Mozafati and Shahani Date Fruits by NIR Spectroscopy Technique. 649 

PhD Dissertation. Department of Mechanical Engineering of Agricultural 650 

Machinery. University of Tehran. Iran. In Persian. 651 

Mohsenin, N.N., 1986. Physical Properties of Plant and Animal Materials, Second 652 

Edition Revised. Gordon and Breach Science, NY, USA. 653 

Mollazade, K., Omid, M., Akhlaghian Tab, F., Mohtasebi, S.S. 2012a. Principles and 654 

applications of light backscattering imaging in quality evaluation of agro-food 655 

products: a review. Food. Bioprocess. Tech. 5(5), 1465-1485. 656 

Mollazade, K., Omid, M., Akhlaghian Tab, F., Mohtasebi, S. S., Zude, M., 2012b. 657 

Spatial mapping of moisture content in tomato fruits using hyperspectral imaging 658 

and artificial neural networks. 4th International Workshop on Computer Image 659 

Analysis in Agriculture, 09 - 11 July, Valencia, Spain. 660 



28 

 

Nicolai, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., 661 

Lammertyn, J., 2007. Nondestructive measurement of fruit and vegetable quality 662 

by means of NIR spectroscopy: a review. Postharvest. Biol. Tec. 46, 99-118. 663 

Noh, H.K., Lu, R., 2007. Hyperspectral laser-induced fluorescence imaging for 664 

assessing apple fruit quality. Postharvest. Biol. Tec. 43, 193–201. 665 

Ojala, T., Pietikäinen, M., Mäenpää, T., 2002. Multiresolution grey-scale and rotation 666 

invariant texture classification with local binary patterns. IEEE. T. Pattern. Anal.  667 

24(7), 971-987. 668 

Omid, M., Mahmoudi, A., Omid, M.H., 2009. An intelligent system for sorting 669 

pistachio nut varieties. Expert. Syst. Appl. 36, 11528–11535. 670 

Omid, M., Mahmoudi, A., Omid, M.H., 2010. Development of pistachio sorting 671 

system using principal component analysis (PCA) assisted artificial neural 672 

network (ANN) of impact acoustics. Expert. Syst. Appl. 37, 7205–7212. 673 

Peng, Y., Lu, R., 2005. Modeling multispectral scattering profiles for prediction of 674 

apple fruit firmness. Trans. ASAE. 48(1), 235–242. 675 

Peng, Y., Lu, R., 2006. Improving apple fruit firmness predictions by effective 676 

correction of multispectral scattering images. Postharvest. Biol. Tec. 41, 266–677 

274. 678 

Peng, Y., Lu, R., 2007. Prediction of apple fruit firmness and soluble solids content 679 

using characteristics of multispectral scattering images. J. Food. Eng. 82, 142–680 

152. 681 

Qin, J., Lu, R., 2006. Measurement of the optical properties of apple using 682 

hyperspectral diffuse reflectance imaging. ASABE Paper No. 063037. St. Joseph, 683 

Mich.: ASABE. 684 



29 

 

Qing, Z., Ji, B., Zude, M. 2007., Predicting soluble solid content and firmness in apple 685 

fruit by means of laser light backscattering image analysis. J. Food. Eng. 82, 58–686 

67. 687 

Qing, Z., Ji, B., Zude, M., 2008. Non-destructive analysis of apple quality parameters 688 

by means of laser-induced light backscattering imaging. Postharvest. Biol. Tec. 689 

48, 215–222. 690 

Sarkar, A., Sharma, K., Sonak, R., 1997. A new approach for subset 2-D AR model 691 

identification for describing textures. IEEE. T. Image. Process. 6(3), 407-413. 692 

Sukissian, L., Kollias, S., Boutalis, Y., 1994.  Adaptive classification of textured 693 

images using linear prediction and neural networks. Signal. Process. 36, 209-232. 694 

Tamura, H., Mori, S., Yamawaki, T., 1978. Textural features corresponding to visual 695 

perception. IEEE Transactions on Systems, Man, and Cybernetics, 8, 460–472. 696 

Tang, X., 1998. Texture information in run-length matrices. IEEE. T. Image. Process. 697 

(7), 1602-1609  698 

Zheng, C., Sun, D.W., Zheng, L., 2006. Recent applications of image texture for 699 

evaluation of food qualities—a review. Tr. Food. Sci. Tec. 17, 113–128. 700 

Zhu, B., Jiang, L., Luo, Y., Tao, Y., 2007. Gabor feature-based apple quality 701 

inspection using kernel principal component analysis. J. Food. Eng. 81, 741,749. 702 

Zude, M., 2009. Optical Monitoring of Fresh and Processed Agricultural Crops. CRC 703 

Press, Boca Raton, FL, USA, 450 (pp. 391). 704 

705 

706 

 

 

 



30 

 

Table 1. Data set specification 

Sample 
Number of 

samples 

Storage 

condition 

Storage 

time 

Mechanical 

property 
Mean Min Max 

Standard 

deviation 

Apple 
59 Pinova 

68 Elstar 

T: 2 ºC 

RH: 92±2 % 
45 days Firmness 

59.85 

(N/cm
2
) 

31.00 

(N/cm
2
) 

84.50 

(N/cm
2
) 

11.39 

(N/cm
2
) 

Plum 
180 Jojo 

170 Tophit 

T: 2 ºC 

RH: 92±2 % 
20 days Firmness 

3.86 

 (N/cm
2
) 

0.09 

(N/cm
2
) 

11.40 

(N/cm
2
) 

2.41 

(N/cm
2
) 

Tomato 200 Pannovy 
T: 15±1  ºC 

RH: 92±2 % 
30 days Elasticity 

0.43 

 (N/mm
2
) 

0.12 

(N/mm
2
) 

1.75 

(N/mm
2
) 

0.29 

(N/mm
2
) 

Mushroom 200 
T: 3±1 ºC 

RH: 92±2 % 
14 days Elasticity 

1.53 

 (N/mm
2
) 

0.21 

(N/mm
2
) 

4.92 

(N/mm
2
) 

1.06 

(N/mm
2
) 
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Table 2.  Available texture features measured by statistical techniques for each backscattering image 

* μn, zi, p(zi), and L represent mean n
th

 moment, random variable related to intensity, normalized 

histogram of intensity levels, and number of possible intensity levels, respectively. 

**  is standard deviation,  represents the mean, and p(i, j) is grey level co-occurrence matrix.  

*** r(i, j), Ng, Nr, and np are run length matrix, number of grey levels in an image, number of run 

lengths, and sum of image pixels, respectively. 

 
 

1st order statistics of image histogram 

and 

local binary pattern 

 Grey level co-occurrence matrix  Grey level run length matrix 

Feature name Formula*  Feature name Formula**  Feature name Formula*** 

Mean grey 

level 
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0
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L

i

ii zpz   Contrast 
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emphasis (SRE) 

 

Standard 
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Smoothness )1(
11 2

  
 Uniformity 

 
 

Grey level non- 

uniformity 
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Skewness 





1

0

3

3
)()(

1 L

i
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 Homogeneity 

 

 
Run length non -

uniformity 
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Uniformity 

(energy) 





1

0
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i

izP  
 Entropy 

 
 

Run percentage 
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Entropy )(log)(
1
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Maximum of 

probability   
Low grey level 
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Kurtosis (4
th

 

moment) 






1

0

4

4
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1 L

i
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 Dissimilarity 

 
 

High grey level 
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Coefficient of 

variation  
 Cluster shade 

 
 

Short run low 

grey level 
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(SRLGE)  

   
Cluster 

prominence 
 

 

Short run high 

grey level 

emphasis 

(SRHGE)  

   Variance 
 

 

Long run low 

grey level 

emphasis 

(LRLGE)  

      

Long run high 

grey level 

emphasis 
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Table 3. The characteristics and statistical measures of the best models of ANFIS for predicting firmness/elasticity of some horticultural products by different texture analysis 

techniques 

Product 
Texture analysis 

technique 

Type of mf  
Number of Input mf Optimization method 

Calibration  Prediction 

Input Output  RMSECV Rc  RMSEP Rp 

Apple 

FOSH Triangular Linear  5 Hybrid 4.423 0.929  8.583 0.861 

GLCM Trapezoidal Linear  3 Hybrid 7.080 0.783  14.229 0.736 

GLRLM Bell-shaped Linear  4 Hybrid 2.357 0.979  12.119 0.701 

LBP Triangular Linear  4 Hybrid 3.129 0.962  14.825 0.512 

Wavelet Trapezoidal Linear  3 Hybrid 6.670 0.846  10.320 0.825 

Gabor Gaussian Constant  5 Hybrid 6.377 0.861  13.587 0.637 

Tamura Trapezoidal Linear  4 Hybrid 5.860 0.861  10.398 0.846 

Fractal Sigmoid Linear  3 Hybrid 5.954 0.869  8.998 0.826 

SAR Bell-shaped Constant  4 Hybrid 7.652 0.772  13.814 0.706 
  

  
 

Plum 

FOSH Sigmoid Linear  5 Hybrid 2.650 0.671  2.708 0.722 

GLCM Triangular Linear  5 Hybrid 2.091 0.623  3.325 0.659 

GLRLM Sigmoid Linear  5 Hybrid 1.862 0.686  2.044 0.697 

LBP Trapezoidal Constant  4 Hybrid 2.603 0.583  2.318 0.687 

Wavelet Triangular Linear  5 Hybrid 1.993 0.589  2.607 0.554 

Gabor Trapezoidal Linear  2 Hybrid 3.869 0.544  4.018 0.606 

Tamura Sigmoid Linear  5 Hybrid 1.809 0.692  2.444 0.712 

Fractal Triangular Linear  3 Hybrid 2.470 0.649  2.314 0.725 

SAR Gaussian Constant  4 Hybrid 1.968 0.645  1.722 0.757 
     

Tomato 

FOSH Bell-shaped Linear  3 Hybrid 0.325 0.648  0.356 0.678 

GLCM Sigmoid Linear  5 Hybrid 0.284 0.621  0.277 0.718 

GLRLM Gaussian Linear  4 Hybrid 0.268 0.621  0.344 0.675 

LBP Gaussian Linear  4 Hybrid 0.246 0.603  0.298 0.692 

Wavelet Gaussian Constant  4 Hybrid 0.258 0.677  0.237 0.795 

Gabor Sigmoid Linear  5 Hybrid 0.221 0.722  0.259 0.857 

Tamura Gaussian Linear  4 Hybrid 0.298 0.731  0.219 0.832 

Fractal Triangular Linear  4 Hybrid 0.295 0.685  0.339 0.791 

SAR Sigmoid Linear  3 Hybrid 0.256 0.740  0.425 0.706 
     

Mushroom 

FOSH Gaussian Constant  5 Hybrid 0.727 0.734  0.988 0.780 

GLCM Sigmoid Linear  4 Hybrid 0.789 0.721  1.331 0.780 

GLRLM Sigmoid Constant  4 Hybrid 0.791 0.699  0.782 0.779 

LBP Bell-shaped Linear  5 Hybrid 0.331 0.951  1.012 0.739 

Wavelet Bell-shaped Linear  3 Hybrid 0.832 0.724  1.477 0.746 

Gabor Trapezoidal Linear  4 Hybrid 0.695 0.742  0.994 0.788 

Tamura Triangular Linear  3 Hybrid 0.937 0.710  0.696 0.839 

Fractal Triangular Constant  5 Hybrid 0.643 0.803  1.005 0.780 

SAR Bell-shaped Constant  2 Hybrid 1.516 0.619  1.195 0.717 
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Table 4. The characteristics and statistical measures of the best models of ANFIS for predicting firmness/elasticity of some horticultural products by different space domain 

techniques 

Product 
Texture analysis 

technique 

Type of mf  
Number of Input mf Optimization method 

Calibration  Prediction 

Input Output  RMSECV Rc  RMSEP Rp 

Apple 

Total number of pixels Trapezoidal Linear  5 Hybrid 14.259 0.369  20.636 0.506 

Statistical features Bell-shaped Constant  4 Hybrid 7.961 0.720  11.883 0.761 

Radial averaging Trapezoidal Linear  4 Hybrid 7.621 0.861  11.254 0.789 

Lorentzian Gaussian Linear  5 Hybrid 8.209 0.755  14.536 0.753 

Gompertz Sigmoid Linear  3 Hybrid 11.512 0.497  15.831 0.562 

Farrel Gaussian Linear  4 Hybrid 8.671 0.672  10.332 0.823 
     

Plum 

Total number of pixels Triangular Constant  5 Hybrid 3.342 0.317  4.544 0.536 

Statistical features Bell-shaped Linear  4 Hybrid 1.682 0.723  2.195 0.754 

Radial averaging Trapezoidal Constant  4 Hybrid 2.031 0.593  2.408 0.630 

Lorentzian Trapezoidal Constant  4 Hybrid 2.568 0.252  4.496 0.411 

Gompertz Triangular Linear  2 Hybrid 2.544 0.457  3.056 0.450 

Farrel Triangular Constant  5 Hybrid 2.461 0.413  2.206 0.710 
     

Tomato 

Total number of pixels Trapezoidal Constant  2 Hybrid 0.471 0.689  0.374 0.668 

Statistical features Bell-shaped Linear  3 Hybrid 0.197 0.841  0.278 0.792 

Radial averaging Gaussian Linear  4 Hybrid 0.143 0.911  0.257 0.795 

Lorentzian Triangular Linear  4 Hybrid 0.186 0.811  0.360 0.789 

Gompertz Triangular Linear  2 Hybrid 0.197 0.755  0.289 0.773 

Farrel Trapezoidal Constant  2 Hybrid 0.254 0.834  0.345 0.796 
     

Mushroom 

Total number of pixels Bell-shaped Constant  4 Hybrid 1.123 0.284  1.584 0.499 

Statistical features Triangular Linear  4 Hybrid 0.861 0.772  0.968 0.744 

Radial averaging Trapezoidal Linear  3 Hybrid 0.587 0.843  0.841 0.827 

Lorentzian Triangular Linear  5 Hybrid 1.175 0.352  1.257 0.627 

Gompertz Bell-shaped Constant  3 Hybrid 1.219 0.381  0.999 0.642 

Farrel Gaussian Linear  4 Hybrid 0.837 0.637  1.062 0.701 
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Table 5. The list of top real-time features selected by GA for predicting mechanical properties of different type of horticultural products 

Apple  Plum  Tomato  Mushroom 

Texture analysis 
Space domain 

statistics 
 Texture analysis 

Space domain 

statistics 
 Texture analysis 

Space domain 

statistics 
 Texture analysis 

Space domain 

statistics 

FOSH 

(skewness) 

Farrell 

(μs') 
 

LBP 

(kurtosis) 

Lorentzian 

(c) 
 

Wavelet 

(mean-diagonal-2) 

Lorentzian 

(b) 
 

GLCM 

(Contrast-45º) 

Farrell 

(μa) 

FOSH 

(entropy) 

Lorentzian 

(b) 
 

Wavelet 

(mean-vertical-1) 
Gompertz (α)  

Wavelet 

(mean-vertical-3) 

Lorentzian 

(d) 
 

GLCM 

(Contrast-90º) 

Lorentzian 

(c) 

FOSH 

(coefficient of variation) 
  

Wavelet 

(mean-horizontal-2) 

Statistical features 

(mean) 
 

Wavelet 

(mean-vertical-4) 
Gompertz (β)  

Wavelet 

(mean-vertical-2) 
 

Wavelet 

(standard deviation-

horizontal-4) 

  

Wavelet 

(mean-vertical-2) 
  SAR (θ3) 

Statistical features 

(min) 
 

Wavelet 

(mean-diagonal-3) 
 

Wavelet 

(energy-horizontal-1) 
  

Wavelet 

(mean-diagonal-2) 
  SAR (θ4)   

Wavelet 

(mean-vertical-4) 
 

Wavelet 

(energy-horizontal-4) 
  SAR (θ1)        

Wavelet 

(entropy-horizontal-1) 
  SAR (θ2)        

Wavelet 

(entropy-approximation-3) 
          

Wavelet 

(entropy-horizontal-4) 
          

Wavelet 

(entropy-vertical-1) 
          

FOSH: First order statistics of image histogram, LBP: Local Binary pattern, SAR: Simultaneous autoregressive model, GLCM: Grey level co-occurrence matrix  
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Table 6. The characteristics and statistical measures of the best models of ANFIS for predicting firmness/elasticity of some horticultural products by selected features from 

real-time texture analysis techniques 

Product 
Type of mf  

Number of Input mf Optimization method 
Calibration  Prediction 

Input Output  RMSECV Rc  RMSEP Rp 

Apple Trapezoidal Constant 
 

4 Hybrid 6.288 0.907 
 

12.474 0.872 

Plum Trapezoidal Linear 
 

4 Hybrid 1.948 0.724 
 

3.287 0.776 

Tomato Triangular Linear 
 

2 Hybrid 0.242 0.767 
 

0.203 0.853 

Mushroom Trapezoidal Constant 
 

4 Hybrid 0.783 0.722 
 

0.896 0.872 

 

 
 

 

Table 7. The characteristics and statistical measures of the best models of ANFIS for predicting firmness/elasticity of some horticultural products by selected features from 

real-time space domain techniques 

Product 
Type of mf  

Number of Input mf Optimization method 
Calibration  Prediction 

Input Output  RMSECV Rc  RMSEP Rp 

Apple Trapezoidal Linear 
 

5 Hybrid 10.940 0.723 
 

10.989 0.847 

Plum Triangular Linear 
 

3 Hybrid 2.249 0.668 
 

1.687 0.762 

Tomato Sigmoid Linear 
 

5 Hybrid 0.179 0.863 
 

0.260 0.864 

Mushroom Trapezoidal Constant 
 

2 Hybrid 0.870 0.603 
 

1.278 0.764 

 



Figure 1. Wavelet decomposition of backscattering image of a tomato sample at 660 nm 

using a fourth-order Daubechies mother wavelet (Db4) 

 

Figure 2. Magnitude of Gabor wavelet transform obtained for backscattering image of a 

tomato sample at 660 nm in different directions and frequencies  

 

Figure 3. The process of extracting the fractal features from backscattering image of a 

tomato sample at 660 nm by segmentation-based fractal texture analysis (SFTA) 

algorithm 

 

Figure 4. The selection pattern of neighborhoods for a pixel at position s in the 

simultaneous autoregressive (SAR) model. The neighboring pixels are left, left-up, up, 

and right-up. 

 

Figure 5. Processing time required to extract features from backscattering images of 

horticultural products by different texture analysis techniques 

 

Figure 6. Processing time required to extract features from backscattering images of 

horticultural products by different space domain techniques  

 

Figure 7. Results of predicting firmness/elasticity by fusion the selected features from 

real-time texture analysis and space domain feature sets for A. Apple, B. Plum, C. 

Tomato, and D. Mushroom. Red and blue dots represent the calibration and prediction 

data, respectively. 
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