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Some challenges to address in order to target the second 
generation of agricultural robots 

Michel Berducat  

Irstea, Technologies and Information Support System Research Unit, Aubière, France 

E-mail: michel.berducat@irstea.fr 

 

 

Abstract: Beyond some scientific and technological challenges, this presentation will 

underline several other criteria to consider in order to give the key for a real market de-

velopment of agricultural robots in close relationship with the operational needs and the 

constraints of farmer end-users. 

Key words: Agricultural robotic, challenges, market access conditions, end users 

 

1 Introduction 
Digital farming will favour the increase of the productivity whilst in the same time the 

sustainable development of agriculture.  In one of its synthesis document (CEMA, 2017) 

the European Agricultural Machinery Industry Association clearly defines the terms of 

“Digital Farming & Agriculture X.0”.  The Agriculture 3.0 was in link with the 1990-2000 

timing decade with early adopters of GPS guidance assistance systems, yield mapping 

on combine harvesters and first telematics technology used to monitor vehicle fleets. 

The 2000-2020  period corresponding to Agriculture 4.0 boosted the Precision 

Agriculture, thanks to the evolution of several technologies in terms for example of i/ 

some cheap sensors and actuators, ii/ low cost micro-processors, iii/ high bandwidth 

cellular communication. The next Agricultural 5.0 (with full expression from 2020 year) 

will be devoted on cloud and Big Data analytics.  Autonomous decision systems given 

by Artificial Intelligence and unmaned operations given by robotic systems will be also 

resolutely parts of Agriculture 5.0. 

Agricultural Robots are announced to play a key role in agriculture domain. Today effec-

tively, farmer end users put more attention and interest to robotic solutions. If in live-

stock production area, robotic market already exists, robotic market for plant production 

is still in their early stages of development (“Research prototypes” level or in the best 

case “Early commercial” level). So one main question is: “What are challenges to ad-

dress in order to favor “Market Penetration” of agricultural robots?”. 

 

2 Still a lot of scientific and technologic issues to solve 

Agricultural plant production presents a lot of complex and uncertainty environments. The Fig. 1 

below illustrates some specific bricks to reinforce in order to reach real operational agricultural 

robots. 
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Figure 1: Robotic bricks  

 

Some efforts in term of perception (ex: sensors fusion), decision (ex: AI) and con-

trol/command systems must be carried out by complementary actors (manufactures, 

components suppliers, integrators, researchers…). As example we can mention the 

case of early commercial sales for robotic weeding solutions. Currently, these last ones 

are moving at low speed on flat and well-structured open fields. High performances are 

absolutely necessary to evolve in more harsh conditions (presence of slope terrains, 

sliding disturbances, complex environments, high speed…).   

Robotic offers also huge possibilities to reinvent agricultural machines in term of mecha-

tronic architectures, energy power motorization, cooperation of several small, medium 

(or big!!) smart machines working together under the supervision of one remote human 

operator…A lot of scientific and technologic developments still must be done in order to 

increase the performances of all the bricks involved in the whole robotic systems.  

Today we assist to an explosion of agricultural robot solutions coming from various part 

of the world. Presented results show in general a very good functioning of the solutions 

relayed directly by their own developers or / and by public or professional Medias (ex:  

video supports). These results which give the impression that “all is perfect and soon 

available” are generating growing interest among farmers and their representatives. 

Achieving the interest of End users which are the farmers, does not mean triggering the 

final purchase of the robotic solutions by these farmers. In the next chapter, some crite-

ria (list not exhausted) must be taking into consideration in order to facilitate the accep-

tation by the end farmers of robotic solutions. 
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3  Some other important criteria to consider for the dissemination of ag-

ricultural robots  

The Fig. 2 introduces a second constellation of satellites (in yellow colour) about criteria 

to take into account in order to satisfy the needs of End Users and thus to give some 

keys for a real market development of the agricultural robots. 

 

Figure 2:  Other criteria to consider from End-User position  

 

3.1 “Economic Adoption Cost” criterion 

Never the final Customer (except exception!!) buys a machine for its high technology, 

but for its ability to provide added value in terms of Return On Investment.  One possi-

bility to optimize the ROI is to optimize the “Robot - Agro System” couple.  As illustra-

tion, in  the Figure 3, the author (DEGANI, 2015) compares by simulation the cost of dif-

ferent robot architectures (composed of 3 or 4 Degree Of Freedom) for picking fruits in 

three tree configurations (“Central leader”, “Tall Spindle”, “Y-Teillis” pruning modes ). 

Resolutely the “Tall Spindle” training system with more compact and wall spatial dispo-

sition of the fruits on the tree can use the robot with lowest cost function.  
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Figure 3:  Example of the “Robot – Agro System“ optimization  

 

So affordable cost robots could be more easily achieved by simultaneously adaptation 

of morphology of plants. Robot Technology and Agronomy communities are thus called 

to work together. 

 

3.2 “Robustness” and “Output performances” criteria 

Robustness and out-put performances of robotic solutions are also essential for the 

End-users. Staying always in the Fruit picking robots domain, a lot of developments 

show poor yield out-put with long execution cycle time (several seconds) to detect the 

fruit, launch the arm to fetch the fruit, collect the fruit and arrange it in the conditioning 

box before to restart a new cycle.  Under the respect of previous criterion (“Robot - Agro 

System” optimization), we advance the hypothesis that “simple architecture robotic ma-

chine” gives additional asset to improve robustness and output performances. An ex-

ample of “simple robotic machine” is the automatic apple picker developed by FFRobot-

ics (GOODFRUITGROWER, 2017) with two main elementary linear mechanic devices to 

reach fruits in the vegetation wall. 

 

3.3 “Easy to use” criterion 

Demonstrations of agricultural robots are always showed in the field. In fact, “agricultur-

al robotics doesn’t start in the field, but inside the yard of the farm!!”. That means that 

End-users will be attentive to all the phases of the mission of the robot: Preparation, 

Execution, and Finalization, and not only during the execution work in the field. The 

phases of preparation and finalization of the mission integrate a lot of logistical opera-

tions, for example with the connexion of implements on the robotic platforms. Thus, one 

asked question is about the execution facility of manoeuvers for implement linking oper-
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ation from remote screen tablets? In the case of deployment of several robots (swarm 

robots), the End users will be concern by accentuated logistical issues with a lot of fuel 

tank to fill-up each morning, or batteries to charge each morning and other time during 

the day !!.  So for the development of agricultural robot market it is capital that develop-

ers bring suited solutions for all the phases of the mission in terms of Usability / Easy to 

use of the solutions in order to obtain complete satisfaction from End-users. 

 

3.4 “Respect of environment” criterion 

As introduce in chapter 2, Robotic offers huge possibilities to reinvent agriculture ma-

chinery with for example cooperation of small or medium size robots working together 

(BLACKMORE, 2008, BERDUCAT, 2007). Thanks to robotic technologies, this approach 

gives new alternatives to the single way evolution of agricultural machinery proposed 

during the last century: “always bigger, always powerful…but always heavier!!”. The 

opportunity to suppress the compaction of soil deep layers (30 cm to 1 m depth) by 

suppression of big machines paths is a real benefit for sustainable agriculture. In the 

case of small robots (working or not in cooperation), one question nevertheless must be 

put on the table: “With a footprint on 90% of the surface area (due to small track, re-

peated paths) what about superficial compaction generated by these machines in cer-

tain working conditions (type of soil, moisture)?”. 

 

3.5 “Safety” criteria 

The rise of robotic in general and agricultural robotic in particular is depending of safety 

guarantees which will be given by the manufactures. The mobility increasing of robots in 

their working environment in autonomous modes requires a special attention on safety 

associated devices. Safety devices for agricultural robots don’t be limited to detection of 

obstacles (static or dynamic, positive or negative, known or unknown). The preservation 

of the robot integrity needs other security modules (hard and soft). For example, taking 

into consideration the presence of slope terrains and/or tanks or hoppers embedded on 

the mobile robotic platform that can fill-up or empties during the work execution, it is 

necessary to have safety devices able to anticipate dynamic instability or roll-over risks 

(Lenain,2013).  Physical or virtual geo-fences are also an obligation in open field areas 

in order to guarantee that agricultural robots will stay in their dedicated work areas. 

 

3.5 “Integration in FMIS” criterion 

Concerning agricultural robots in plant production and open fields, we are just at the 

beginning of the history!!.  Currently, agricultural sites welcome only one or two robots in 

the same place under the close supervision of a human operator at proximity. For the 

real boom of the robotic in agriculture (in particular for big farms), it is absolutely neces-

sary to go past the level of the lonely machine in its field.  Robots must be full integrate 
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in the Farm Management System (FMS) able to plan, control and supervise all the fleet 

of robots working at the same time in several field areas of the farm.   

Farm Management Systems (Digital Farming tools) exist today to share information in 

real time about exchange of spatio-temporal data in the frame of Precision Agriculture. 

These tools must progress and be adapted to the arrival of agricultural robots (which is 

not the case today). To facilitate this evolution, agricultural robot community must take 

benefit of developments done in industry sectors.  The figure 4 (PUGLIESI, 2014) pre-

sents the five functional levels of a manufacturing control operation in industry sector.  

The two low levels standards (Level 0 and Level 1) correspond to levels embedded on 

the physical machine.  Upper levels (2, 3 and 4) will respectively permit to supervise, 

control and schedule all the robots to the right stage has to be digging. 

 

Figure 4:  Integration of agricultural robots in FMS   

 

3.7 “Education Training” and “Society acceptance” criteria 

The introduction of robotic solutions in farms requires some precautions. Manufactures 

must take care to propose adapted training to their customers in order to educate them 

to these new advanced technologies. No saving can’t be done in this domain, if the 

agricultural robotic community wants to success. In the same manner, transparent 

exchanges between all the actors of the Value Chain (researchers, manufactures, 

distributors, farmers) must be develop toward civil Society in order to explain and 

demystify the role of robotic in agriculture. 
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4 Conclusion 

The aim of this paper was to underline huge challenges to solve for the development of 

agricultural robots. Challenges concern a lot of scientific and technology issues in order 

to reach performant robotic offers with appropriate associated solutions in terms of safe-

ty functions and target cost. To convince customers, developers must also take care to 

consider all the phases of the mission of the robots (and not only functioning inside the 

field). Logistical aspects in the farmyard, between farm yard and fields must be also 

proposed to end users to offer complete operational solutions. To increase the maturity 

level of robotic solutions for agriculture, it is also necessary to break up the current limit-

ing approach, consisting to use robots as lone units. Tomorrow mobile robotic plat-

form(s) must be fully integrated in the whole Farming Management System, one more, 

not only during mission execution inside the field, but also during the mission prepara-

tion from the farm yard (linkage of implements, full of energy…). 
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Development of a learning tractor implements coupling ap-
plication 

Tobias Blume, Ilja Stasewitsch, Jan Schattenberg, Ludger Frerichs 

Institute of Mobile Machines and Commercial Vehicles, TU Braunschweig, Germany 
E-mail: t.blume@tu-bs.de, tel.: +49 531-391 7187 

 

 

Abstract: This paper presents a developed, implemented and tested new assistance 

system for tractors and mobile machines based on a stereo camera. The focus is on the 

learning automated coupling process between tractor and implement. 

Key words: deep learning, driver assistance system, object recognition, pose estima-

tion, tractor/implement coupling 

 

1 Introduction 

In order to utilize the high performance of modern agricultural machinery by the operator 

side, an increasing number of driver assistance systems is necessary. Only this way the 

operator can be relieved of the monotonous and tiring work and is capable to control 

complex processes safely and at high efficiency. 

The aim of this project at the Technische Universität Braunschweig was to develop, im-

plement and test new assistance systems for tractors and mobile machines based on a 

3D sensor. The investigation based on promising research experiences with 3D sensors 

in autonomous vehicle projects (BLUME et al., 2015, ROBERT et al., 2013). Therefore, the 

widest possible range of applications in the areas of efficiency, safety and comfort 

should be covered. The camera was attached on the rear part of the tractor in order to 

capture a three-dimensional image of the backward area. Based on this data, the follow-

ing applications should be realized: 

1.  Optical implement recognition to parameterize the machine settings automatically 

for this device 

2.  Automate the tractor/implement coupling even under difficult viewing conditions 

3.  Increase the lane guidance accuracy of implements with orientation and position 

information of implements  

4.  Develop a trailer assistance system to simplify the reverse driving of a tractor-

trailer combination 

5.  Collision avoidance to increase the safety of human and machine while driving 

backwards 
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The project was started at the middle of 2014 and ended at the end of 2017. The re-

search work was possible due to funding by a BLE/Rentenbank program; associated 

partner was AGCO/FENDT. The focus on this paper is on the automated coupling pro-

cess and describes a solution for a learning automated coupling assistant based on 

neural networks. 

 

2 Material and methods 

2.1 System description 

The system consists of a stereo camera (S21 Multisense) mounted on a Fendt 724 

(BLUME et al., 2018). A laptop serves as a computing unit and processes the data from 

the stereo camera and calculates a steering angle and a speed for the tractor. Both data 

are written to the tractor's own CAN bus. On the software side, the system can be divid-

ed into three problems: computer vision part, path planning part and path tracking con-

trol part. BLUME et al. (2015) and BLUME et al. (2016) presented solutions for all three 

problems. Traditional algorithms were used for computer vision part. A five-dimensional 

spline was used for path planning and the path tracking control is based on a model 

predictive controller.  

In a newer approach (BLUME et al., 2018) the computer vision part (attachment detec-

tion and pose estimation) was determined using the neural network yolo3. This ap-

proach allows higher detection rates with a larger number of different implements. But 

this requires significantly more training data than traditional methods. For the training of 

a single implement a few hundred pictures were labeled by hand in different scenarios 

under different lighting conditions. A variety of different neural networks for object 

recognition, for 2D and 3D, with very high recognition rates are available online as open 

source. In contrast, the labels for localization are not available in most cases. Position 

labels are hard to get as they cannot be written manually without spending precious 

time doing very precise measurements for each sample (GUÈRIN et al., 2017). In the 

following, we describe methods to obtain these labels.  

 

2.2  Approach Overview  

In the first approach we observe the operator during work and use the information from 

vehicle movement and sensor to automatically label the implements. Therefore we need 

to determine the point of coupling where the implement is in the correct position just 

behind the tractor. To determine this point we use three different information from the 

tractor. The speed of the vehicle, that must have been negative before, the hydraulic 

control, which have to be moved upwards, and the force on the lower links. To decide 

whether it is an already known implement or not we compare all known models of our 

implements with the current point cloud by calculating the Euclidian fitness score. If it is 

an unknown implement we are doing a segmentation to obtain the new model. The step 

is critical because the model will be used later on. Instead of using the point cloud of the 
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sensor data directly, it is recommended to use the map of a SLAM algorithm. This has 

the advantage that the model is not only modeled from one view and on the other hand 

the input data is much less noisy. 

 

 

Figure 1: Model of a mowing unit. On the left side recorded with a SLAM-Algorithm, on the right 
side the model is created directly with the sensor data. 

 

After that we can determine the relative position between tractor and implement over 

the last 10 meters that the tractor has travelled using a combination of odometry and 

stereo odometry. Depending on the neural network, the position data (X, Y, Z) can al-

ready be used as a label. For object recognition with a 2D convolutional neural network 

(CNN), the position data must be converted to pixel values. Therefore, the outermost 

points of the implement must be determined. The easiest way to do this is to transform 

a model of the implement to the calculated position and to determine the max and min 

points in x and y direction from the camera perspective. By multiplying the camera pro-

jection matrix with those points we obtain the bounding box of our implement. For a se-

mantic segmentation using deep learning all points of the model are converted to pixel 

values. 

In the second approach, we try to generate synthetic images in a simulation environ-

ment using Unity, a development environment for games. In this environment we can 

produce thousands of images in a few minutes under different lighting conditions. To 

create as realistic images as possible we do not use a CAD model of the implement in 

the simulation environment but have created the implement with the program Agisoft 

PhotoScan (AGISOFT, 2018). Agisoft PhotoScan is a software product that performs pho-

togrammetric processing of digital images and generates 3D spatial data. The infor-

mation required to label the synthetically generated images can be read directly from 

the simulation environment. 
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Figure 2: Tractor and implement in the used simulation environment Unit 

 

In the last approach, we create images and labels by transforming the model of an im-

plement previously created with PhotoScan into real images. The goal is to seamlessly 

blend the object from a source image into the target image. For this we use a technique 

called poisson blending. It is a gradient domain image processing method that tries to 

optimize the value in the unknown area between source and target image (GURRIN 

et al., 2014). 

 

 

Figure 3: Image blending with source, mask, target and result image 

 

2.3 Dataset description 

For the first approach we recorded the images of the stereo camera as well as the ste-

reo odometry and the required tractor data while we coupled from 13 different positions 

at five different locations on our yard. An image was recorded after the position had 

changed by at least 10cm. During the tests we were able to collect 1093 images and 

labels. 

For the second approach we created 3000 images and labels with five different types of 

ground textures and a random set of 10 different background objects. 

For the last approach we recorded 240 background images and placed our implement 

in 12 different positions in each image.  
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For the validation we used a data set consisting of 556 images. These images were 

recorded with the same sensor as for training data. However, the position of the sensor 

was varied in height, a different location in the same area was used and the light condi-

tions were changed.  

 

3 Results 

First, the automatic labels for 2D object detection are compared with the manually cre-

ated labels for evaluation. The area of Intersection over Union is calculated and ex-

pressed as a percentage. This means that a value of 50% can be interpreted in such a 

way that the overlapping area is as large as the areas that do not overlap. Fig. 4 shows 

the results for the accuracy of the automatic labeling. For over 60% of the data, the ac-

curacy is over 90%. Furthermore, the accuracy of only one image is less than 70%. The 

accuracy depends essentially on the odometry, the driver and the shape of the imple-

ment. With an angular error of 2.5°, coupling to the mower unit shown in the image is 

still possible, but already leads to a loss of accuracy of up to 30% to an overlapping of 

70%. 

 

 

Figure 4: Intersection over Union for the automated label data (red Box) and the hand labeled 
data (green box) 

 

After we showed that the automatically generated labels correspond to human made 

labels, we train the neuronal network yolov3 (REDMON & FARHADI, 2018), which we used 

for the implements coupling application presented in a former publication (BLUME et al., 

2018). We started to train the neural network with the data of one location up to five lo-

cations. For each training set we used the same hyperparameters and didn’t apply any 

kind of data augmentation to our datasets. In the second chart we compare the results 

of our poisson blending dataset and the simulated dataset against a human labeled da-
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taset. For each dataset we compute the precision (the fraction of relevant instances 

among the retrieved instances) and the recall (the fraction of relevant instances that 

have been retrieved over the total amount of relevant instances). 

Precision and recall are slowly improving as the number of training data increases. Al-

ready the images obtained by coupling at one location are sufficient to determine the 

attachment and its 2D position in most cases. Despite the use of real textures, the gen-

erated data only partially correspond to reality. The data generated by poisson blending 

is particularly convincing in terms of accuracy. This is not surprising, as the labels are 

error-free. 

 

 

 

Figure 5: Precision and recall for the three different approaches compared to human labeled 
data over growing trainings epochs 
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4 Discussion 

We presented three different approaches to generate data for a neuronal network and 

validated these data on the convolutional neuronal network for 2D object detection 

yolov3. Our simple simulation environment is not sufficient to create photorealistic im-

ages that represent the real world. Better results can be achieved by inserting models of 

attachments into real images, especially if the images were created in the working envi-

ronment. Observing the operator at work has proven to be a very simple method to 

generate a lot of data and can be used in many applications where the position of an 

object at a certain time is known and can be tracked. If it is possible to increase the ac-

curacy of the labels, the accuracy of data labeled by humans can be surpassed with this 

method. 
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Abstract: In order to increase the usability and benefit of a farm management infor-

mation system (FMIS), we propose an automatic assignment of the used machine and 

its implement for work processes. To accomplish this, we do segmentation and classifi-

cation of the GPS tracks. The here presented algorithm cleans and sections the record-

ed work logs. This is followed by the extraction of various parameters, which are used 

for the classification. Herefor we examined different classification approaches and de-

veloped an algorithm, whose initial results are promising but need to be improved in the 

future. 

Key words: machine learning, farm management information system, data mining, ag-

ricultural processes, automation. 

 

1 Introduction 

In today’s agriculture, comprehensive documentation of the fieldwork plays an important 

role. It is needed for various reasons like managing, risk assessment, accounting and 

legal purposes. Data loggers or smart devices are used to record the work process of a 

farm machine. The recorded work logs are saved and processed in an FMIS. As stated 

by STREIMELWEGER (2018), the important tasks of a FMIS is the correct recording and 

an easy handling for the user. Although many FMIS already exist, nearly none of them 

meets the requirements. Many farmers are not capable of taking full advantage of those 

strong tools, because of their complexity and operating expense (NOVKOVIC et al., 

2015). Services like 365Farmnet or MyJohnDeere offer different support systems to fa-

cilitate the handling. For example, they offer an automatic assignment of the machine 

and implement to the work log (LÖBBECKE, 2018).  However, there is a big disad-

vantage: The support services need additional recording hardware on the machines to 

provide ISOBUS-Data (BÖHRNSEN, 2012). This is an additional financial barrier apart 

from the complexity issues explained. The acceptance could be higher, if smartphones 

or cheap GPS-tracker could be used for recording. Therefore, the assignment algorithm 

has to supply correct results only by using GPS-tracks.  

For companies with a small fleet of machines and implement, an algorithm based on 

analytical evaluation could be accurate. However, identifying the significant parameters 
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for the assignment in a larger company with a variety of machines and implements is 

not realizable. There are too many implements with similar working width and speed 

(FRISCH 2018). Here, modern tools from the field of machine learning can help. They 

can be used to identify significant parameters for classification as well as for assigning 

the work processes via classifying algorithms. Based on existing data, a classifier can 

be trained. This is also the disadvantage of those data driven algorithms: they need 

training data. However, as the FMIS provider has access to the data of several users, 

they can be used as database.  

The classification algorithm described in this work is developed in the course of the pro-

ject “Big Data im landwirtschaftlichen Prozess innovativ nutzen” (BiDa-LAP). The aim of 

the project BiDa-LAP is to develop an electronical system, consisting of a platform ar-

chitecture and mobile data loggers with the possibility to interact with smart devices. 

The system will be available as an operational and strategic decision support system for 

farming and service companies. It is designed to assist the user in decision-making 

through various indicators (e.g. organizational, economical and sustainable).  

The algorithm is developed by means of data of two agriculture farms in Saxony, Ger-

many. The data is recorded with data loggers from Logicway, a member of the project 

consortium. The used database contains the GPS tracks of all machines and the field 

boundaries. There is CAN data, like percentage torque, for some machines as well, but 

as HEIZINGER (2014) stated, it is better to take the minimal data set. This is just the GPS 

position, which makes the classification more solid and there are less variables to moni-

tor. Furthermore, this is also the aim of this work. In addition to the database, there is a 

daily work journal of one of the farms. The algorithm shall have the ability to classify the 

work process of the other farm, which has no daily work log. It also shall recognize 

transport processes. 

 

2 Material and Methods 

The general procedure for the classification can be divided into the following steps: (1) 

cleaning and segmenting the work log data, (2) extracting the predictors for the classifi-

cation, (3) train and evaluate a classifier to group field or transport work days and (4) 

train and evaluate a classifier for each implement/work type.  

The work logs used for training are recorded by five data loggers on a middle sized 

farm. The record frequency is 1Hz and the recording starts automatically when the en-

gine starts. The data logger sends a data package to the server every 20 minutes. 

The algorithm uses the data for accuracy of the GPS-signal, the horizontal dilution of 

position (HDOP) and the number of satellites, to clean the work log. Data points with 

insufficient values are therefore smoothed by the surrounding data points. However, this 

is only possible up to a certain number of points. Otherwise, it would falsify the data.  

After this process, the work logs are segmented into days for the classification into field 

or transport work. For the classification of the fieldwork, the daily work log is also sepa-
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rated into single operations. This separation step uses the field boundaries. All data 

points within and around a specific boundary are assigned to an operation.  

The second step is to define the predictors. The selection of the predictors is the most 

determining factor for accuracy of the classification (BEIERLE & KERN-ISBERNER, 2014). 

The transformation of the time-dependent work logs into classifiable parameters is an 

important step in this approach. There are many variables, which are extractable from 

the GPS track, especially from the speed of the machine and the angle of the driving 

direction. Over 30 statistical parameters, like average, deviation, range, quantiles and 

furthermore are calculated from both time series. 

 

Figure 1: Work log of a single operation on a field recorded by a data logger 

 

Moreover, there are many possibilities to calculate additional parameters. For example, 

the ratio of time spend on field/not on the field or the duration of a turn on a field. There 

are also many parameters extractable from the stops of the machine as seen in fig. 1. 

For example, the distance between the stops and the distance of the standing machine 

to the farm/loading station. It would go beyond the scope of this paper, to describe eve-

ry calculation method. In total, 26 additional parameters have been determined for the 

classification. 

There are several approaches of classification algorithms. To test as much algorithms 

as possible, the program Matlab R2016b from Mathworks with statistics and machine 

learning toolbox was used. It supplies various classification types and supports fast pro-

gramming and testing. To maximize the feature space and to discover unknown rela-

tions between these parameters, the difference and the ratio between  some of them 

are also taken into the consideration for the classification algorithm (HOLLSTEIN et al., 
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2016).  Different classification approaches were tested with the statistics toolbox. 25% 

of the data sets are used for validation. 

For a more accurate result, the classification is done in two steps. At first, each workday 

is sorted in fieldwork or transport work. This step is possible because of the fact, that 

the investigated farms almost never switch the type of work during one workday. 

On a fieldwork day, the data is separated into single operation to each field through the 

field boundaries. This is the second step of classification, in which the work logs are 

assigned to an implement. As a result, the drivings to and from a field do not falsify the 

characteristics of the work log. In addition, the width of the track can now be calculated 

and included into the algorithm.  

 

3 Results  

The results of this developed algorithm will be shown below. The cleaning and the seg-

mentation of the work log will be inspected. After that, the processing of the work logs 

will be examined and the evaluation of the two steps of the classification algorithm will 

be assessed. In the end, all results and their validity are discussed. 

 

3.1 Cleaning/segmenting and extraction of predictors 

During the cleaning of the work logs, only a few time series had to be excluded from the 

training. After segmenting all work logs from the farm, for with the work journal is availa-

ble, the database contains over 350 days and over 800 operations. For each day and 

operation, 127 predictors are calculated and used to train the classifiers. 

 

3.2 Grouping of fieldwork and transport  

Matlab statistics and machine learning toolbox supports different types of classifiers. It 

supplies simple ones using decision trees and linear regression. However, there are 

also complex ones like multiclass support vector machines and K-nearest neighbour. To 

get an overview, which one might be the best fitting algorithm, all quick to train classifi-

ers tested. The general functionality of the classifying approaches will be not discussed 

here. Numerous references are given to detailed literature like (WEBB, 2004) and (LAMP-

LAND & STAR, 2009). As seen in table 1, the different types of classifiers show diverse 

prediction accuracy values. The best outcomes tend to be achieved by the decision tree 

classifiers. 
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Table 1: Accuracy of the prediction for different classifiers 

Type Accuracy 

Decision tree 82,50% 

K-nearest neighbour 64,20% 

Logistic regression 45,80% 

Support vector machine 75,80% 

 

There are several options to modify this algorithm and gain even better results. The 

number of splits can be altered and subtypes like RUStree or bagged tree can be used. 

The results after the modification of the different tree types are shown in table 2. 

Table 2: Accuracy of the prediction for different decision tree classifiers 

Type Accuracy 

Bagged Tree - 20 splits 83,20% 

RUSBoosted Tree - 50 splits 82,60% 

RUSBoosted Tree - 20 splits 81,30% 

Tree - 50 splits 81,30% 

Tree - 100 splits 80,60% 

Tree - 20 splits 74,20% 

 

A confusion matrix plot is used to assess the results in detail. It shows the true positive and the 

false negative results for each class predicted with the algorithm. As seen in fig. 2, not all 

trained trees show a balanced proportion in the correct class detection. The RUSBoosted (SEIF-

FERT et al., 2010) decision tree with a maximum split number of 50 provides the best results.  

 

Figure 2: Confusion plot of two different classifiers for the prediction accuracy of each trained 
class 

 

Bagged Tree RUSBoosted Tree 
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The advantage of the type of decision tree is based on the fact that this approach con-

siders diverging numbers of samples of each class. The smallest accuracy is 75% of the 

class 2, which in this case is the fieldwork. This is acceptable for the cause of this algo-

rithm. The next step is the validation with the data from the second farm. The result of 

the validation is an accuracy of 70%. This is not as good as the results from the training 

data. The diverse quality of the data can lead to different classification parameters. In 

addition, the approach of organization and execution of the fieldwork can differ.  

 

3.3 Classification of the fieldwork 

The second step of the algorithm is the classification of the fieldwork. For better results 

the calculated width of the tracks and the month are also taken into the classification. 

The procedure is very similar to the procedure of 3.2. The difference between them is 

the number of classes. There are mainly four classes of processes in agriculture (TOLL, 

2013). In addition, there are several operations, which are not falling into those classes, 

like swathing. These operations are included in a fifth class. Again, a decision tree is 

trained by the means of the described variables. As seen in fig. 3, the accuracy results 

for all classes are sufficient. A RUSBoosted decision tree was also used for this classifi-

cation step, because of the equally accuracies for each class. When the class of the 

fieldwork is identified, an implement fitting to this class and track width is assigned. After 

that, the matching machine is added to this implement.  

The validation for the first step of the algorithm was possible because the difference 

between the two classes is obviously visible in the plots. Nevertheless, this approach 

does not work for the second step of classification. Visual inspection of the accuracy is 

possible, but not fully reliable. This full validation has to be done via the users feedback.  

 

Figure 3: Confusion Plot of a RUSBossted tree classifier showing the prediction accuracy for 
each trained class 
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4 Discussion 

The algorithm developed is basically able to classify the work processes of a farm. The 

approach is capable of assigning different types of fieldwork. The accuracy of a correct 

result is at least 75% for a process from the farm, from which the training data comes 

from. The classifying approach can be transferred to other farm businesses but does 

not provide the same good results yet. A reason can be the choice of the parameters or 

the fact, that not every possible variable is yet discovered or used. Additionally, a higher 

number of observation used for the training could help to raise the accuracy. Fig. 4 illus-

trates the correlation between the number of observation used for training and the accu-

racy of the training result. 

 

Figure 4: Correlation between the number of observations and prediction accuracy of the 
RUSboosted tree of classification step 1 

 

In addition, a safeguard could help to make the approach more robust. A possible con-

cept would be to analyse if the assigned work type and implement fits to the crop and 

the actual month. The crop sequence and the course of action for a specific crop is 

needed. 
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Abstract: This paper presents the use of a mobile manipulator, a robotic arm translat-

ing on a guide, to achieve autonomous data acquisition on crops in a field. The redun-

dancy imposed by this platform is managed using a collection of concurrent control 

laws, weighted in real time to increase the end-effector workspace, and optimize the 

point of view for data acquisition. This opens the way to full mobile manipulation using 

an autonomous robot holding the system. 

Key words: advanced control, mobile manipulator, phenotyping, motion coordination, 

agriculture robot. 

 

1 Introduction 

In order to improve crops yield and reduce the environmental impact of agriculture, 

phenotyping, and more generally plant monitoring, appears to be a major challenge. 

Indeed, thanks to regular data acquisition (e.g. pictures of plants), information such as 

disease detection or growth monitoring can be retrieved (MAHLEIN, 2016). This infor-

mation can help observing the resistance of different varieties of a plant to a same dis-

ease, or it can also help reducing the area where a treatment against a disease needs 

to be used. However, the study of phenotype implies to frequently acquire data in the 

field, which is a repetitive and onerous task. An interesting way to collect data appears 

to be the use of robots, such as aerial drones (LIEBISCH et al., 2015) or mobile robots. 

The latter can act closely to crops and autonomously in the field, and make Precision 

Agriculture arises as a new agriculture standard (BLACKMORE, 2016). 

As working in the fields involves covering large area, redundant robots seem to be a 

suitable solution since kinematic redundancies allow their workspace to be extended 

(MADSEN et al., 2015). Moreover, improvements achieved in the area of off-road robotics 

are paving the way to the use of robot manipulators for plant treatment (MANN et al., 

2014). The gathering of mobile robots and manipulators allows not only extending the 

workspace of the robot, but also increasing tasks variability and reducing execution 

time. Then, the coordination between mobile robot control and arm servoing is a matter 

of great concern (BROCK et al., 2016). This paper proposes a control framework for the 

use of this kind of robot in an agricultural context. 

Dealing with redundancy issues can be achieved in different ways. Indeed, the system 

can first be seen as one redundant system or two coupled sub-systems and the redun-
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dancy can be managed by adding extra tasks to be achieved, or criteria optimisation. In 

(FRUCHARD et al., 2006), an approach based on adding an extra task for omnidirectional 

and non-holonomic platform is developed. The idea is to execute a manipulation task, 

and at the same time, if it is compatible, ensure the avoidance of the arm joints limits. 

Criteria optimisation can be found in (YAMAMOTO & YUN, 1994), where the manipulability 

measure (YOSHIKAWA, 1985) is applied to the robotic arm to find a preferred configura-

tion in which the arm must remain as long as possible, while the system is following a 

trajectory. Similarly, in (BAYLE et al., 2003), the measure of manipulability has been 

adapted to a non-holonomic mobile manipulator, and directly applied to the system con-

trol to solve the operational motion planning problem. In (EGERSTEDT & HU, 2000), two 

coordination terms, based on the distance between the end-effector and the centre of 

the mobile base, are implemented in the curvilinear abscissa of the trajectory following 

formulation. All those aforementioned approaches are applied to motion planning, but in 

(OGREN et al., 2000), a reactive control is implemented. The coordination of both parts 

of the mobile manipulator is achieved by means of a coordination factor, applied on the 

trajectory following of the end-effector, and through the mobile base velocity profile, de-

fined in relation to the distance between the end-effector and the mobile base. The ap-

proach proposed here is similar to the latter, but with only one coefficient for both parts, 

and decoupled redundancies along the different axis. 

In our work, the objective is to achieve phenotyping in an open field, using a vision sen-

sor attached to the end-effector of a robot manipulator, mounted on a motorized linear 

axis (see Fig. 1). The main aim is to detect several diseases on beet leaves. For this 

purpose, the same plant must be observed from different points of view, in order to find 

the best one to retrieve relevant plant features. Given this statement, the idea is to max-

imize the arm workspace to enable the change of position and orientation of the sensor 

around a plant. Also, it is sometimes more convenient not to move the mobile platform if 

the goal can be reached by the arm alone, to avoid disturbances, such as vibrations, 

which will impact the vision. The approach presented here then views the system as a 

combination of two subsystems, namely the robotic arm and the mobile platform. The 

controls of both parts are coordinated by means of a weighting law that distributes the 

motion between both parts of the mobile manipulator, so as to optimize the workspace 

of the robotic arm as it is centred above the plant. 

 

2 Materials and Methods 

2.1 Robotic system overview 

The system used in this project to phenotype plants has been developed by Robotnik. It 

is composed of a 6-dof robotic arm (UR5, Universal Robots, Denmark), mounted on a 

translating platform, which can be seen as a half-gantry (see Fig. 1). To acquire images 

of the crops, a vision sensor is attached to the end-effector of the robotic arm manipula-

tor. In our case, we use a color camera (VLG-40C, Baumer Optronic, Germany). The 

control of the robot is made with Ubuntu 14.04 and uses the Robot Operating System 
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(ROS-Indigo) middleware. All the algorithms used were programmed in a combination 

of Python and C++ programming languages. The acquisition frame rate of the camera is 

set on 18 fps.  

 

2.2 Modelling and notations 

First, the following notations will be used throughout the paper. We denote then: 

 q – the vector of the joint-space coordinates of the robotic arm, 

 r0 – the joint variable of the mobile platform, corresponding to the position of the 
mobile support on the linear axis, 

 X =  [
R3×3 P3×1

01×3 1
] – the transformation matrix representing the pose of a point in 

the global frame, composed of a rotation matrix R3×3 and a position vector P3×1. 

We then use superscripts to define the state of the variables, ∙𝑑 for desired value and 

∙𝑎𝑐𝑡 for actual, and subscripts to specify the element the variable refers to. For example, 

𝑋𝐸𝐸
𝑑  stands for the desired pose of the end-effector. 

A modelling of the robotic arm has been defined using the Denavit-Hartenberg modified 

convention presented in (KHALIL & DOMBRE, 1999), from which the two following models 

can be extracted: 

 kf – the forward kinematics model, s.t. XEE = kf(q), 

 ki – the inverse kinematics model, s.t. q = ki(XEE). 

This last model allows finding the desired joint coordinates 𝑞𝑑 from the desired end-

effector pose 𝑋𝐸𝐸
𝑑 . 

 

 

 

Figure 1: Robotic platform for phenotyping 
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2.3 Motion coordination 

In this section, motions of both parts are calculated. Since the system is redundant, 

extra constraints are needed in order to generate control. A weighting law has been 

developed in order to assign a motion to the arm, the platform or both, depending on the 

position to reach.  

In the first place, the desired motion is computed from the data sensor, as being 

proportional to the error between the barycentre and the centre of the image. That 

desired motion is only a translation along the three axis x, y and z, noted ∆𝑇. From 

there, the desired position can be easily expressed as the sum of the actual position of 

the end effector and the desired translation 𝑃𝐸𝐸
𝑑 =  𝑃𝐸𝐸

𝑎𝑐𝑡 +  Δ𝑇 = (𝑥𝐸𝐸
𝑑 , 𝑦𝐸𝐸

𝑑 , 𝑧𝐸𝐸
𝑑 )𝑇 . 

Then, we have the desired pose of the end-effector, noted as: 

𝑋𝐸𝐸
𝑑 =  [

𝑅𝐸𝐸
𝑑 𝑃𝐸𝐸

𝑑

01×3 1
],       (1) 

With 𝑅𝐸𝐸
𝑑  the desired orientation of the end-effector expressed as a rotation matrix, 

and 𝑃𝐸𝐸
𝑑  the desired position of the end-effector computed earlier, in the global frame 𝑅0. 

From this position 𝑃𝐸𝐸
𝑑 , limits of the arm workspace can be retrieved (Fig. 2). All that 

must be known is the radius of the workspace 𝑅𝑤𝑠, which can be expressed as a 

function of the arm features and the desired height of the end-effector 𝑧𝐸𝐸
𝑑 . As long as 

the end-effector desired position is within its workspace, the limits are expressed as: 

𝑌𝑙𝑖𝑚,1/2 = ± √𝑅𝑤𝑠
2 − 𝑥𝐸𝐸

𝑑 2
.       (2) 

If the values 𝑌𝑙𝑖𝑚 are not null, a representation of the distance between the desired 

position of the end-effector and the closest limit can be computed by: 

𝑒𝑦 =  
2𝑦𝐸𝐸

𝑑

|𝑌𝑙𝑖𝑚,2−𝑌𝑙𝑖𝑚,1|
.       (3) 

This equation represents the distance between the desired position and the workspace 

of the arm along the y-axis within [−1;  1]. The sign of 𝑒𝑦 provides an indication of the 

direction in which the mobile platform has to move in order to centre the arm workspace 

above the plant. Based on that value, a coefficient 𝜆 can be computed in order to 

manage the redundancy along the y-axis. It is expressed as: 

𝜆(𝑒𝑦) =  {
0.5 (tanh (𝜇 𝜋 (𝑒𝑦 − 𝜂)) + 1) if 𝑒𝑦  ≥ 0,

0.5 (tanh (𝜇 𝜋 (𝑒𝑦 + 𝜂)) − 1) else.        
   (4) 
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Where 𝜇 and 𝜂 are two parameters that change the behaviour of the function. The first 

one represents the absolute value of the threshold at which the value of 𝜆 changes, 

so 𝜂 ∈  ]0; 1[, and the second one affects the slope of the hyperbolic tangent in such a 

way that the higher the value, the more abrupt the transition. To guarantee continuity in 

the vicinity of 0, the condition 𝜇 𝜂 > 1 must be satisfied. 

The wanted behaviour here is to move only the arm when 𝜆 is null and move only the 

axis when 𝜆 = ±1. Then, the motion of the platform must be proportionate to 𝜆, while the 

motion of the arm to 1 − |𝜆|. The coordinates of the platform can be easily expressed as 

Cartesian coordinates, so the coefficient 𝜆 can directly be applied to the element of the 

coordinates on y-axis, such that 𝑟0
𝑑 = 𝑟0

𝑎𝑐𝑡 + 𝜆 Δ𝑇𝑦. Regarding the arm, the control has 

been chosen to be made in the joint-space, so the aim here is to find the desired joint 

values. Once the coefficient to weight the motion along the y-axis has been computed, a 

coefficient matrix can be defined, such that: 

Λ =  [

𝜆𝑥 0 0
0 𝜆𝑦 0

0 0 𝜆𝑧

],      (5) 

Where 𝜆𝑖 with 𝑖 = 𝑥, 𝑦 or 𝑧, represents the weighting coefficient for the 𝑖-axis. Since the 

next step is to compute the inverse kinematics model of the arm regarding the desired 

pose, the coefficient in the matrix must be chosen from the point of view of the arm 

motion. So basically, 𝜆𝑦 = 1 − |𝜆|. Then, the desired position can be re-evaluated taken 

into account those coefficients, in such a way that: 

 

𝑃𝐸𝐸
𝑛𝑑 =  Λ𝑃𝐸𝐸

𝑑 .       (6) 

With this new desired position, the joint-space coordinates of the robotic arm can be 

computed using the inverse kinematics model: 

𝑞𝑑 = 𝑘𝑖(𝑋𝐸𝐸
𝑛𝑑).       (7) 

Figure 2: Top view of the workspace of the robotic arm (grey area) at a desired elevation 𝑧𝐸𝐸
𝑑  
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Finally, the desired position of the mobile support 𝑟0
𝑑 and the desired joint coordinates of 

the arm 𝑞𝑑 being known, the control can be computed and sent to the system (KHALIL & 

DOMBRE, 1999). 

 

3 Results and discussion 

The tests have been conducted on the system shown in Fig. 1. They consist in moving 

the system according to the detection of a plant, so that the camera is centred above its 

barycentre. The orientation of the camera is constrained such that the camera is facing 

the ground and that the wrist of the arm is directed outward. In our case, where there is 

only one redundancy along the y-axis, the different coefficients of the Λ matrix and the 

parameters of the function 𝜆(𝑒𝑦)  are defined such that 𝜆𝑥 = 1, 𝜆𝑦 = 1 − |𝜆|, 𝜆𝑧 = 1, µ =

4.0, 𝜂 = 0.5. 

An image processing is implemented to provide the plant barycentre and also the radius 

of its circumscribed circle, by the use of thresholding. Assumptions made at that point 

are that there is only one plant to be detected in the camera field, and that the ground is 

not green.  

Fig. 3 to 5 correspond to a test where the system is firstly set in an initial position, and 

the plant is positioned outside the arm workspace. They show the Cartesian velocities 

of the end-effector in the arm base frame (Fig. 3), the velocity of the axis (Fig. 4) and 

the value of 𝜆 (Fig. 5). As it can be seen in the latter, the motion can be divided into 

three parts: the first one between 5 and 10 s., where 𝜆 is almost equals to 1, then 

between 10 and 15 s. is the transition of the value of 𝜆, and last, after 15 s., where 𝜆 is 

almost 0. 

During the first part, Fig. 3 shows that there is almost no motion of the end-effector 

along the y-axis, its velocity along that axis is represented by the black solid line, and at 

the same time, the linear axis moves at its maximum speed. That behaviour is 

consistent with 𝜆 being equal to 1. Also, the motion along the x-axis, whose velocity is 

represented by the black dotted line, is not impacted by the coefficient reducing the 

motion on the y-axis. Through the transition period, the axis speed decreases as the 

value of 𝜆 (Fig. 4 & 5). On the contrary, the linear velocity of the end-effector on the y-

axis is increasing. Finally, as 𝜆 is null, only the arm is moving, and its speed slowly 

decreases until the arm stands still above the plant. 

Results presented above shows that this weighting coefficient matrix permits the distri-

bution of the motion onto both parts of the system, depending on the position of the goal 

to reach. It also allows avoiding disturbances caused by the motion of the mobile base 

on the gantry, by limiting its motion only if necessary. At the end of this movement, the 

arm is centred above the plant and in its workspace along the y-axis. An execution of a 

trajectory changing the orientation of the camera is then allowed, to observe the plant 

from different points of view. 
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Moreover, this method does not impact the motion along the other axis and can be 

adapted to systems with higher redundancy degrees. 

 

4 Conclusion 

The work presented in this paper allows controlling a mobile manipulator to acquire data 

in open field to analyse the plants and detect potential anomalies, by providing a way to 

manage redundancies. Our contribution was experimented on a system composed of a 

6-dof robotic arm and a gantry, but the method presented here can be adapted to a sys-

tem with additional redundancies, since coefficients on x and z-axis can be added. For 

further works, experiments in actual conditions have to be conducted. Also, an image 

Figure 3: End-effector velocity 

Figure 4: Linear axis velocity 

Figure 5: Lambda value 
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quality assessment can be added to the image processing to find the best view to re-

trieve relevant information.  
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Abstract: A network comprised of Robotic Total Stations allows the continuous tracking 

of a moving reflector even if obstructions interfere with the line-of-sight. The following 

paper presents a real time network system that connects two instruments, the Leica 

TS30 and TS16, which communicate with a central computer while tracking a moving 

360° reflector. These are positioned in the same coordinate frame and track the reflec-

tor in a synchronized manner. If the line-of-sight of one instrument is interrupted, the 

total station switches into a passive state and will continue to ‘‘blindly’’ track the reflector 

until a new line-of-sight is reestablished. To verify the system’s performance, two differ-

ent scenarios are shown. In the first case, a reflector is fixed on a calibration rail and is 

travelling with constant speed. The second case analyzes an irregular movement de-

scribed by a moving person. In each scenario, obstacles interrupt the line-of-sight in a 

controlled or random manner. The outcomes put a light on the achieved positioning 

quality and the tracking process while obstructions occur. 

Key words: Robotic total station network, synchronized measurement, target tracking 

 

1 Introduction 

Robotic Total Stations (RTS) are used for a wide range of tracking, positioning and 

classical surveying applications due to their capability of precisely measuring angles 

and distances. The most important prerequisite is a continuous line-of-sight between 

reflector and instrument that is not allowed to be interrupted during the tracking pro-

cesses. Since continuity rarely occurs on fast changing environments like construction 

sites, the alternative of a RTS network system can overcome these drawbacks.  

For more than 25 years RTS have been available on the market and for about 20 years 

they have been used for kinematic applications like machine control and guidance 

(STEMPFHUBER & INGENSAND, 2008). Recently developed instruments overcome many 

issues regarding tracking speed with the help of hardware improvements like piezo or 

magnetic motors (MÖSER et al., 2012). Other problems like the internal synchronization 

of the measurement data (SCHWIEGER et al., 2010) are reduced to negligible dimen-

sions. Aside from the reachable high positioning accuracy, these are some of the rea-

sons why processes that demand such accuracies in real time use RTS, a fact that has 

also been proven by BEETZ (2012) in simulations.  
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According to the European GNSS Agency Marketing Report (GSA, 2017), GNSS based 

guiding systems have a high quota of implementation in machine guidance, but for 

many purposes the accuracy is still not sufficient and the use of RTS remains the only 

solution. Experiments like those from SAMA & STOMBAUGH (2014) successfully made use 

of RTS to assess the accuracy of GNSS positioning systems in kinematic applications.  

The idea of connecting and synchronizing total stations is not new, but currently there 

are only a few publications that handle this subject and the benefits of such systems 

remain on a theoretical level. MAO et al. (2013) developed a similar system, but there 

are no conclusions about system accuracy, reliability or its limitations.  

Trying to fill this gap, the current paper briefly presents the RTS network system, illus-

trating the main concept of the system’s architecture, determining and evaluating the 

position using adjustment theory and demonstrating its capabilities through two labora-

tory tests. Results show that even if one line-of-sight is interrupted, the kinematic meas-

urement may continue, given that at least one RTS tracks the reflector.  

 

2 System description 

2.1  Concept 

Having one RTS in a guidance system limits the positioning accuracy to the instru-

ment’s technical specifications and leads to a limited area of use. Multiple networked 

RTS (Fig. 1), on the other side, can enhance the accuracy through an optimal meas-

urement configuration and assure a non-interrupted tracking process.  

          

      Figure 1: Robotic Total Station Network 

 

A central computer, further referred to as server, facilitates the multidirectional data flow 

between each client (RTS) and itself. During the active tracking phase, the calculated 

position is stored and simultaneously made available for the other RTS. The two Leica 

RTS are connected with the server through a serial cable connection and use the Leica 

GeoCOM interface to communicate with the later described LabView software. 
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2.2 Software 

The functional model can be summarised through the flowchart shown in Fig. 2 and is 

implemented in the graphical programming software LabVIEW from National Instru-

ments.  

         

Figure 2: Flowchart of the real time robotic total station network software 

 

After introducing the number of RTS or clients, the program will launch a control panel 

for each instrument with individual functions such as connection check, automatic free 

stationing, current reflector position and state of system. Although only two RTS were 

used for testing the system, an extension to more total stations is possible (LAATSCH, 

2015).  

In a first stage, a common coordinate reference network of points (local or global) must 

exist for the free stationing. Afterwards, the user has to manually aim at the later moving 

target. Instrument functions such as ATR (KLEEMAIER et al., 2016) help to find the reflec-

tor and are further used during the tracking loop. The reflector positions are measured 

at a rate of 10 Hz and transferred into a depository based on the first in-first out principle 

(GEORGI & METIN, 2014). As a common reference for each position, a timestamp is allo-

cated to the measured values. During the uninterrupted tracking process, the RTS is in 

the active state. If the line-of-sight is interrupted, the tracking stops and in that moment 

the program changes the RTS status to passive and checks the depository for a current 

available reflector position provided by another RTS. If this is available, the program 

transforms the absolute coordinates in polar coordinates and uses these angles to 

guide the RTS telescope towards the moving reflector until the obstruction does not in-

terfere with the line-of-sight. In case that no position is available, prediction algorithms 

based on the reflector’s last known positions and travelling speed are used to guide the 

telescope and search for the target. If one of these operations is successful and the re-

flector has been relocated, the active tracking loop is restarted. In case of failure, the 

user must manually aim at the reflector once more. 
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2.3 Scenario Tests 
Basically, once the target has been locked, it can be fixed on any moving object. To re-

strict the possible spectrum of tests, two that resemble many applications have been 

chosen. The first one uses a carriage on which a reflector is fixed while moving on a rail. 

Fig. 3 gives an overview of the conducted experiment and shows areas of the trajectory 

where both or only one RTS were in active or passive state respectively. Two reflectors, 

the Leica GRZ101 and GRZ4 360° prisms, were used in consecutive measurements to 

test the system’s performance. For specific details about reflector properties and its in-

fluence on position, see LACKNER & LIENHART (2016).  Measurements were also taken 

without obstructions and are used to illustrate the improved accuracy of this configura-

tion. Any real construction machine describes a similar movement, namely travelling at 

low speeds and without sudden direction changes. 

 

Figure 3: Overview of RTS Network in the first scenario 

 

On the other side, if the system is used for kinematic applications that involve irregular 

movements or quick direction changes, like an operator carrying a reflector on a meas-

urement pole or tracking and guiding of an UAV (MAXIM et al., 2017), the reachable ac-

curacy and reliability need to be evaluated. The second scenario includes variable 

speeds and interruption of the line-of-sight during a random walk. 

 

3 Performance evaluation 

Asserting the quality of a measurement in engineering geodesy can be done in multiple 

ways by either using reference values and calculating differences to have a measure for 

control or evaluating the precision by using standard deviations. The rail serves as line 

of reference having coordinates determined by a laser tracker (API Radian). Lateral de-

viations to this line are considered as quality indicators for the tracking process. Another 

way to evaluate the position is by individual standard deviations. These are determined 

either by law of propagation of variance (KAHMEN, 2006) if one RTS is available, or by a 

least square adjustment if two or more RTS are available.  

 

3.1 Lateral deviation  

In an ideal case, differences between the reference rail and RTS measurements should 

be zero, but because of random errors, differences occur and can be roughly defined 
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with the help of technical specifications. Both RTS are precision total stations and show 

an angle measurement accuracy of 0.3 mgon and 0.15 mgon, whereas the distance 

measurement accuracy in tracking mode is √(3mm)2 + (1ppm)2 (LEICA GEOSYSTEMS, 

2018). During the measurement, it is possible to separate the measured data for each 

instrument and visualize the respective differences. Fig. 4 presents the differences be-

tween the reference positions (zero) that were determined with the laser tracker and the 

two RTS measurements. Only the X-axis is taken as comparison because the rail is 

perpendicular to this coordinate direction.   

Figure 4: Lateral deviations in comparison with laser tracker measurements (zero reference) 

 

It can be observed that the use of two RTS reduces the total deviation (middle) and of-

fers improved position accuracy for the moving object. The current measurement setup 

is similar to theodolite measurement systems, often used in industrial measurement for 

high accuracy demanding tasks. Because of the high angle measurement accuracy, 

well-conditioned intersection angles lead to error minimization. This is why coordinates 

determined by intersection will have a better quality than those through polar point de-

termination using one RTS only. If there are more than two RTS in the network, the best 

position is obtained by an adjustment. 

 

3.2 Adjusted results 

Having two directions, two distances and two zenith angles measured from two different 

station points, allowed the calculation of the point positions through a least square ad-

justment. Station points are considered reference points and the observed points are 

defined as new points having the timestamp as their name. One indicator for the posi-

tioning quality is the 3-dimensional Helmertian error of position (NIEMEIER, 2008). 

The individual standard deviations are determined after an adjustment of the two RTS 

measurements and in case of line-of-sight interruption, law of propagation of variance is 

used to calculate the Helmertian error of position. Fig. 5 presents the magnitude of 

these standard deviations in each case. These vary between 1.3 mm and 1.9 mm in 

case of no obstructions and from 1.3 mm to 4.8 mm with obstructions. 
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Figure 5: Helmertian error of position in a two way trip without obstructions (left) and with ob-
structions (right) 

 

Another method of analyzing accuracy is with the help of confidence ellipsoids. After the 

aforementioned adjustment, the variance and covariance of each point coordinate are 

known and used to determine the size and orientation of the confidence ellipsoids. The 

smaller the semi-axes of the ellipsoids, the better the positioning quality. Ratio between 

semi-axes is also a quality indicator, and spheres (3D) or circles (2D) resemble a good 

conditioned measurement configuration. Orientation of the ellipsoids gives information 

about the distribution of the variances. These parameters are all dependent on network 

configuration and instrument measurement accuracy and will vary in shape according to 

the point distribution in space, like in the setup shown. 

In the first scenario, when both RTS are tracking, semi-axes of the confidence ellipses 

(here 2D representation) have an average value of 2.6 mm and achieve a circle like the 

form in the middle of the rail (Fig. 6 left). If only one instrument is tracking, semi-axes 

reach a maximum of 10.7 mm and ellipses are elongated as can be seen in Fig. 6 right. 

In transition areas, semi-axes show jumps in magnitude of up to 7 mm. 

 

 

 

 

 

 

Figure 6: Confidence ellipses after network adjustment without obstructions left and with ob-
structions right (calculated and represented with JAG3D) 

 

The second scenario involved reflector movements at variable speeds and lead to posi-

tioning errors that are larger than expected. The reflector position was apparently falsi-

fied by both RTS measurements. In the moment current research is undertaken to de-

termine the cause of this problem and possible improvements. Another drawback in this 

case, is that prediction algorithms fail to correctly redirect a passive RTS if the last 

known positions do not represent a predictable movement, a fact that will be further dis-

cussed. 
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3.3 Reflector tracking speed 

Tracking speed is constrained by two main hardware limitations; firstly the angle meas-

urement frequency rate and the turning speed of the telescope. For the TS generation, 

a radial speed of up to 20 km/h at 1 km distance (KLEEMAIER et al., 2016) is achievable. 

The currently presented system incorporates two RTS with different motorization tech-

nology. The TS30 can rotate with a speed of up to 200 gon/s, whereas the TS16 has a 

maximum rotation speed of 50 gon/s and restricts the RTS Network System to this limit. 

At a constant range of 5 m this means a maximum linear speed of ca. 14 km/h and at 

30 m of ca. 85 km/h, and increasing linearly up to a certain range limited by the ATR 

function and distance measurement unit (GRIMM et al., 2015). 

 

Figure 7: Confidence ellipses for random walk 

Another aspect that is notable during the “blind” tracking is that after losing sight of the 

reflector, the software changes the status of that RTS to passive and starts sending 

commands that direct the telescope towards the predicted position of the target. This 

takes time and currently, for each necessary angular increment and telescope turn, be-

tween 1 up to 1.5 s are elapsed. To overcome this dead time a Kalman-Filter is imple-

mented that uses the last 20 reflector positions (epochs) to determine the future position 

of the reflector. Depending on the application, this number can be adapted. One reason 

for using this is that the prediction bypasses the RTS serial connection problem of han-

dling and executing one command at a time, thus compensating for the dead times 

necessary to process commands. 

 

4 Conclusions and perspectives 

Using a network of RTS for tracking and guiding in kinematic applications leads to con-

tinuous tracking of a moving object, even in case of a line-of-sight interruption. The tests 

showed that while both RTS were tracking, the Helmertian error of position for con-

trolled motion did not exceed 2 mm. If only one RTS was active, this error rose up to 

almost 5 mm, but the tracking processes still continued. This becomes especially im-
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portant when a construction machine like an asphalt paver depends on RTS measure-

ments for guidance. Another advantage of the presented system is that a larger number 

of RTS that are well distributed in the area of interest offer a better positioning availabil-

ity, as seen in the experiment with obstructions, and lead to high data redundancy.  

The Achilles’ heel of the currently presented system was discovered through the second 

scenario where rapid and irregular reflector movements eventually stopped the continu-

ous tracking process and lead to position falsification. To overcome and improve some 

issues, perspective experiments foresee a larger number of RTS in the network and the 

possibility of adding total stations from other manufacturers to the network. Another 

possible improvement is reducing the reaction time of the “blind” RTS and the usage of 

image information in the target identification process (ERHART & LIENHART, 2017). Such 

enhancements may lead to a more frequent use of real time robotic total stations net-

work, not only in machine guidance and control, but also other applications that require 

high positioning accuracy in real time. 
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Abstract: For agricultural tasks related to precision farming, accurate in-field positioning 

is a necessity. Although the accuracy of some centimetres that the real time kinematic-

global navigation satellite system (RTK-GNSS) can provide is adequate for many appli-

cations, the demand for higher in-field accuracy at a millimetre level is increasing. A de-

vice that is gaining a lot of attention for its increased accuracy is the robotic total station 

(TS). Aiming at using the TS under realistic conditions for dynamic in-field positioning, 

its accuracy was assessed utilising an industrial robotic arm. Straight AB lines but also 

U-turn and Pattern-8 experiments were performed. The horizontal and vertical relative 

cross-track error (XTE) between the TS and the robotic arm data was calculated for var-

ious speeds and for two different positions of the TS. From the results, it was evident 

that as the speed increased so did the horizontal relative XTE. Changing the position of 

the TS from in line to perpendicular, in respect to the direction of motion, proved to re-

sult in a higher accuracy. The maximum mean horizontal relative XTE value of all exper-

iments was 4.01 mm for Pattern-8, which also had the maximum value for the 95th per-

centile, i.e. 12.86 mm. 

Key words: 3D positioning; cross-track error; in-field accuracy; robotic arm; total station 

 

1 Introduction 

Over the last decades, the use of real time kinematic-global navigation satellite system 

(RTK-GNSS), which offers position accuracy at the centimetre level, has widely ex-

panded introducing new possibilities to agricultural applications. Nevertheless, there has 

been always a demand for even more accurate in-field positioning at the millimetre lev-

el. The RTK-GNSS is not accurate enough, especially in the vertical direction. This level 

of accuracy is necessary when aiming to increase the level of automation in agricultural 

tasks. An example is the area of plant phenotyping using autonomous vehicles 

(RUCKELSHAUSEN et al., 2009), where data fusion from various sensors are used to cre-

ate a three-dimensional (3D) reconstruction of crop plants. Although vision systems 

have been developed aiming to provide such a high accuracy by fusing information from 
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different images, usually a positioning system is utilised to georeference the acquired 

images (ROSE et al., 2016).  

A device with a higher accuracy than the RTK-GNSS is the total station (TS), which 

could be utilised to provide position data when this level of accuracy is demanded. 

Commonly, this device is used in the domain of civil engineering and provides a higher 

accuracy compared to satellite-based positioning systems.  

The use of a TS for accurate 3D positioning related to agricultural applications is in-

creasing the last years. This can be seen from the research papers that are being pub-

lished and utilise TSs for ground-truth (VOUGIOUKAS et al., 2016; VROEGINDEWEIJ et al., 

2016). An important issue regarding data synchronisation when assessing the GNSS 

with a TS has also been discussed by SAMA et al. (2013) and a hardware method for 

time-stamping these asynchronous data was introduced.  

The question that arises is if the TS can replace the GNSS for accurate in-field 3D dy-

namic positioning. In a research by PARAFOROS et al. (2015) the TS was utilised to as-

sess in-field positioning provided by RTK-GNSS and inertial measurement unit (IMU) 

fused data. It was concluded that the TS could also be used for carrying out precision 

agriculture-related applications that require high accuracy. Nevertheless, this high accu-

racy of the TS needs to be determined and quantified under realistic conditions. 

The aim of the paper is to assess the 3D accuracy of a TS from an agricultural-related 

perspective, in order to be used for dynamic in-field positioning when sub-centimetre 

accuracy is required, but also when a satellite-based solution is not available due to re-

flection or shading errors caused by high trees or buildings. The novelty of the present-

ed methodology lies in the fact that it examines the accuracy of the TS measurements 

under dynamic and realistic outdoor conditions, compared to indoor laboratory environ-

ment like previous studies (KIRSCHNER & STEMPFHUBER, 2008). Furthermore, except 

straight AB lines, other patterns are examined, i.e. U-turn and Pattern-8, which are usu-

ally followed when performing in-field agricultural-related tasks.  

 

2 Materials and Methods 

A Trimble SPS930 (Trimble, Sunnyvale, USA) universal TS was used to track a Trimble 

MT900 prism, which was mounted on the end effector of a TX200L robotic arm (Stäubli 

International AG, Pfäffikon, Switzerland) (Fig. 1). The specific robotic arm is placed on 

the rooftop of the John Deere European Technology Innovation Centre (Kaiserslautern, 

Germany).  
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Total station

Prism

Robotic arm

 

Figure 1: The total station that was used to track a prism on a robotic arm (photo: John Deere 
GmbH & Co. KG, Intelligent Solutions Group, Advanced Engineering, modified). 

 

2.1 Performed experiments 

The experimental design is presented in Fig. 2. An AB line was performed with three 

different speeds, i.e. 50 mm s-1, 200 mm s-1, and 500 mm s-1. For these measurements, 

the TS was placed in the same line as the AB line (Fig. 2a). The AB line with a speed of 

500 mm s-1 was repeated but this time the TS was placed perpendicular to the AB line 

(Fig. 2b). Without moving the TS, the speed of the robotic arm was increased to 1000 

mm s-1 and, both a U-turn and a Pattern-8 experiment were performed as can be seen 

in Fig. 2c, and d, respectively.  

AB
Total Station

(a)

Total Station

(c)

(b)

Total Station

(d)

Total Station

AB

V

S

x

y

z
.

l,50 l,200 l,500AB , AB , AB p,500AB

p,1000U-turn

U

p,1000Pattern-8
 

Figure 2: Performed experiments: (a) AB line with 50 mm s-1, 200 mm s-1, and 500 mm s-1 and 
the TS placed in the same line, (b) AB line with 500 mm s-1 and the TS placed perpendicular to 
the AB line, (c) U-turn with 1000 mm s-1, and (d) Pattern-8 with 1000 mm s-1. The red arrows 

indicate the starting point and direction of each experiment. 
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The red arrows in Fig. 2 indicate the starting point and direction of each measurement. 

The coordinate frame of the robotic arm O(x,y,z) (Fig. 2b) indicates the origin and the 

direction of the positive values of the three axes (the z axis was pointing upwards), and 

was the same for all performed experiments. The data acquisition software of the robot-

ic arm was configured to provide the position data of the same point where the prism 

was attached on. 

The Trimble SCS900 Site Controller software, running on a Trimble Yuma 2 tablet com-

puter, was used to acquire and store data from the TS. In order to have all measure-

ments of the TS in the same coordinate frame (robotic arm frame), independently of its 

position, the TS was stationed using the known coordinates of the points A and B. By 

placing the prism at these points and by inserting the corresponding x , y , and z  val-

ues of the robotic arm to the SCS900 software of the TS, a rigid transformation was per-

formed that transformed all subsequent measured points by the TS, to the O frame. The 

3D position data were transmitted from the TS as long as the current measurement var-

ied at least by 1 mm from the previous one but with a maximum frequency of 20 Hz. 

 

2.2 Accuracy assessment 

The relative cross-track error (XTE) was chosen as an accuracy assessment criterion for the TS 

data, as it is a common method for assessing positioning systems (EASTERLY et al., 2010) and 

takes into consideration the measured points of the assessing device. The geometrical repre-

sentation of the relative XTE is presented in Fig. 3. The XTE is the horizontal distance d  be-

tween any measured position of the prism ( , )t t t

j j jp x y  ( 1,..., )j k  and the specific path of the 

recorded robotic arm end effector ( , )r r r

i i ip x y  ( 1,..., )i  , where k  and   is the total number 

of measured points for the prism and the robotic arm, respectively.  

 

r

q

d ( , )r r

i ix y

( , )
j

t t

jx y

1 1( , )r r

i ix y 

 

Figure 3: Geometrical representation for calculating the 2D distance of the measured by the TS 

prism positions ( , )t t t

j j jp x y  from a line connecting the two reference points 
1 1 1( , )r r r

i i ip x y    

and ( , )r r r

i i ip x y  as they were provided by the robotic arm. 
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In order to find the relative XTE for all measured data, a heuristic algorithm was devel-

oped, which for each measured prism point t

jp  calculated the distance to all points of 

the robotic arm that belonged to the same path. Subsequently, the two robotic arm 

points with the smallest distance to t

jp  were chosen as 
1

r

ip 
 and r

ip , to find the relative 

XTE. In order to find the horizontal relative XTE in the xy -plane, the procedure was as 

described above but for the vertical relative XTE in the xz -plane, all values of the y  

axis were replaced with the corresponding values of the z  axis.  

The vector r  that is perpendicular to the line connecting the two reference points 
1

r

ip 
 

and r

ip  is calculated by  

 1

1( )

r r

i i

r r

i i

y y

x x





 
  

  
r . 

Considering a vector q  from the prism position t

jp  to the first robotic arm point 
1

r

ip 
 de-

fined by 

 1

1

i

r t

j

r t

i j

x x

y y





 
  

  

q , 

then the relative XTE is equal to the distance d , which is given by projecting q  onto r  

provided by 

 
1 1 1 1

2 2

1 1

( )( ) ( )( )
ˆproj

( ) ( )

r t r r r r r t

i j i i i i i j

r r r r

i i i i

x x y y x x y y
d

x x y y

   

 

    
    

  
r

r q
q r q

r
, (1) 

where r̂  is the unit vector in the direction of r . 

 

3 Results and Discussion 

3.1 AB lines 

The boxplots for ABl,50, ABl,200, ABl,500, and ABp,500 relative XTE are presented in Fig. 4. 

For the ABl,50 experiment as the for the ABl,200, the whiskers of the horizontal and ver-

tical relative XTE did not exceed 2 mm, and 3 mm, respectively, except for some outli-

ers that can be seen in the vertical XTE. It is evident that the speed increase from 50 

mm s-1 to 200 mm s-1 did not significantly affect the accuracy of the TS. The former had 

a slightly better accuracy compared to the latter. For ABl,500 experiments, the whiskers 

of the horizontal relative XTE had a maximum value of around 3 mm with ABp,500 having 

a slightly better performance. Nevertheless, for the ABp,500 a high number of outliers is 

present, reaching up to 16 mm (not illustrated for better comparison of results). 
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Figure 4: Boxplots for (a) horizontal and (b) vertical relative XTE for the AB lines. The outliers 
are also presented with red crosses.  

 

3.2 U-turn and Pattern-8 

The acquired data from the TS and the robotic arm from the U-turn and Pattern-8 exper-

iment are illustrated in Fig. 5a and b, respectively. Even from these illustrations, it is 

obvious that the vertical absolute deviation of the TS from the end effector did not ex-

ceed one centimetre since the entire length of the z-axes of Fig. 5a and b is 10 mm. 

Nevertheless, a difference of the TS data compared to the robotic arm data is easily 

noticeable and specifically for the Pattern-8 experiment, where a higher error can be 

noticed at the turning sections compared to the straight parts.  

 

Figure 5: (a) U-turn and (b) Pattern-8 position data from the TS (red) and the robotic arm (blue). 
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3.3 Comparison of all experiments 

In Table 1, the summary statistics for the horizontal and vertical relative XTE for all per-

formed experiments are presented. It is evident that when the speed was increased, the 

horizontal and vertical relative XTE also increased. A big difference can be seen be-

tween the U-turn and Pattern-8 experiments. Even though these two experiments were 

performed with the same speed, and without moving the TS, the latter had a larger 

mean horizontal relative XTE by 92%, while the standard deviation and the 95th percen-

tile were larger by 313% and 199%, respectively. This was because the Pattern-8 ex-

periment had a bigger part of the route with turning sections than the U-turn experiment, 

resulting in a higher error. Regarding the vertical relative XTE, the increase in mean, 

standard deviation, and 95th percentile for these two experiments was smaller, up to 

5%, 10%, and 12%, respectively.  

 

Table 1: XTE error for all performed experiments. 

Experiment 
Horizontal relative XTE [mm] Vertical relative XTE [mm] 

Mean St. dev. 95th perc. Mean St. dev. 95th perc. 

ABl,50 0.67 0.31 1.16 0.92 0.57 1.99 

ABl,200 0.69 0.37 1.24 0.89 0.51 1.72 

ABl,500 1.70 0.65 2.53 1.51 0.89 2.99 

ABp,500 0.86 1.21 2.06 1.46 0.74 2.54 

U-turnp,1000 2.09 1.24 4.30 1.65 0.90 3.00 

Pattern-8p,1000 4.01 5.12 12.86 1.73 0.99 3.35 

       

4 Conclusions 

From the performed experiments, the resulted accuracy of the TS is very promising in 

replacing the RTK-GNSS where a sub-centimetre accuracy of the 3D dynamic position 

is required. The mean value of the relative XTE for all experiments had a maximum val-

ue of 4.01 mm. The only experiment where the relative XTE exceeded the sub-

centimetre level was for Pattern-8 with a value of 12.86 mm for the 95th percentile of 

the measurements. Of course, this is an extreme case of in-field movement compared 

to most of the normal agricultural tasks. Finally, changing the position of the total sta-

tion, from in-line to perpendicular to the direction of the prism movement, improved the 

horizontal accuracy of the provided information. 
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Abstract: In this work we investigate the possibility to use state of the art approaches 

for deep learning on point clouds for matching segments, sensed from objects under 

varying perspectives, with the aim to obtain positional information for relative position-

ing. Therefore we propose a method and evaluate it using a custom real world data set. 

Key words: Multi Agent 6DOF SLAM, Relative Positioning in GNSS-degraded Terrain, 

Automated Machine Cooperation, Deep Learning on Point Sets, Segment Matching, 

Representation Learning 

 

1 Introduction 

Relative Positioning is one of the key challenges when it comes to automation of coop-

erative machinery e.g. within agricultural processes. Nowadays most types of applica-

tions are relying on satellite navigation solely. This is feasible since large scale machin-

ery is used, but developing of techniques for relative positioning using environmental 

sensors only, has had a rising upwind within the past few years, due to multiple rea-

sons.  

Lot of researchers nowadays are developing novel concepts for machinery of the future. 

Many of them feeling quite confident thinking of many small fully automated machines, 

which achieve comparable performance – with respect e.g. to area output – by teaming 

up (MINßEN et al., 2017). Due to economic reasons, development of such systems is 

strongly coupled with developing novel sensor concepts, since GNSS systems, which 

are capable of achieving accuracy within few centimeter range, may account for a large 

share of the total cost of a single machine. 

 

1.1 Learning Representations on Point Sets 

Representation learning on images has become state of the art in many different appli-

cations like Classification (KRIZHEVSKY et al., 2012), Semantic Segmentation (SHEL-

HAMER et al., 2014), Recognition – e.g. face recognition (OUYANG et al., 2014), Pose 

Estimation (XIANG et al., 2017) and so on. Therefore mostly CNN are used, which re-

quire a regular structure of processed data.  
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To be able to apply similar techniques to three dimensional space, one has to ensure a 

regularly structured data representation, as well. For those purposes, typically a Voxel 

representation is chosen. Therefore the space is subdivided into volumetric pixels with 

uniform edge length, accumulating all data points falling within the same Voxel. Then it 

is possible to extend conventional convolution operations, using kernels with extension 

to all three dimensions. Those networks mostly are used for tasks like 3D shape recog-

nition (WU et al., 2015) and shape completition (DAI et al., 2017). 

Using representations like Voxels comes along with multiple shortcomings. First of all 

one has to convict the natural representation obtained by a three dimensional sensor, 

which usually is an unorganized point set, rather than regularly arranged Voxels. Sec-

ond to mention is an irreversible loss of information caused by accumulation of single 

data points within Voxels. 

Point clouds can be interpreted as an unordered set of vectors from Euclidian space, 

leading to the following main properties. 

The ordering of the points does not include any information, thus the approach has to 

be invariant to the ordering of the points in the set. A Point Cloud incorporates metric 

directly. Neighboring points therefore form a meaningful subset. Approaches shall in-

corporate the local structure of the point cloud. Point Clouds are invariant to certain 

transformation like rotation and translation. Therefore learned representations have to 

be invariant to the same transformations. 

To be able to operate directly on point clouds, recently few approaches have been pub-

lished. Since PointNet (QI et al., 2016) realizes a straightforward implementation acquir-

ing state of the art capabilities, this approach shall be discussed briefly within the next 

chapter. For experiments we also implemented PointNet++ (QI et al., 2017) and Dynam-

ic Graph CNN (WANG et al., 2018). In fact our pipeline does not require a special struc-

ture of the feature abstraction layer, rather any algorithm, which is capable of abstract-

ing a global feature vector from a point set, can be used. 

 

1.2 PointNet 

One of the very first approaches to run CNNs directly on point clouds is PointNet by (QI 

et al., 2016). The CNN’s structure is shown in fig. 1. The main idea is to train a Multi-

level Perceptron (MLP) on each point within the point set with shared weights. Multiple 

MLPs are used leading to a feature vector of dimension 1024 for each point.  

 

Figure 1: Design of the PointNet CNN by (QI et al., 2016) 
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To acquire a global feature vector describing the whole point set, a max pooling layer is 

used, which is a symmetric function, thus producing the same output no matter the or-

dering of points.  

To achieve invariance with respect to rotation, they use two Spatial Transform Networks 

(JADEBERG et al., 2015), which learns a 3 x 3 rotation matrix over the input point set and 

a 64 x 64 matrix over midlevel features to align both. To avoid the network to learn un-

desirable transformations (such as scaling), they introduce an additional loss, which 

penalizes the transformation matrices for not being orthogonal. 

Despite of its comparatively simple design, PointNet has shown to be high-performant 

dealing with high level tasks like classification. Under slight modifications, it can be used 

for other high level tasks like point wise segmentation or part segmentation, too.  

 

2  Materials & Methods 

A typical processing pipeline to extract positional information from environmental sen-

sors is shown in fig. 2. In a first steps segments are generated for raw readings of the 

environment. After segments are retrieved passing them to an appropriate matching 

algorithm yields to an estimate of the probability of segments being sampled from the 

same physical object. This information can then be used to obtain geometric information 

using appropriate algorithms for geometric verification – e.g. RANSAC (FISCHLER et al., 

1981). 

In this paper we focus on the matching part of the pipeline shown in fig. 2. Therefore we 

propose an algorithm for Representation Learning directly on Point Sets, which is eval-

uated within a real world outdoor scenario.  

 

 

Figure 2: Typical processing pipeline to generate relative position information from readings of 
environmental sensors 

 

2.1  Segmentation 

Following fig. 2, the first step of the processing pipelines is to extract segments. Ex-

tracted segments can vary substantially depending on the underlying methodology. 

Segments can be approximated directly on information space, but mostly are calculated 

using an appropriate feature space. 
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In 2D Computer Vision features are calculated using the image gradient convolved with-

in a sliding filter. To acquire scale invariance, images are typically processed with multi-

ple resolutions using e.g. image pyramids for down sampling. Typical feature response 

functions are built to find corners of any type. Segments are then generated by fitting 

models – e.g. lines – to correspond best with the appearance of detected features. The 

goal always is to retrieve homogeneous areas. Therefore algorithms like Region Grow-

ing are used. By now most of the common 2D operations for segmentation have been 

ported to 3D and are publically available e.g. in the Point Cloud Library (RUSU, 2011) 

 

2.2  Matching 

Figure 3 shows different segments acquired from the same physical objects. On the left 

hand side two different point clouds acquired from physically the same tree and the 

point cloud generated by registering both clouds are shown. The right hand side of the 

figure shows two different point clouds captured from physically the same car and the 

combined point cloud. 

After retrieving segments, matching multiple of them yields to positional information 

from the current sensor readings. When an agent maps a specific area and recognizes 

objects within its current field of view, which were mapped before, e.g. one can close 

loops on large scale trajectories, which leads to significant reduction of drift. 

Furthermore object and especially place recognition can be used to relocalize an agent, 

which has lost its positional tracking and whose localization lacks of external positional 

information such as GNSS (often referred to the “kidnapped robot problem”). Using ad-

vanced methods it is even possible not only to relocalize an agent within an area it has 

mapped on its own, but place recognition is a useful method when multiple agents have 

to be aware of their relative position e.g. to be able to share information within a con-

sistent frame of reference. 

 

 

 

Figure 3: Segments obtained from different perspectives. Left: Two segments acquired from 
the same tree under different perspectives and the resulting registered point cloud. Right: Two 
segments acquired from the same car under different perspectives and the resulting registered 

point cloud. 

 



 Schmiemann, Schattenberg, Frerichs 

Bornimer Agrartechnische Berichte  I  Heft 101  I  ISSN 0947-7314 
 

56 

Traditionally hand crafted features are used to describe segments. Those features can 

be both, based on the local neighborhood of each point or based on the global shape. 

Most of the features used on point clouds are derived from 2D features. Another often 

used approach is based on the eigenvectors and –values of the local neighborhood, 

representing the linearity, planarity and sphericity respectively (DEMANTK et al., 2011). 

Based on arbitrary descriptors, a classifier can be trained, which has to be able to dis-

tinguish segments acquired from different physical objects and to recognize segments, 

which are sensed from the surface of the same object. This approach has shown to 

work quite well, if the segments to match are sampled from roughly the same portion of 

the surface of the same object, but is likely to fail, if the segments are sampled under 

varying conditions e.g. from differing perspectives or with other sensing modalities. 

 

2.3  Learning Models for Segment Matching 

We propose a matching pipeline as shown in fig. 4. The first step of the processing 

pipeline is uniform sample data points from each segment, since segments can contain 

arbitrary number of points and the feature abstraction CNN requires a fixed amount of 

points. In our experiments we use 1024 points. For sampling process we do allow re-

picking, to be able to process segments containing less points. 

Then n segments are combined to a batch. For experiments we chose a batch size of 

16. The batches are then fed to a CNN to abstract global feature vectors for the seg-

ments. For experiments a feature dimension F of size 1024 is chosen. 

 

 
 

Figure 4: Our processing pipeline to generate matching predictions. From each segment a fixed 
number of points is uniformly sampled. Then features are calculated using a propitiate CNN. 

Feature vectors are then combined and a Multilevel Perceptron is trained to predict probabilities 
for segments to be sampled from same physical object. 
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Afterwards all point clouds within a batch are concatenated along the feature dimen-

sions. This yields to a tensor of size [n, n, 2*F]. To obtain predictions for potential 

matches, a MLP is added on top, which reduces the feature dimensions successively in 

three layers (channel dimensions: 512, 256, 1). Before the last layer a single dropout 

layer is implemented. For experiments the probability to keep the neurons is chosen to 

0.7. 

We train the MLP by feeding it with labels 0 - for non-matching segments - and label 1 - 

for matching ones. A sigmoid activation function at the very last layer of the MLP guar-

antees all predicted values to be in the range from 0 to 1, representing the probability 

for a positive match. Furthermore a sigmoid like activation function for the output repre-

sents best the binary labels since we only feed binary labels at train. 

To evaluate accuracy we choose the 95% quantile. Therefore a prediction for a positive 

match is treated as correct, if predicted probability is greater or equal to 0.95. On the 

other hand a negative match is treated correct, if the predicted probability is equal or 

less 0.05. 

 

2.4  Experimental Setup 

We evaluated our proposed approach in a real world scenario. Fig. 5 shows two maps 

of different physical areas, which were segments generated from for matching. 

 

  

Figure 5: On the left: Map of an outdoor area consisting of four trajectories captured by inde-
pendent agents. The complete travelled distance is about 500 meters. We segmented 86 differ-
ent objects at a total of 119 instances for training purposes. Data from this map is used for train-

ing the CNN. On the right: Map of another area consisting of three trajectories captured by in-
dependent agents. The complete travelled distance is about 300 meters. We segmented 11 

different objects at a total of 27 instances. Data from this map is used for evaluating of the CNN. 

 

On the left hand side the maps of four trajectories of independent agents are drawn in 

dark blue, light blue, dark green and light green. Objects segmented are either shown in 

red or yellow, whereby yellow signals objects, which were observed by multiple agents 

from different perspectives (at multiple instances), while red indicates objects, which 
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were observed only by a single agent. The numbers of objects and instances segment-

ed on both maps is shown in Table 1.  

 

Table 1: Objects and instances in train and evaluation data set 

 

- 

Training data set Evaluation data set 

Objects Instances Objects Instances 

Facades 26 30 3 8 

High vegetation 30 50 4 11 

Low vegetation 5 6 1 2 

Cars 25 33 3 7 

 

On the left hand side we travelled a loop around a building complex, which is located in 

the center of the map. The trajectory on the top is generated while travelling a road, 

which has plenty trees on each side and multiple cars parking on each side of the 

street. On the right hand side of the left map, the agent is travelling between buildings 

reaching a parking lot on the bottom and then travelling along the rear side of the build-

ing complex back to the street. 

The map on the right hand side consists of two parallel trajectories from top to bottom, 

which were crossed by a third trajectory from left to right. At the center of the map, we 

are crossing a parking lot which is surrounded by multiple buildings. 

For training and for testing objects of four different classes have been extracted. Those 

are: facades of buildings, high vegetation (trees), low vegetation (bushes) and cars. 

Since our goal is to match objects under differing perspectives, to be able to match ob-

jects across different agents, we extracted objects on all different trajectories, if present. 

Thus results in extracting multiple instances of the same object. 

 

3 Results 

To evaluate the performance of our proposed pipeline different experiments were pro-

cessed. In first experiments the influence of the loss function has been analyzed. Re-

sults are presented in fig. 6. The matching pipeline (ref. fig. 4) has been trained with the 

Mean Square Error Loss function (often referred to L2 Loss), with Mean Absolute Error 

Loss function (often referred to L1 Loss) and the Huber Loss function. It can be seen, 

that the model convergences for all three loss functions. Furthermore one can see that 

convergence speed is the highest and overall performance is best when using L1 Loss. 

In a second experiment the goal was to analyze, if overall performance can be boosted 

by using additional information. First the influence of data augmentation while training 

was examined. This method is often used to reach higher degree of generalization ca-

pabilities of the model in particular if the training data set is small. To extend the training 
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dataset the segments were rotated, scaled and shifted randomly. Furthermore single 

points were jittered randomly and points were dropped randomly. In fig. 7 it can be seen 

that this procedure will reduce convergence speed while training but increases the 

overall performance slightly. Additionally it was tested, if transferring additional data is 

useful. Therefore the feature abstraction layers of the CNN were trained using the fa-

mous ModelNet40 (WU et al., 2015) dataset was used. After full convergence the last 

layers were replaced with the matching MLP as shown in fig. 4. While training the 

matching MLP the feature abstraction layer was fixed. As shown in Figure 7 this ap-

proach did not lead to a worse overall performance. 

In a last experiment different CNNs for feature abstraction were tested. Besides Point-

Net (QI et al., 2016), the PointNet++ (QI et al., 2017) and the DGCNN (WANG et al., 

2018) was trained and tested. As can be seen in fig. 8, the PointNet++ shows the high-

est convergence speed while training but is evaluated as worst in generalizing to the 

unseen test data. DGCNN is based on constructing a nearest neighbor graph. Features 

are generated by calculating distances to the nearest neighbors and a MLP is trained on 

top of that. 

 

Figure 6: Training process (black) and test-
ing with unseen data (red). L2-Loss (solid 
line), L1-Loss (dash dot line) and Huber-

Loss (dotted line) 

Figure 7: Training process (black) and 
testing with unseen data (red) with pre-

trained feature abstraction layer (dash dot 
line), without data augmentation (dotted 

line) 

 

Figure 8: Training process (black) and testing with unseen data (red) of matching pipeline with 
different CNNs for feature abstraction. PointNet (QI et al., 2016) (solid line), PointNet++ (QI 

et al., 2017) (dash dot line) and DGCNN (WANG et al., 2018) (dotted line) 
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Table 2 summarizes the results of the different experiments. As can be seen PointNet 

with L1 Loss leads to best overall performance with respect to matching accuracy. 

 

Table 2: Summarized results of the different experiments. 

- Matching 
Accuracy 

- Matching 
Accuracy 

PointNet with L2 Loss 92,2 % PointNet w/o Data Augmenta-
tion 

91,2 % 

PointNet with L1 Loss 93,1 % Pretrained on ModelNet 88 % 

PointNet with Huber 
Loss 

91,2 % PointNet++ 90,4 % 

  DGCNN 91,5 % 

 
 
4 Conclusion 
It could be shown, that Deep Learning approaches operating on point clouds directly 

can be used for segment matching. The experiments have shown, that our proposed 

method is performing quite well and is able to recognize segments sensed from same 

physical objects. Furthermore it could be shown, that no additional preprocessing of 

extracted segments is mandatory and segments with arbitrary number of points can be 

processed equally. 
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Abstract: In this paper, we address the problem of localizing mobile robots based on 

range-only measurements from low cost Ultra-Wide-Band (UWB) sensors placed in in-

frastructure and other robots. The cooperative localization problem is simplified and only 

rely on these range measurements. Each robot perform a Split Intersection Covariance 

Filter to fusion the highly correlated information of its own sensors. The consistency and 

the cooperative aspect of this solution are shown in a simulation with 3 heterogeneous 

robots and several static UWB tags. We also demonstrate its feasibility with a real ex-

perimentation with 1 robot and several UWB tags. 

Key words: cooperative localization, range only localization, UWB, Split Intersection 

Covariance, v2v localization, v2i localization 

 

1 Introduction 

In agriculture as in many economic fields, mobile robots can improve productivity. If the 

milking robot has brought a lot in our farms other tasks can also be automated such as 

the distribution of food. To do that we need mobile robots that can move as well inside 

and outside cow barns. So that these robots can move they must be able to locate each 

moment with a very good reliability. Localization is a requirement in a lot of mobile ro-

bots applications. A robot is able to locate itself using its own proprioceptive or extero-

ceptive sensors. However the quality of this localization will depend of the accuracy and 

the availability of these sensors. When several robots work in a same environment, the 

localization can be cooperative if the robots are able to detect each other and exchange 

their information. A solution can be to gather the sensors measurements of the robots 

and perform a centralized localization. This solution allows keeping the correlation be-

tween the robot state vectors but the algorithm cannot be performed in real time if the 

number of robot is high and this can also lead to high bandwidth usage. (ROUMELIOTIS & 

BEKEY, 2002) and (MARTINELLI, 2007) have proposed an approach to distribute the com-

putation between the robots. 

The modern cooperative localization solutions tend to focus on the decentralized ap-

proach which has better real-time performance but is suboptimal (CARRILLO-ARCE et al., 

2013), (LASSOUED et al., 2014). If the robot pose estimations are computed inde-

pendently, the correlation between these poses will be lost. A Kalman filter cannot cor-
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rectly handle this problem because the robot pose estimations will be considered as 

fully independent and the estimation will be inconsistent. One of the solutions is to avoid 

reusing the same information several times. (KARAM et al., 2006) proposes an approach 

where each robot computes a local estimation based on its sensors and a fused estima-

tion including all other robots information. Only the local estimation is shared with other 

robots. Another solution (CARRILLO-ARCE et al., 2013) is based on the Covariance Inter-

section Filter (JULIER et al., 2009). In this filter, the correlation between the measure-

ments and state vector are considered as fully dependent. This corresponds to a pes-

simistic version of the Kalman Filter. This dependency can be configured more precisely 

with the Split Covariance Intersection Filter and allows making better pose estimation (LI 

& NASHASHIBI, 2013), (WANASINGHE et al., 2014). 

In most of these approaches, a measurement with another robot corresponds to a pose 

measurement. This type of measurement allows exploiting all the information of the 

state vector of the other robot. In practice, it is difficult to measure a pose difference. 

This can be done using LIDARs (HOWARD, 2002), (HOWARD, 2003) or camera (DAVIN-

SON, 2000) but these solutions require data processing and impose constraints on the 

robots. The main problem mentioned in this paper is the ability to perform a cooperative 

localization with heterogeneous robots and with robot-to-robot or robot-to-infrastructure 

measurements. The sensor able to make these measurements must be easily embed-

ded in any object.  

 

Figure 1: Illustration of the beacons (robots or static object) and the range measurements of its 
UWB sensors 

 

The Ultra Wide Band (UWB) sensor meets these constraints. It allows making range 

measurement from another UWB sensor with a centimetric precision and it is low cost. 

However, the technology of this sensor does not allows exploiting the classic trilatera-

tion process because the range measurement requests cannot be done simultaneously 

(GONZÁLEz, 2009), (LANEURIT et al., 2016). Moreover, it is well know that range only data 

lead to very non-linear functions that are difficult to handle for fusion. 

A measurement with a beacon involves the range measurement but also the current 

position estimation computed by the target beacon. With this generic architecture, the 

cooperative localization aspect is hidden behind these measurements: A robot does not 
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need to know if the target is a robot or an element of the infrastructure. This strategy 

simplifies the cooperative localization problem but it does not solve it. Suppose a static 

beacon has a non-negligible position uncertainty. A robot should make several meas-

urements from this beacon, but this induces an overuse of the position information of 

the beacon. A Kalman filter cannot correctly handle this highly correlated position uncer-

tainty because it will introduce inconsistency in the robot state estimation. Our solution 

is based on the Split Covariance Intersection filter which allows splitting the covariance 

matrix into independent and dependent covariance matrices (JULIER et al., 2009), (LI 

et al., 2013). In our case, the range measurement of a beacon can be considered inde-

pendent of the previous measurement but its position is very correlated to the previous 

one. 

 

2 Localization Algorithm 

From a general point of view, this algorithm acts as cooperative localization but for a 

robot, this is a classical fusion algorithm with simple robots measurements. In this ap-

proach, the localization of each robot is computed individually, thus the algorithm de-

scribed here will only concern the current robot. However, the same algorithm is applied 

to every other robot or beacons if needed. The localization problem is modeled by an 

estimation of the state Xk of the robot at the moment k. We use a bayesian approach 

based on the classical state model: 

𝑋𝑘 = 𝑓(𝑋𝑘−1, 𝑈𝑘 ,𝑊𝑘)       ( 1 ) 

𝑍𝑘
(𝑖)

= ℎ(𝑖)(𝑋𝑘, 𝑉𝑘
(𝑖))        ( 2 ) 

The evolution function f is based on the vector uk including proprioceptive information of 

the robot and the involved noise vector wk of the model. The function h(i) describes one 

of the observation model. This function allows to link the ith measurement vector zk(i) to 

the robot state Xk. This model also involves a noise vector vk(i). 

 

2.1 The fusion algorithm 

The fusion algorithm used in this approach is the Split Intersection Covariance Filter 

(SCIF). It is an alternative between the Kalman Filter (KF) and the Covariance Intersec-

tion Filter (CIF) (JULIER et al., 2009). The KF allows to estimate a dynamic state by 

merging informations from several sources. One of the particularity of this algorithm is to 

consider that every information is independent. Conversely, the CIF considers that eve-

ry information is highly correlated to another. The SCIF combines these two approaches 

to provide more flexibility in the control of the information correlation. 

In a standard KF, the estimate of a state Xk at the moment k corresponds to a pair (Xk|k; 

Pk|k ) where Xk|k is the state vector and Pk|k is its associated covariance matrix. 

𝑝(𝑋𝑘)~𝑁(𝑋𝑘|𝑘, 𝑃𝑘|𝑘)      ( 3 ) 
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In a SCIF, this matrix is cut in two parts: the independent covariance matrix P i,k|k corre-

sponding to the covariance of the state without correlation from any sources and the 

dependent covariance matrix Pd,k|k corresponding to the correlated one. 

𝑃𝑘|𝑘 = 𝑃𝑖,𝑘|𝑘 + 𝑃𝑑,𝑘|𝑘       ( 4 ) 

Thus the SCIF works with the triplet (Xk|k, Pi,k|k, Pd,k|k). This formalism is also applied to 

any information vector to fuse. For example, if the triplet (zk, Rik, Rdk) is a sensor meas-

urement, the matrix Rdk will contain the estimated part of its uncertainty correlated with a 

previous observation. 

 

2.2 The evolution model 

The robot state X is a vector containing the position x, y, z and the orientation of the 

robot at the moment k. 

𝑋𝑘 = [𝑥  𝑦  𝑧  𝜃]𝑘
𝑇       ( 5 ) 

The third geometric dimension is necessary because the UWB sensors can be placed 

to any height from ground and this height will affect the range measurement. However, 

in our experimentations, all robots move on a relatively flat ground, thus only the yaw 

angle is used for the orientation of the robot. 

There are various robot models but, in this paper, only the Ackermann model has been 

used. The proprioceptive informations of our robots correspond to the speed s and the 

steering angle  of the front wheels. These measurements are associated to the noise 

vector W. 

𝑈𝑘 = [𝑠 𝜑]𝑘
𝑇     𝑊𝑘 = [𝑤𝑠 𝑤𝜑]𝑘

𝑇      ( 6 ) 

Given the period t and the wheelbase of the robot L, the evolution function is: 

𝑓(𝑋𝑘, 𝑈𝑘,𝑊𝑘) = 𝑋𝑘 +

[
 
 
 
 

(𝑠 + 𝑤𝑠)𝛿𝑡 cos 𝜃
(𝑠 + 𝑤𝑠)𝛿𝑡 sin 𝜃

0

−
𝑠+𝑤𝑠

𝐿
𝛿𝑡 tan(𝜑 + 𝑤𝜑)]

 
 
 
 

𝑘

      ( 7 ) 

 

2.3 The observation models 

Different observation models based on different sensors are used in this approach but 

the main model rely the UWB sensor. These sensors can perform range-only meas-

urement zbk at the moment k but we add some contextual informations: the position of 

the target UWB and the uncertainty of this position. This uncertainty follows a normal 

distribution and can be modeled as a mean value bk and covariance matrix Bk . If the 

target beacon is static, its position have been fixed at its initialization. But if this beacon 

corresponds to a mobile object (like another robot), its position information is extracted 

from its current state estimation. 
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Without correlation management (KF) Without correlation management (KF) 

  
 

In both cases, a measurement will be correlated to previous measurements with the 

same target because its position information may change a little. This implies that the 

uncertainty of the target position must be processed as a dependent covariance. (Fig. 

2) illustrates the importance of this configuration. If the only information source of the 

robot localization is an unique beacon, the position estimation of the robot cannot be 

better than the beacon position estimation. 

Let (zb, Ri, Rd) be a range measurement with a target beacon. The noise vector V of 

this measurement contains the range measurement noise vr and also the beacon posi-

tion noise vector Vp ∈ ℝ3. Thus, zb is a scalar corresponding to the range measure-

ment.  

Figure 2: Evolution of the robot position uncertainty after several noisy range measurements 
from a beacon. With a standard KF, the position uncertainty of the beacon is used as a new 

information for each range measurement, thus the robot position estimation will lose its integrity. 
In the second case, the position uncertainty is considered as fully dependent on the robot state, 

thus the overconvergence is avoided. 

 

𝑅𝑖 = [𝜎𝑟
2 0

0 0
],            𝑅𝑑 = [

0 0
0 𝐵

]      ( 8 ) 

Ri, Rd contain the range measurement variance 𝜎𝑟
2 and the position covariance matrix of 

the beacon B. For a UWB sensor, the range measurement has a static error but the 

noise is white. The observation function hb of a range measurement uses the position of 

the target becon pb as a constant. Because the sensor of the robot used in this meas-

urement can be placed anywhere on the robot, this function also integrates a sensor 

position Ps. 

ℎ𝑏(𝑋, 𝑉) = ‖(𝑥, 𝑦, 𝑧)𝑇 + 𝑟𝑜𝑡(𝜃)𝑃𝑠 − 𝑃𝑏 − 𝑉𝑝‖ + 𝑉𝑟    ( 9 ) 

𝑟𝑜𝑡(𝜃) = [
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1
]       ( 10 ) 

A localization based on range measurement from individual beacon is unstable when 

the position uncertainty is significant because of the non-linearity of the model. That’s 

why we use low cost GPS to make a brieve estimation of the robot position. Let (Zg; Gi; 

Gd) be a position measurement from a GPS, the vector 𝑍𝑔 ∈ ℝ3 contains the measured 

position and Vg corresponds to the noise of this measurement. The measurements of 

this kind of sensor are easily disturbed by the environment and its noise cannot be con-
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sidered as white. It is possible to improve the model and integrate a bias parameter in 

the robot state to model more accurately its noise (TAO et al., 2013). Because we do not 

need to have an accurate model of this sensor, we only consider that a part of the co-

variance is dependent to previous measurements. 

Given the sensor position vector Pg, the observation function of a GPS is: 

ℎ𝑔(𝑋, 𝑉𝑔) = (𝑥, 𝑦, 𝑧)𝑇 + 𝑟𝑜𝑡(𝜃)𝑃𝑔 + 𝑉𝑔      ( 11 ) 

 

3 Results 

3.1 Simulation 

In this section, we present a simulation with 3 robots and several static beacons using a 

realistic simulator able to simulate robot physics and sensor noises. The simulation is 

performed in an agricultural context: the environment is a farm and vehicles used are 

adapted to this kind of land (Fig. 3).  

 

Figure 3: The 3D environment of the simulator (4D-Virtualiz): a farm, 2 RobucarTT (robot 1 & 3) 
and a tractor (robot 2) 

 

The configuration of the robots and the position of the static beacons allow testing the 

main characteristics of this approach. We use different robot sizes (a tractor and a 

smaller robot) and different sensor configurations (Table 1). For example, robot 1 has 

two UWB sensors and, consequently, increases the harvested information from its 

neighbours. The trajectory of the robots and the position of the other beacons allow test-

ing the localization in different circumstances. All robots will follow a path around the 

farm in a dynamic convoy. Most of the time, the robot 3 is used as an accurately local-

ized mobile beacon. The simulated RTK GPS used in this robot enable it to make al-

most perfect position measurements. The configuration of all sensors is presented in 

the (Table 2). 

Table 1: Characteristics of the robots 

Characteristic robot 1 robot 2 robot 3 

robot type Robucar TT tractor Robucar TT 

robot size (m) 2.63 × 1.23 × 1.35 5 × 3 × 2.95 2.63 × 1.23 × 1.35 

GPS type Low cost Low cost RTK 

UWB sensors 2 1 1 
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Table 2: Configuration of the simulated sensors  

Robot 1 & 2 

Parameter Value Unit 

odometry measurement freq 10 Hz 

std. dev. of linear speed 0.24 m.s-1 

std. dev. of steering angle 0.02 rad 

GPS measurement freq. 10 Hz 

std. dev. of GPS (x & y) 12 m 

beacons measurement freq. 10 Hz 

Robot 3 

odometry measurement freq. 10 Hz 

std. dev. of linear speed 0.24 m.s-1 

std. dev. of steering angle 0.02 rad 

GPS measurement freq. 10 Hz 

std. dev. of GPS (x & y) 0.12 m 

std. dev. of GPS (z) 0.3 m 

beacons measurement freq. 10 Hz 

Static beacons 

number of static beacons 6  

maximal range 25 m 

std. dev. of position (x, y & z) 0.2 m 

std. dev. of range measurement 0.15 m 

 

The simulation can be cut in 4 steps described in the (Table 3). All the state vectors of 

the robots are initialized to the center of the area and with a sufficiently high uncertainty 

to cover all the area. At the beginning, the GPS measurements of robots 1 and 2 allow 

to make a brief estimation of the position and correct the orientation of these robots af-

ter few seconds. Because of its low quality, these measurements cannot be used to 

make accurate localization but they limit the uncertainty of the state and thus, the non-

linearity phenomenon on the range measurements. In the third step of the simulation, all 

GPS sensors are disabled. This allows simulating an indoor localization. During this pe-

riod, the robot 3 has no advantage over the other robots. 

 

Table 3: Scenario of the simulation 

Time Description 

0 s 
Only GPS are enabled. This initialisation step allows to make a brieve estimation 
of the robot poses 

18 s 
GPS and UWB sensors are enabled. The robots start measuring each other. Lat-
er, the robots enter in the range of the first beacon. 

68 s 
Only UWB sensors are enabled. The robots can see simultaneously 1 or 2 static 
beacons. After 20 seconds, the robot 3 leave the range of all beacons. 

118 s 
GPS and UWB sensors are enabled. There is no more static beacons in range of 
the robots. 

 

The objective of this simulation is to validate the consistency of the pose estimation for 

all robots. The quality of the localization is measured through the distance between the 
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estimated pose of a robot and the real pose. A Monte Carlo procedure based on 100 

simulations has been used to improve the results.  

The mean and the standard deviation of these simulations are shown in (Fig. 4, 5 and 

6) During the first 18 seconds, the position error of robots 1 and 3 is significant because 

the GPS measurements are biased. However the high uncertainty of these measure-

ments allows to keep a consistent estimation of the pose. When the beacons measure-

ments start, the pose estimation becomes more accurate. When there is no visible static 

beacon, the accuracy of the pose estimation of the robots 1 and 2 is provided by the 

range measurement with the robot 3.  

 

Figure 4: The results of the localization of the robots 1. The curves correspond to the mean 
error of the pose estimation and its standard deviation for 100 simulations. 

 Figure 5: The results of the localization of the robots 2. The curves correspond to the mean 
error of the pose estimation and its standard deviation for 100 simulations. 

Position error: norm2(x,y) 

 Mahalanobis distance of the state vector 

 

Orientation error 
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Figure 6: The results of the localization of the robots 3. The curves correspond to the mean 

error of the pose estimation and its standard deviation for 100 simulations  

 

Figure 7: The determinant of the state covariance matrix for  each robot. This information gives 

a good estimation of the covariance matrix size 

 

The quality of this measurement is enough to make the measurements of a low cost 

GPS negligible but the best result happen when there are several static beacons within 

range. 

The Mahalanobis distance between the estimated vector (x, y, ) and the ground truth 

allows to evaluate the consistency of the localization. For a 3 degrees of freedom chi-

square random variable, the square root of the 5 % tail point is √χ3
2(0.95) = 2.8 . 

Because the mean Mahalanobis distance is always lower than 2.8, we consider that the 

result of the simulation is consistent for all robots (Bar-Shalom, 2004). However we can 

see that, sometimes, the accuracy of the robot position decreases. This occurs when 

the robot is not able to see more than one beacon. Consequently, the odometry noise 

cannot be corrected in all direction and the non-linearity of the range measurement pull 

the pose estimation off the ground truth. 

 

Determinant of the covariance (log scale) 

 

 

 

Position error: norm2(x,y) 

 
Orientation error 

 

Mahalanobis distance of the state vector 

 
 

 

 



6th International Conference on Machine Control and Guidance 

 

 

Bornimer Agrartechnische Berichte  I  Heft 101  I  ISSN 0947-7314 
 

71 

3.2 Real experimentation 

In this section, we present an experimentation with a real robot. The objective of this 

experimentation is to validate the accuracy of the localization with real UWB sensors. 

The second objective is to show that a range-only localization algorithm is an efficient 

solution to handle indoor and outdoor localization problem. 

The environment is similar to the simulated one but the beacons configuration is differ-

ent. The robot is equiped with a RTK GPS and two UWB sensors (Table 4). In the same 

way as the simulation, the GPS measurements will be disabled and the localization will 

become range only. In this experimentation, the trajectory of the robot begins with an 

outdoor environment and passes through a cow barn (Fig. 8, 9). The GPS will be tem-

porarily inoperable and then, the observations will be based on the UWB measurements 

with the static beacons placed in the barn. 

The results of this experimentation demonstrate that a localization based on range 

measurement from UWB sensor is a workable solution to the indoor/outdoor problem. 

We cannot go into detail about the accuracy of the indoor localization because these 

conditions don’t allow having a ground truth. However the uncertainty of the estimated 

pose and the trajectory of the robot indicate that the consistency is kept. The quality of 

the localization can also be studied when the robot moves towards the exit of the barn. 

At this point the RTK GPS can again give accurate measurements and the localization 

can be improved by this precise observations. In this experimentation, the very small 

jump in the localization after the fusion with the first GPS measurement show that the 

bias created during the range only period is low. 

 

 

 

Table 4: Characteristics of the robot 

Characteristic value 

robot type Minitract 

robot size (m) 2 × 1.2 × 1.5 
GPS type RTK 
number of UWB sensors 2 

 

 
Figure 8: The trajectory of the robot and the 

position of the static beacons. The localization 
algorithm is running and the robot is in the barn 

 
Figure 9: A picture of the robot in front of the 

entrance of the cow barn 
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Table 5: Configuration of the experimentation 

Robot 
Parameter Value Unit 

odometry measurement freq. 100 Hz 
std. dev. of linear speed 0.1 m.s-1 

std. dev. of angular speed 0.02 rad 
GPS measurement freq. 11 Hz 
std. dev. of GPS (x & y) 0.8 m 
beacons measurement freq. 10 Hz 

Static beacons 

number of static beacons 6  
maximal range 20 m 
std. dev. of position (x, y & z) 0.3 m 
std. dev. of range measurement 0.15 m 

 

4 Conclusion and future works 

In this paper we presented a localization algorithm based on range measurements from 

mobile or static beacons. If this algorithm is performed by several beacons, the localiza-

tion becomes cooperative thanks to the information exchange during the measurements 

with other beacons. This strategy allows generalize the vehicle to vehicle and the vehi-

cle to infrastructure localization problem and also hide the complexity of the cooperative 

localization. 

We have tested the algorithm in a simulation and a real experimentation with heteroge-

neous robots and various environment configurations. We show that this algorithm is a 

viable solution for indoor and outdoor localization and give reliable and precise results. 

However this work assumes that the robot pose estimation is sufficiently accurate at any 

time to avoid the linearity problem of the range-only measurements. This issue can be 

solved by using sensor able to make this first estimation. This algorithm can be im-

proved by implementing a solution able to handle this non-linearity and maintains the 

consistency of the localization in all cases. 

 

Acknowledgment 

This work has been sponsored by the French government research programm Inves-

tissements d’avenir through the RobotEx Equipment of Excellence (ANR-10-EQPX-44) 

and the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Un-

ion through the programm Regional competitiveness and employment 2007-2013 

(ERDF – Auvergne region), by the Auvergne region and by French Institute for Ad-

vanced Mechanics 

 

 

 



6th International Conference on Machine Control and Guidance 

 

 

Bornimer Agrartechnische Berichte  I  Heft 101  I  ISSN 0947-7314 
 

73 

References 

BAR-SHALOM Y, LI XR, KIRUBARAJAN T (2004): Estimation with Applications to Tracking and 
Navigation: Theory Algorithms and Software. John Wiley & Sons.  

CARRILLO-ARCE LC, NERURKAR ED, GORDILLO JL, ROUMELIOTIS SI (2013): Decentralized multi-
robot cooperative localization using covariance intersection. International Conference on In-
telligent Robots and Systems (IROS), IEEE.  

DAVISON AJ, KITA N (2000): Active visual localisation for cooperating inspection robots. Interna-
tional Conference on Intelligent Robots and Systems (IROS), vol. 3, IEEE.  

GONZÁLEZ J, BLANCO JL, GALINDO C, ORTIZ-DE-GALISTEO A, FERNÁNDEZ-MADRIGAL JA, MORE-

NO FA, MARTINEZ JL (2009): Mobile robot localization based on Ultra-Wide-Band ranging: A 
particle filter approach. Robotics and autonomous systems 57(5).  

HOWARD A, MATARK MJ, SUKHATME GS (2002): Localization for mobile robot teams using max-
imum likelihood estimation. International Conference on Intelligent Robots and Systems 
(IROS), vol. 1, IEEE. 

HOWARD A, MATARIC MJ, SUKHATME GS (2003): Putting the ’I’ in ’team’: An ego-centric ap-
proach to cooperative localization. International Conference on Robotics and Automation 
(ICRA), vol. 1, IEEE. 

JULIER SJ, UHLMANN JK (2009): General decentralized data fusion with covariance intersection. 
Handbook of Multi-sensor Data Fusion: Theory and Practice. 

KARAM N, CHAUSSE F, AUFRERE R, CHAPUIS R (2006): Localiza-tion of a group of communi-
cating vehicles by state exchange. International Conference on Intelligent Robots and Sys-
tems (IROS), IEEE. 

LANEURIT J, CHAPUIS R, DEBAIN C (2016): TRACKBOD, an accurate, robust and low cost sys-
tem for mobile robot person following. International Conference on Machine Control & Guid-
ance (MCG). 

LASSOUED K, FANTONI I, BONNIFAIT P (2015): Mutual localization and positioning of vehicles 
sharing GNSS pseudoranges: Se-quential bayesian approach and experiments. Interna-
tional Conference on Intelligent Transportation Systems (ITSC), IEEE. 

LASSOUED K, STANOI O, BONNIFAIT P, FANTONI  I (2014): Mobile robots cooperation with biased 
exteroceptive measurements. International Conference on Control Automation Robotics & 
Vision (ICARCV), IEEE.  

LI H, NASHASHIBI F (2013): Cooperative multi-vehicle localization using split covariance intersec-
tion filter. IEEE Intelligent transportation systems magazine 5(2).  

LI H, NASHASHIBI F, YANG M (2013): Split covariance intersection filter: Theory and its applica-
tion to vehicle localization. IEEE Transactions on Intelligent Transportation Systems 14(4). 

MARTINELLI A (2007): Improving the precision on multi robot localization by using a series of 
filters hierarchically distributed. International Conference on Intelligent Robots and Systems 
(IROS), IEEE. 

ROUMELIOTIS SI, BEKEY GA (2002): Distributed multirobot localization. IEEE Transactions on 
Robotics and Automation 18(5).  

TAO Z, BONNIFAIT P, FREMONT V, IBANEZ-GUZMAN J (2013): Mapping and localization using 
GPS, lane markings and proprioceptive sensors. International Conference on Intelligent Ro-
bots and Systems (IROS), IEEE.  

WANASINGHE TR, MANN GKI, GOSINE RG (2014): De-centralized Cooperative Localization for 
Heterogeneous Multi-robot System Using Split Covariance Intersection Filter. Canadian 
Conference on Computer and Robot Vision (CRV). 



 Stasewitsch, Blume, Schattenberg, Frerichs 

Bornimer Agrartechnische Berichte  I  Heft 101  I  ISSN 0947-7314 
 

74 

Comparison of controls for a stereo camera based reversing 
assistance system for vehicle trailer combinations 

Ilja Stasewitsch, Tobias Blume, Jan Schattenberg, Ludger Frerichs 

Institut für mobile Maschinen und Nutzfahrzeuge Technische Universität Braunschweig, Langer 
Kamp 19a, 38106 Braunschweig, Germany 

E-mail: i.stasewitsch@tu-bs.de, Tel.: +49 531 3912665 
 
 

Abstract: This paper will compare two control methods for a reversing assistance sys-

tem which are able to control the angle of the last vehicle trailer combination joint. One 

method is based on a feedback linearization of the combination with a reference-model 

control. The other method is a nonlinear model predictive control. Firstly, the compari-

son is executed in a simulation for the implementation of a suitable control scheme and 

preset the control parameters to verify control algorithms. For the studies on the real 

test vehicle the controlled angles are not measured directly with angle sensors. Instead, 

the angles are identified through a stereo vision camera and the iterative closest point 

algorithm. This algorithm calculates the angles by matching a model with the current 

scene. 

Keywords: 3D point cloud processing, feedback linearization, nonlinear model predic-

tive control, reference-model control, reversing assistance system, vehicle trailer com-

bination 

 

1 Introduction 

The trend in the agricultural and construction machinery industry is like in the automo-

tive industry to install more advanced driver-assistance systems. The main goal is to 

reduce the workload of truck drivers and farmers. One opportunity is to automate the 

reversing for combinations composed of vehicles with full trailer or two semi-trailer. A 

full trailer has a turnable front axle so that the two hitch and the front axle lead to two 

joints. A semi-trailer does not have a front axle but two coupled semi-trailers have two 

joints. The jackknifing between the vehicle and the trailer is a difficult circumstance for 

the driver during the reversing. With this assistant system the driver is able to control 

the full trailer, i.e. the driver is steering the trailer and the control strategy adjust the trac-

tor’s steering. Related literature handles either path tracking control (LAUMOND, 1993, 

BOLZERN et al., 2001) or considering only one semi-trailer (CHIU & GOSWAMI, 2012). De-

signing such a driver assist, the only suitable literature source is (SKLYARENKO et al., 

2013). A full-trailer coupled to a vehicle was here controlled by designing a control 

based on feedback linearization with a reference-model control (FBLC). The project 

team implemented initially this control strategy. Subsequent to the verification in the 

simulation, experiments on the test vehicle revealed that the dynamic of the FBLC is not 

satisfied. Therefore, the project team implemented a nonlinear model predictive control 
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(NMPC) because of the ability to consider the system constraints in the control. The 

constraints are important for this application because the system can get into an irre-

versible state. Only driving forward can restore that. 

 

2 Material and methods 

Fig. 1 illustrates the developed assistance system. A reference value for the angle be-

tween the drawbar and the trailer φT
ref is set by a joystick. By the help of φT

ref an equilib-

rium for angle between the tractor and drawbar φD
ref is calculated. A kinematic model of 

the system was used for calculation and the control methods (see section 2.1). A FBLC 

(see section 2.3) or a NMPC (see section 2.4) are used as the control method to gener-

ate a suitable steering angle φS. The robotics simulator Gazebo and a Fendt 724 were 

used as test environments (see section 2.5). At the Fendt 724 φT and φD are identified 

by a stereo vision camera “MultiSense S21” (see section 2.2). Using this modules in a 

control loop, the trailer can be steered with the joystick like a vehicle with front steering. 

 

 

Figure 1: Schematic overview of implemented control structure 

 

2.1 System modeling 

The design of a FBLC and a MPC needs because of their model based approach a sys-

tem model. This model has to describe for this application the system behavior in the 

reverse driving direction. The vehicle drive with small and constant velocities and the 

resulting slight accelerations occur only at the maneuver start. For this reason the dy-

namic of slippage and inertia does not have to be considered. These simplifications are 

sufficient regarding to the accuracy and using in a FBLC and NMPC. Especially, the few 

differential equations of the model are advantageous concerning the computation time 

at the NMPC. Fig. 2 depicts the schematic representation of a vehicle with a full trailer 

where the tow hitch is out of the vehicle’s rear axle. The following variables and pa-

rameters are used in this figure: 
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φS - Steering angle 

φD - Angle between vehicle and drawbar 

φT - Angle between drawbar and trailer  

vF - Velocity at the vehicle’s front wheels 

lV - Distance between vehicle‘s axes = 2.78 m 

lC - Length of the tow hitch = -0.76 m 

lD - Length of the drawbar = 2.53 m 

lT - Distance between the full trailer‘s axes = 3.03 m 

The differential equations 

φ̇D = (−
vF

lT
sinφD cosφT +

vF

lD
sinφT) cosφS

− (
vFlC
lVlT

sinφD sinφT +
vFlC
lVlD

cosφT) sinφS 

(1) 

φ̇T = −
vF

lD
sinφT cosφS +

vFlC
lVlD

cosφT sinφS −
vF

lV
sinφS (2) 

for the system model are taken out from (SKLYARENKO et al., 2013). Only the kinematic 

of angles φD and φT have to be considered, because a position control is not applied 

and the dynamic is ignored. Additionally, the steering is considered by a first-lag order 

lag element 

φ̇S = (𝑢 − φS)
1

TSteer
  (3) 

to get a more exact system behavior where u is the system input and 𝑇𝑆𝑡𝑒𝑒𝑟 =  0.35 𝑠 is 

the time constant for the vehicle’s steering dynamic determined by step responses. 

 

Figure 2: Planar bicycle model of vehicle with a full trailer 

 

2.2 Angle computation 

To compute the angles 𝛗𝐓 and 𝛗𝐃 we utilize the stereo vision camera MultiSense S21. 

This camera is placed on the roof of the tractor and bended so that the drawbar and the 

front wall are in the field of view. Fig. 3 shows an exemplary 3D image of the full trailer. 

The relevant parts of the trailer are the drawbar and the front wall. A model as a point 

cloud of each part is generated by applying thresholds to separate them from the sur-

rounding and irrelevant trailer parts. At each sampling time the relevant parts are filtered 
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from the depth image as the source point clouds for the iterative closest point algorithm. 

The iterative closest point algorithm was introduced in (BESL & MCKAY, 1992). Subse-

quently, these source point clouds are aligned with the reference point clouds (model) 

for each part in a separate ICP to get the transformation between the point clouds. From 

these transformation the angles 𝛗𝐓 and 𝛗𝐃 can be determined. 

 

Figure 3: Source and reference point clouds for the calculations of the angles 

 

2.3 Basics and implementation of the control based on feedback linearization 

The feedback linearization bases on the idea by ISIDORI (2013) to design a controller so 

that the nonlinearities are compensated. A respective state transformation linearizes the 

system behavior between the input and output and a linear control method can be used 

for the linearized system behavior. This method is valid for control-affine systems, which 

is usually the issue, and the basic idea is shown for a nonlinear control-affine SISO-

System with the states x, the system input u and the system output y 

�̇� = 𝐚(𝐱) + 𝐛(𝐱) u 

y = c(𝐱) 
(4) 

If a diffeomorphic state transformation 𝐳(𝐱) = [z1(𝐱)… zn(𝐱)]
T can be found, then the 

system (4) can be transformed to the nonlinear controllable canonical form ż =

[z2, … , zn, α(𝐱) + β(𝐱)u]T. With the aid of input u = (v − α(𝐱) ) β−1(𝐱) the system can be 

transformed into the linear state space representation 

�̇� = 𝐀𝐳 + 𝐁v (5) 

The system matrix A and the input vector B of Eq. (5) is present in the canonical 

Brunovský form 

A =

[
 
 
 
 
0 1 0 … 0
0 0 1 … 0
⋮
0
0

⋮
0
0

⋮
0
0

⋱
⋯
0

⋮
1
0]
 
 
 
 

, B =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

  (6) 

i.e. the input-output system linearization yield to a dynamic free system representation 

which consist only of an integrator chain. A state controller can be applied on the sys-

tem Eq. (5) to define the control dynamic. 
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For the system Eqs. (1) and (2) a diffeomorphic state transformation was found in 

(SKLYARENKO et al., 2013) but this transformation is restricted on the operating point. In 

spite of this restriction, the feedback linearization is properly functioning with a refer-

ence-model control strategy which is illustrated in Fig. 3. Here, a simulation model is 

controlled in the first control loop. The output of this controller is used as feedforward for 

the subsequent control loop that controls the actual system. The input of the second 

control loop is the system output of the first control loop. The second control loop only 

eliminates model errors of the first control loop and disturbances that affect it. Thus, the 

first control loop determines the reference behavior of the strategy. The advantage of 

this method is that the system model does not have to be invertible, especially if this is 

not possible. In this case the steering dynamic can be taken into account, even if no 

state transformation exists for this model extension. According to section 2, the dynam-

ics of a feedback linearized control loop can be arbitrarily defined. The linear transfer 

function  

G(s) =
1

s2 + 2Dw0 s + w0
2 (7) 

is used to determine the control loop dynamic by the state controllers for further tests. 

 

Figure 3: Schematic block diagram of control based on feedback linearization with a reference-
model control 

 

2.4  Basics and implementation of the nonlinear Model Predictive Control 

The NMPC is one of few nonlinear control methods, it is e.g. described detailed in 

(GRÜNE & PANNEK, 2011). Compared with other nonlinear model based control methods, 

it has a less complicated design process. Especially, if the system model gets large with 

several or even many inputs and outputs. NMPC can handle with every model which 

consists of ordinary differential equation. But it has the challenges to guarantee a global 

optimum of the optimization problem because the formulation due to the nonlinear mod-

els do not lead to a convex optimization. Calculation within real-time requirements is 

another challenge. The mathematical unprovable stability of this control law is another 

drawback. The mathematical formulation of the NMPC optimization is defined as 
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𝐦𝐢𝐧 𝐉  = ∑(‖𝐱𝐫𝐞𝐟(𝐤) − 𝐱(𝐤)‖𝐐
𝟐 + ‖𝐮(𝐤)‖𝐑

𝟐)

𝐍−𝟏

𝐤=𝟎

+ ‖𝐱𝐫𝐞𝐟(𝐍) − 𝐱(𝐍)‖𝐏
𝟐  (8) 

subject to 

𝐱𝐦𝐢𝐧 ≤ 𝐱(𝐤) ≤ 𝐱𝐦𝐚𝐱 ,                      𝐤 = 𝟎,… , 𝐍 (9) 

𝐮𝐦𝐢𝐧 ≤ 𝐮(𝐤) ≤ 𝐮𝐦𝐚𝐱 ,                     𝐤 = 𝟎,… , 𝐍 (10) 

𝐱(𝐤) = 𝐟(𝐱(𝐤 − 𝟏), 𝐮(𝐤 − 𝟏)),       𝐤 = 𝟎,… , 𝐍. (11) 

The inputs of the system 𝐮(𝐤) are optimized so that the states 𝐱(𝐤) have a minimal er-

ror to future reference values 𝐱𝐫𝐞𝐟(𝐤). The observation into the future has a finite horizon 

by N steps. The main advantage of NMPC is regarding the Eqs. (5) and (6) the ability to 

consider constraints of system inputs 𝐮𝐦𝐢𝐧, 𝐮𝐦𝐚𝐱 and states 𝐱𝐦𝐢𝐧, 𝐱𝐦𝐚𝐱 into the optimiza-

tion formulation. Due to model errors and disturbance a new optimization has to be exe-

cuted at each sampling interval. Only the first optimized input vector 𝐮(𝟎)  is applied to 

the controlled system to get a closed loop control, this is called moving horizon. 

The advantage of the NMPC is that every nonlinear model can be used, even there is 

no flat output. So, the Eqs. (8) - (10) can be used directly without any transformation. 

The system input u, i.e. desired steering angle, was restricted to the maximal physical 

limit of ±35°. The steering angle φS does not have to be limited, because the steering is 

modeled as a first order lag element. It cannot overshoot and u is already restricted. For 

both system angles, the constraints are chosen as followed |φD|, |φT| < 40°.For higher 

values of |φD|, |φT| the trailer jackknifed, i.e. the system gets into an unstable state. The 

control cannot push them afterwards to lower angles, so that the only option is to drive 

forward to get into a controllable state. The prediction steps N were chosen to 100 

steps, so that at a driving velocity of vF = 0.3 m/s and a sampling time of 0.2 s the pre-

diction length yield to 6 m. Simulation tests showed that this highly prediction is neces-

sary to get a stable control law. 

 

2.5  Description of the simulation and test environment 

Some details will follow in this subsection additional to Fig. 1. The simulation environ-

ment used was Gazebo (KOENIG & HOWARD, 2004), which has an interface to ROS 

(QUIGELY et al., 2009). As middleware, ROS communicates with various software pack-

ages that were also used for on the test vehicle Fendt 724. The steering and drive are 

controlled here via a CAN interface. The C++ library ACADO Toolkit (HOUSKA, 2011) 

was used for the implementation of the NMPC. The library calculates the required ma-

trices for the optimization offline, which otherwise have to be computed online. This is 

usually the bottleneck of a NMPC. The FBLC was designed in MATLAB/Simulink which 

has a ROS interface. As already mentioned, a MultiSense S21 was used as the stereo 

camera. A Xbox-Joystick was used to generate the reference angle between the draw-

bar and the trailer 𝛗𝐓
𝐫𝐞𝐟. 
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3 Results 

This section is divided into the simulation results in simulation and real vehicle tests. 

The simulation environment Gazebo is used to show the functioning of the control strat-

egies and to preset the controller parameters. In the next step the same control parame-

ters are applied on the Fendt 724 for real vehicle tests. As the parameters in the linear 

transfer function (see Eq. (7)) of the reference-control loop at the FBLC was chosen 

ω0 = 0.12 s and D = 0.95. Corresponding parameters for the disturbance control loop 

are ω0 = 0.15 s and D = 0.95. The weights for the NMPC were set for Eq. (8) as fol-

lowed: weight for φD = 1, weight for φT = 10, terminal weight for φD = 10, terminal 

weight for φD = 100. For lower values for the weight φT the control has a low dynamic 

because the optimization have to deal with an error for φT
ref − φT as well as an error for 

φD
ref − φD. The simulation results are illustrated in Fig. 5. The dynamic of the NMPC is 

much higher, because the control law can apply the maximal steering angle without get-

ting into an open loop control. The steering angle 𝜑𝑆 oscillates yet which is bad regard-

ing the driver’s comfort. But both strategies are stable. The Fig. 6 depicts the test re-

sults on the Fendt 724. For a pure reverse drive, the NMPC oscillates compared to the 

FBLC due to the excessive steering movements. At the step response, the NMPC 

shows a higher dynamic, as in the simulation, but an oscillation is also recognizable 

here. This is noticeable in the Fendt 724 and is at the expense of comfort. 

 

Figure 5: Simulation results of the model predictive control and the control based on 
feedback linearization 
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Figure 6: Test results on the test vehicle Fendt 724 of the model predictive control 
and the control based on the feedback linearization 

 

4  Discussion and Conclusion 

This paper shows the comparison of two controls for an assist system in which the driv-

er can directly steer a full trailer. Firstly, a FBLC was implemented, moreover, a NMPC 

was built up which is not yet known in the literature. The NMPC showed in the simula-

tion a significantly better control quality. In terms of dynamics, it could also be proven on 

the test vehicle Fendt 724. However, the developed NMPC has difficulties with pure re-

verse driving (φT = 0) and the steering oscillates intensive to the disadvantage of com-

fort. To improve the comfort, the project team tried to use the angular velocity as the 

system input in the NMPC and the angular velocity was weighted and constrained, so 

that the steps in the steering angle shrinked. With this additional state in the state space 

representation the calculation time was far too high to yet a stable control law with a 

high prediction horizon. If dynamics are more important than comfort, such as in a driv-

erless transport system, then the NMPC has to be chosen over FBLC. 

For an operator it is quite difficult to steer the vehicle-trailer combination into a garage or 

a hall in the simulation and real test environment. Because the dynamic of changing the 

angle between the drawbar and trailer φT is high, the operator has to predict this cir-

cumstance during the maneuvering. Even the NMPC is up to 50 % faster than the 

FBLC, the control loop dynamic is still too high. Only pure reverse driving is working 

satisfying, especially with the FBLC. In future it is conceivable tractor will have many 

cameras attached which can be used to realize this assistance system as an add-on 

module. Like in the automotive industry it is possible to implement the system by using 
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only a mono vision camera. To use angle sensors is an alternative solution but every 

trailer needs to be upgraded and the system is because of mechanical parts not wear-

free. For parking the trailer into a hall or garage, it is more convenient to use a position 

control. The presented control strategies can be than used in a cascade control loop as 

the inner control loop. 
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Abstract: During vehicle guidance operations in alternating conditions conventional 

controller types as e.g. PID- or Fuzzy-controllers may not perform properly due to their 

constant parameter settings. To counteract these adverse effects adaptive controllers 

can be used instead. Adaptive controllers are capable to automatically adjust their be-

havior according to the set requirements on guidance quality. This work investigates the 

performance of a self-tuning controller (STC). The structure of the STC has some modi-

fications in comparison to a conventional closed-loop system. These modifications are 

represented by two additional steps during the loop run, namely system identification 

and control calculation. The identification step is solved with the widespread recursive 

least square algorithm, which has real-time capability. The control calculation step is 

based on the identification step and aims at the provision of the regulating variable for 

the closed-loop system. Compared to the PID-controller the results show a slightly 

worse guidance performance of the adaptive controller for laboratory conditions. 

Whereas, the results for outdoor-scenarios indicate improved guidance performance of 

the adaptive controller compared to the PID-controller. 

Key words: closed-loop systems, adaptive control, self-tuning controllers, recursive 

least squares algorithm 

 

1 Introduction 

Automation plays an important role on construction sites. Automation also yield benefits 

regarding the reduction of expenses and the increase of efficiency and product quality 

e.g. in road construction and maintenance (KILPELÄINEN et al., 2011). Construction ma-

chines can be categorized under aspects of their application field, as e.g. transportation, 

roadworks or earthworks (KÜHN, 1991). Furthermore construction machines can be di-

vided into two main categories according to their chassis design, namely into wheeled 

chassis and tracked chassis (GEBHARD, 2010). This investigation examines the perfor-

mance of automatically controlled tracked vehicles using an adaptive controller. 

The automatic control may be established by designing a closed-loop system, which 

controls a vehicle in such a way that it follows a predefined reference trajectory. Differ-

ent controller types can be used within the closed-loop system aiming to minimize the 

difference between the current machine’s position and the desired position, expressed 

by the reference trajectory (MANN et al., 2005). Such controllers are e.g. 2-, 3- point con-

trollers, PID- or Fuzzy-controllers. When using these conventional controller types the 
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main challenge is the individual controller tuning procedure. Each controller type needs 

a set of parameters to ensure optimal control operation. These parameters must be 

tuned in advance for each particular operational scenario. Hence, in alternating envi-

ronmental conditions the parameters need to be retuned and reset in order to keep the 

control quality at a desirable level. To overcome this disadvantage an adaptive control-

ler has to be applied instead. 

In particular alternating operational conditions the adaptive controller adjusts automati-

cally in such a manner, that the set requirements on control quality are kept. According 

to ÅSTRÖM (1983) there are three main adaptive control schemes: gain scheduling, 

model-reference adaptive control (MRAS) and self-tuning controllers (STC). This work 

examines the performance of a self-tuning controller which is used to control a model 

crawler at scale 1:14. 

 

2 Methods 

The starting point of the STC design is an ordinary closed-loop system, where the feed-

back signal is processed within the controller in order to minimize the control deviation. 

The feedback control loop is extended by an additional functionality which identifies the 

controlled process by the use of its input and output. This part, called the “process iden-

tification” (ÅSTRÖM & WITTENMARK, 1989), is the base for calculations of the controller 

properties, respectively the controller parameters. Fig. 1 depicts the general scheme of 

the STC. Table 1 summarizes the variables of the extended closed-loop, as well as their 

appropriate meaning within the guidance algorithm of the model crawler. 

 

Figure 1: General STC Scheme according to SEBORG et al. (1986) 

 

Hence, to achieve adjustable control two steps have to be performed (SEBORG et al., 

1986): system identification and control calculations. 
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Within the scope of this work the adjustable control affects the lateral control of the ve-

hicle, moving on a predefined reference track with a constant velocity. The 360° prism, 

which is part of the sensor system, is mounted in the anticipated computation point 

(ACP), located 7 cm in front of vehicle’s center of gravity. This causes a position calcu-

lation for an earlier point in time and helps to compensate dead time (BEETZ, 2012). The 

lateral control is realized by the design of an appropriate steering method introduced by 

LERKE & SCHWIEGER (2017). The approach is based on the kinematic model for tracked 

vehicles according to LE (1991), where the equation which describes the relationship 

between the driven radius and different velocities for the left track 𝑣𝑙 and right track 𝑣𝑟 

has been modified and solved in a way that a scaling factor 𝑛, embedded within two 

scaling terms, could be derived. Based on the equation for the total velocity of a tracked 

vehicle 𝑣𝑡𝑜𝑡𝑎𝑙 =
1

2
∙ (𝑣𝑙 + 𝑣𝑟), the following two expressions for the velocities of the left 

and right track could be determined: 

𝑣𝑙 = 𝑣𝑡𝑜𝑡𝑎𝑙 ∙
2∙𝑛

1+𝑛
 ,          (1) 

𝑣𝑟 = 𝑣𝑡𝑜𝑡𝑎𝑙 ∙
2

1+𝑛
 .          (2) 

In equations (1) und (2) the scaling terms are represented by expressions 
2∙𝑛

1+𝑛
 and 

2

1+𝑛
 . 

Table 1 summarises the variables of the STC and their meaning within the guidance 

algorithm. 

Table 1 

Variable Meaning within the STR scheme Meaning within the guidance algorithm 

𝑤(𝑡)  Reference variable 
Reference trajectory, represented by se-
ries of reference positions 

𝑢(𝑡)  Regulating variable 
Steering parameter, represented by scal-
ing factor 𝑛 

𝑦(𝑡)  Controlled variable Current vehicle’s position 

 

2.1 System Identification 

The system identification step can be classified as an implicit approach, because the 

process model is converted to a predictive form that allows the future process model 

output to be calculated from current and past values of the input and output variables 

(SEBORG et al., 1986). The online parameter estimation, related to the identification 

step, is based on a linear single input - single output (SISO) system, expressed as line-

ar difference equation in the shape of ARMA (autoregressive moving average) model 

(TEUSCH, 2006, NEUNER, 2008). SEBORG et al. (1986) formulates the SISO system as 

ARMAX (autoregressive moving average model with auxiliary or exogenous input), 

which is written as follows: 
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𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑦(𝑡 − 𝑛) = 𝑏0𝑢(𝑡 − 𝑘) + 𝑏1𝑢(𝑡 − 𝑘 − 1) + ⋯  

… + 𝑏𝑚𝑢(𝑡 − 𝑘 − 𝑚) + 𝑐0𝜉(𝑡) + 𝑐1𝜉(𝑡 − 1) + ⋯ + 𝑐𝑛𝜉(𝑡 − 𝑛) + 𝑑(𝑡)    (3) 

𝑦 - controlled variable, 

𝑢 - regulating variable, 

𝜉 - stochastic noise, 

𝑑 - disturbance variable (not measured), 

𝑎1, … 𝑎𝑛,  𝑏0, … 𝑏𝑚, 𝑐𝑜, … 𝑐𝑛 - model parameters. 

As a simplification for further considerations we suppose the noise parameters 𝑐𝑖 and 

disturbance 𝑑 in (3) are set to zero. 

The aim of the identification step is to establish a model, based on model parameter 

estimates �̂�𝑖, �̂�𝑖, from a given data record. The estimation is carried out in real time, due 

to the dynamic behavior of the system. One of the common real-time estimation meth-

ods is the recursive least squares algorithm (RLS), proposed by e.g. ÅSTRÖM & WITTEN-

MARK (1989) or WANG & TANG (2014). The RLS can be understood as a special case of 

the recursive Kalman filter (ÅSTRÖM, 1983). The algorithm is suitable for real-time esti-

mates of the parameters by the use of their iteration-wise update. 

Hence, equation (3) can be rewritten as: 

𝑦(𝑡) = 𝝍𝑇(𝑡 − 1) ∙ 𝜽(𝑡 − 1)         (4) 

with 

𝝍 - regressor vector, shaped as 

𝝍(𝑡 − 1) = [𝑦(𝑡 − 1) 𝑦(𝑡 − 2) … 𝑦(𝑡 − 𝑛) 𝑢(𝑡 − 1) 𝑢(𝑡 − 2) … 𝑢(𝑡 − 𝑛)]𝑇, 

𝜽 - parameter vector, shaped as 

𝜽(𝑡 − 1) = [𝑎1 𝑎2 … 𝑎𝑛 𝑏1 𝑏2 … 𝑏𝑛 ]. 

The set of equations for the RLS according to SEBORG et al. (1986) is represented by 

(5): 

�̂�(𝑡) = �̂�(𝑡 − 1) + 𝑲(𝑡) ∙ 𝜀(𝑡)  

𝜀(𝑡) = 𝑦(𝑡) − 𝝍𝑇(𝑡 − 1) ∙ �̂�(𝑡 − 1)  

𝑲(𝑡) = 𝑷(𝑡 − 1) ∙ 𝝍(𝑡 − 1) ∙ (𝜆 + 𝝍𝑇(𝑡 − 1) ∙ 𝑷(𝑡 − 1) ∙ 𝝍(𝑡 − 1))
−1

    (5) 

𝑷(𝑡) =
1

𝜆
∙ [(𝑰 − 𝑲(𝑡) ∙ 𝝍𝑇(𝑡 − 1) ∙ 𝑷(𝑡 − 1)]  

𝑲 – Kalman filter gain matrix, 

𝑷 – covariance matrix of the estimator error, 

𝑰 – identity matrix, 

𝜆 – weighting factor, 

𝜀 – estimation error. 
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The weighting factor 𝜆 is introduced to maintain the algorithm’s sensitivity to variations 

of the process parameters. In case of 𝜆 = 1 all data is weighted equally, whereas for 

0 < 𝜆 ≤ 1 more weight is placed on recent than on older data (SEBORG et al., 1986). 

By the use of (5) the estimation of the model parameters �̂�𝑖, �̂�𝑖 is now possible. 

 

2.2 Control Calculations 

The simplified ARMAX model equation (3) can further be rewritten as follows (ÅSTRÖM & 

WITTENMARK, 1989): 

𝑨 ∙ 𝑦 = 𝑩 ∙ 𝑢,           (6) 

where 𝑨 and 𝑩 are matrices, containing the parameters 𝑎𝑖, 𝑏𝑖. Equation (6) represents 

the identification step. To convey a link from the identification step to the control calcula-

tion step, according to figure 1, the rule for the controller is introduced. The general lin-

ear controller is expressed by equation (7) (ÅSTRÖM & WITTENMARK, 1989): 

𝑹 ∙ 𝑢 = 𝑻 ∙ 𝑤 − 𝑺 ∙ 𝑦,          (7) 

where 𝑹, 𝑻 and 𝑺 are matrices, containing the parameters 𝑟𝑖, 𝑡𝑖 and 𝑠𝑖. In order to calcu-

late the regulating variable 𝑢 the matrices 𝑹, 𝑻 and 𝑺 have to be solved. To do so, the 

following closed-loop system equations can be established by the use of (6) and (7), 

where 𝑢 is eliminated: 

𝑦 =
𝑩∙𝑻

𝑨∙𝑹+𝑩∙𝑺
∙ 𝑤,          

 (8) 

𝑢 =
𝑨∙𝑻

𝑨∙𝑹+𝑩∙𝑺
∙ 𝑤.          (9) 

In the next step the dominator of (8) and (9) is set to zero and equation (10) results: 

𝑨𝑨 ∙ 𝑹 + 𝑩 ∙ 𝑺 = 𝜁          (10) 

𝜁 ∈ ℤ.  

Equation (10) is known as Diophantine equation and is defined as the closed-loop char-

acteristic polynomial (ÅSTRÖM & WITTENMARK, 1989). With known matrices 𝑨 and 𝑩 from 

the identification step, 𝑹 and 𝑺 can be obtained by solving the Diophantine equation 

(10), e.g. by the use of the Euclidean algorithm (OSWALD & STEUDING, 2015). The last 

unknown matrix 𝑻 in (7) can be derived by the use of equation (8). It follows from (8) 

that the gain from the reference variable 𝑤 to the output signal 𝑦 is static in each itera-

tion. Thus the relationship (11) is valid (ÅSTRÖM & WITTENMARK, 1989): 

𝑩∙𝑻

𝑨∙𝑹+𝑩∙𝑺
=

𝑻

𝑺
.           (11) 

In the simplest configuration this gain would be: 

𝑻

𝑺
= 1.            (12) 
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Hence, one can set 𝑻 = 𝑺. 

Now the regulating variable can be obtained by reshaping equation (7) as follows: 

𝑢 =
𝑻

𝑹
∙ 𝑤 −

𝑺

𝑹
∙ 𝑦          (13) 

 

2.3 Current Realization of the Controller for Guidance Operations 

For the current realization of the controller a system model with polynomials of second 

order has been chosen. This decision was made under aspects of an adequate system 

model description and, on the other hand, a reasonable computational effort. SEBORG 

et al. (1986) propose polynomial orders between 2 and 3. Moreover a direct self-tuning 

regulator according to ÅSTRÖM & WITTENMARK (1989) has been applied. The term “di-

rect” is justified by the fact that the plant parameters and the control parameters are es-

timated directly. To do so equation (4) has been reparameterized in terms of the control-

ler parameters: 

𝑦∗(𝑡) = 𝝍𝑇(𝑡 − 1) ∙ 𝜽∗(𝑡 − 1)        

 (14) 

The parameter vector in (14) is defined as: 

𝜽∗(𝑡 − 1) = [𝑟1  𝑟2 𝑠1 𝑠2]. 

The obtainment of 𝜽∗, respectively the matrices 𝑹 and 𝑺 is carried out by the RLS algo-

rithm presented in chapter 2.1. Then, after setting 𝑻 = 𝑺, the general control law (7) can 

be applied for the calculation of the regulating variable 𝑢 according to (13). 

Fig. 2 depicts the applied direct self-tuning controller scheme. 

 

 

Figure 2: Direct STC Scheme 

 

For the provision of the RLS algorithm initial values for 𝑟1, 𝑟2 𝑠1, 𝑠2, 𝑃, 𝑦 and 𝑢 must be 

selected. These values were set as follows: 
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𝑟1(0) = 1 ∙ 10−3, 𝑟2(0) = 1 ∙ 10−3, 𝑠1(0) = 1 ∙ 10−3, 𝑠2(0) = 1 ∙ 10−3, 𝑦(0) = 1, 𝑢(0) = 1, 

𝑷(0) = [

1 ∙ 103

0
0
0

0
1 ∙ 103

0
0

0
0

1 ∙ 103

0

0
0
0

1 ∙ 103

]. 

The values for 𝑟1(0), 𝑟2(0), 𝑠1(0), 𝑠2(0), 𝑦(0) and 𝑢(0) have been chosen randomly. 

The elements 𝑝𝑖𝑖 of the covariance matrix 𝑷(0) have been chosen large, in order to let 

the confidence in the estimate �̂�∗(0) be poor. Examinations of the RLS performance 

have shown, that setting large initial values implies rapid changes of �̂�∗, whereas small 

values for 𝑝𝑖𝑖 let �̂�∗ change slowly. 

 

3 Implementation and Experimental Setup 

To investigate and analyze the performance of the adaptive controller, driving experi-

ments have been conducted. For this purpose the construction machine simulator, op-

erated by the Institute of Engineering Geodesy, has been used. The simulator has been 

developed to test and evaluate the performance of different sensors, as well as filter 

and control algorithms (GLÄSER, 2007; BEETZ, 2012). The simulator, in the current con-

figuration, consists of a crawler model at scale 1:14 with a step-less drive, a control 

computer, an analogue-digital converter and a remote control. The sensor, in the feed-

back branch of the STC in figures 1 and 2, is a Leica TS 30 robot tachymeter with an 

accuracy of 3 mm + 1 ppm in kinematic mode (LEICA, 2018). The hardware components 

and their interaction are shown in fig. 3. 

 

Figure 3: Hardware Components (LERKE & SCHWIEGER, 2017) 

 

The interaction in fig. 3 is as follows: the tachymeter measures the position of the prism, 

mounted in the ACP of the crawler model and sends it to the control computer. The 

computer calculates the perpendicular distance/ lateral deviation between the crawler’s 

position and the reference trajectory. Based on this information, the algorithm calculates 

the regulating variable, expressed in the form of the steering angle, respectively the ap-
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propriate track velocity differences, to get the crawler back on the reference trajectory 

as fast as possible. The information is passed to the remote control via A/D converter, 

which subsequently sends the voltages to the driving actuators of the crawler. The self-

tuning controller is running on the control computer, where the variable 𝑤(𝑡) represents 

the reference trajectory and the variable 𝑦(𝑡) the position, measured by the tachymeter.  

The evaluation has been carried out by comparing the reference trajectory with the ef-

fectively driven trajectory and the subsequent calculation of the lateral deviations and 

their root mean square RMS according to BEETZ & SCHWIEGER (2012).  

𝑅𝑀𝑆 = √
∑ 𝑒𝑖

2𝑛
𝑖=1

𝑛
          (16) 

𝑒𝑖– lateral deviation, 

𝑛 – number of measurements. 

Exemplarily, four driving experiments have been conducted. The first and the second 

experiment should show the general functionality of the STC. These experiments took 

place in non-alternating operational environment under laboratory conditions. For the 

drives two perfectly defined and shaped trajectories in form of an oval and an eight have 

been chosen as references. The trajectories consist of the main route design elements 

as clothoids, curves and straight lines. The third and the fourth experiment took place 

under variable conditions of outdoor scenarios. These drives have been conducted on 

two freely shaped trajectories, with changing and randomly tilted driving underground. 

Thereby the underground sections changed from paving stones to gravel, varying in 

shape and size. The four experimental trajectories are depicted in fig. 4. 

 

Figure 4: laboratory trajectories (1 and 2); outdoor trajectories (3 and 4) 
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For each trajectory one single lap has been completed. To classify the performance in 

both scenarios the assessment includes a comparison with a consummately tuned PID-

controller. The PID controller parameters have been determined as follows: 𝑃 = 200, 

𝑇𝑛 = 0,4 𝑚𝑖𝑛 , 𝑇𝑣 = 0,003 𝑚𝑖𝑛 . 

 

4 Results 

Table 2 depicts the numerical results of the test drives in non-alternating laboratory en-

vironment. According to the RMS values one can say that the performance of both con-

trollers is nearly the same. The slight differences of 0.5 mm for trajectory 1 and 0.9 mm 

for trajectory 2 are beneath the measurement accuracy of the used robot tachymeter.  

 

Table 2: RMS values for the laboratory experiments 

Trajectory Self-tuning controller (STC) PID controller 

1 (oval) 0.0023 m 0.0018 m 

2 (eight) 0.0037 m 0.0028 m 

 

Fig. 5 and 6 show the lateral deviation data collected during the laboratory experiments. 

 

 

Figure 5: laboratory experiments: lateral deviations for trajectory 1 (left) and trajectory 2 (right) 
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Figure 6: enlarged sections of figure 5; left trajectory 1; right trajectory 2 

 

As can be seen in Fig. 5 and 6 the STC needs some adjustment time to operate opti-

mally, whereas the control impact of the PID-controller immediately occurs. Fig. 5 and 6 

show that the lateral deviations of the STC are greater than that of the PID-controller 

during curve drives. This can be explained by the characteristic of the STC. The perma-

nently changing reference variable 𝑤 during the curve drive affects the convergence of 

the system’s identification parameters 𝑟𝑖, 𝑠𝑖. It seems that the settling time of the pa-

rameter estimation is little too long and therefore the system state is not optimally identi-

fied, which consequently has a negative impact on the control calculation. Though, the 

investigation on this behavior is outside the scope of this contribution. 

The RMS values for the outdoor experiments indicate a better performance of the adap-

tive controller (table 3). The difference in the control quality is 4.2 mm for trajectory 3 

and 1.4 mm for trajectory 4. However the value of 1.4 mm is beneath the tachymeter 

measurement accuracy as well.  

 

Table 3: RMS values for the outdoor experiments 

Trajectory Self-tuning controller (STC) PID controller 

3 0.0089 m 0.0131 m 

4 0.0072 m 0.0086 m 

 

Fig. 7 shows the lateral deviation data collected during the outdoor experiments. 
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Figure 7: outdoor experiments: lateral deviation for trajectory 3 (left) and trajectory 4 (right) 

 

The courses of the lateral deviation indicate large oscillations of the PID controlled 

drives after experienced disturbances, caused by sudden changes of the underground. 

Due to the fact that only single laps have been driven on each trajectory, no learning 

effect of the adaptive controller could be observed. 

 

5 Conclusion and Outlook 

An adaptive control scheme has been applied in order to guide a tracked vehicle on a 

predefined trajectory. It has been shown how a self-tuning controller can be used within 

an automation closed-loop. The guidance performance of the self-tuning controller, with 

a RMS between 2.3 mm and 3.7 mm for non-alternating indoor scenarios and between 

7.2 mm and 8.9 mm for alternating outdoor scenarios, can be regarded as satisfactory. 

Compared with the performance of the PID controller one can say, that the PID-

controller shows slightly better results under laboratory conditions. However in the non-

optimal outdoor scenarios, the adaptive controller seems to be superior. Though, it must 

be considered that the STC needs some settling time, before the optimal control per-

formance is achieved. 

In summary one can say that the great advantage of adaptive controllers in comparison 

with conventional controller types is the non-necessity of excessive, time-consuming 

tuning procedures and a seemingly better performance in alternating driving environ-

ments. 

In the future it is worth to extend the system model by the noise parameters and dis-

turbances for the purpose of performance enhancement. The negative effect on control 

calculation due to slow parameter settling must be analyzed and further investigations 

must be conducted to verify the achieved results of this contribution. Moreover hybrid 

controller schemes are conceivable, where a PID-controller and the STC are merged in 

a way, that the PID-controller is active until the STC parameters adjust and thereafter 

the STC takes over the control. Finally, the introduction of new concepts for test scenar-

ios should help to illuminate further aspects of the adaptive control in the context of ma-
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chine guidance. Additionally the longitudinal adaptive control of the vehicle must be im-

plemented to set up a 3-D guidance system.  
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Abstract: Small robots can play an important role in saving agricultural productivity in 

future when they are able to navigate efficiently in a semi-structured agricultural envi-

ronment. Different underground types, soil roughness and compaction levels can make 

it hard for these small robots to work reliably. For each environment, the control strategy 

must be adjusted correctly to be energy sufficient and successful. However, this re-

quires detection of the surface characteristics and knowledge about the robot behavior. 

In this research, the inertial sensors of a small four-wheeled differential drive robot were 

used. The robot was equipped with an inertial measurement unit (IMU), encoders and 

an ampere meter at each of the four wheel motors. The robot was manually guided over 

three different surfaces: concrete, compacted sand and linoleum. The robot drove 

straight with constant speed and afterwards performed a headland turn, following a typi-

cal pattern for agricultural robot navigation. It was possible to detect the different sur-

face types by analyzing the IMU and the power consumption of the motors. This could 

help to enhance self-control and guidance for small autonomous robots without external 

sensors.  

Key words: inertial sensors, IMU, terrain classification, robots, differential drive, agricul-

ture 

 

1 Introduction 

Modern agricultural machines are increasingly automated. In future there might be au-

tonomous machines on fields, operating without human intervention. Especially object 

recognition (VÁZQUEZ-ARELLANO et al., 2016) and navigation (BECHAR & VIGNEAULT, 

2016), (REISER et al., 2017) are in the research focus for agricultural robotics. However, 

actual behavior often deviates from desired behavior. Reasons are environmental un-

certainty and dynamics which are hard to control. Field Robots have to handle varying 

conditions in time and space. The underground of a site may be loose at one place and 

compacted at another one. It may be dusty today and wet the other day. When applying 

false assumptions about present environmental conditions, modelled behavior tends to 

mismatch with the actual behavior. One example could be the actuator control of a ro-

bot, which was aligned for compacted and dry soil, while the real situation differs from 



 Reiser, Hubl, Griepentrog 

Bornimer Agrartechnische Berichte  I  Heft 101  I  ISSN 0947-7314 
 

96 

this assumption. Mismatches between modelled behavior and actual behavior are a typ-

ical source of hazards (LEVESON, 2011). Autonomy of the robots amplifies these haz-

ards because no human intervention adjusts for these mismatches. In the worst cases, 

the robots get stuck or damage the plants. An autonomous robot needs to be able to 

retrieve relevant knowledge about its current state, without explicit human inputs. This 

can relate to several aspects, like space, or integrity. For example, some robots are re-

quired to identify the damages of itself (REINA et al., 2015). With respect to space, agri-

cultural robots often use a satellite-based positioning method which makes them de-

pendent on other systems. Robots could use odometry instead, to remain independent 

from external systems. However, these internal measurements are dependent on envi-

ronmental variables. Therefore, the robots need to apply reasoning about the environ-

ment and itself. To control a wheeled field robot through varying terrain, the robot is re-

quired to have knowledge about the actual underground conditions. This requirement is 

of particular importance for precise turning lanes, typical for agricultural applications.  

There are considerable achievements in visual underground identification (KHAN & 

KOMMA, 2011; ZENKER et al., 2013; ZOU et al., 2014). However, visual sensors can fail in 

detecting undergrounds, especially when there are changing light conditions. Internal 

sensors (sensors monitoring the internal state of the machine like power consumption or 

wheel movement) could be shielded from exogenous impacts. To interpret the sensor 

perceptions, it is necessary to put them in the right context. Existing underground detec-

tion methods with internal sensors are mostly vibration-based and use machine learning 

classifiers, like support vector machines, or artificial neural networks (BROOKS & 

IAGNEMMA, 2005; DUPONT et al., 2006, 2008; OJEDA et al., 2006; WEISS et al., 2006). 

Different underground classes produce distinct vibration signatures which can be rec-

ognized by a trained classifier.  

The overall objective of our research is to improve the navigation of small autonomous 

field robots. Particularly by appropriately controlling its wheels with respect to the un-

derground. We seek to find a method for underground detection based on an explicit 

model for enhancing self-control and pose the research question: How can a wheeled 

robot detect relevant underground conditions by just using its internal perceptions of 

acceleration and applied current to its wheel motors? 

 

2 Materials and Methods 

2.1 Model for Underground Detection with a small Wheeled Field Robot 

In this research, the reasoning about the robot’s current state in the environment is split 

into two parts. The first part relates the sensor inputs to a static environmental model of 

the robot. The static model contains non-changing facts and reflects assumptions. Es-

sentially, the static model should be represented on a level which is sufficient for the 

robot’s purposes. In most machine learning reasoning, like artificial neural networks, the 

causal dependencies that lead from an input variable to an output variable are un-

known. We try to represent static relationships explicitly, allowing to map an input varia-
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ble to an output variable. Reasoning on the sensor inputs combined with the static envi-

ronmental model results in a dynamic environmental model. The situation is detected by 

the sensor inputs of the robot.  

The self-control model of the robot is as follows: The robot applies energy to its motor 

controllers and therewith drives its wheels. How the driving of the wheels affects the 

actual spatial movement of the robot depends on the underground, most crucially char-

acterized by the grip. Physically, the actual spatial movement of the robot is associated 

with an acceleration, which can be measured by the inertial measurement unit (IMU) of 

the robot. The IMU delivers measured accelerations which occur at the vehicle. The 

extent to which an underground translates energy applied to the motor controllers into 

spatial movement depends on the grip of the underground. Terrain with low grip induces 

more slippage. We assume grip as the most relevant terrain characteristic and expect 

underground distinction by grip to be sufficient.  

In the study at hand, we focus on three exemplary underground classes: concrete, 

compacted sand and linoleum. We formulate the following hypotheses: Wheeled field 

robots can distinct concrete from compacted sand and linoleum by using inertial meas-

urements and applied motor current only: 

H1: Variance of motor current differs for each underground class 

H2: Variance of linear acceleration differs for each underground class 

In the research at hand, we seek to validate whether the hypothesized assumptions are 

supported and sufficient to effectively distinguish the three underground types, which is 

the basis for appropriate control modes. 

2.2 Experimental Setup 

For elimination of surface influences, a horizontal terrain setup was used for all three 

underground classes. A wheeled field robot named TALOS was used, which was manu-

factured by the Institute of Agricultural Engineering at the University of Hohenheim, 

Germany (see Fig. 1A). The inertial coordinate system of the IMU is also depicted in 

Fig. 1(A). 

(A) (B) 

 
 

Figure 1: (A) The used wheeled field robot TALOS and (B) one of the paths followed by the 
robot 

Z 
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The size of the robot’s platform is 400x500x600 mm. The robot is equipped with four 

separate driving motors with a total of 200 W and weights 25 kg. The inertial measure-

ment unit used was a VN-100 (by VectorNav, Dallas, Texas, USA). The robot control 

software is programmed with ROS middleware (Robot Operating  System) (QUIGLEY 

et al., 2009). To test our model, we let the robot drive a straight line and then performed 

a rectangular turn: Turning 90° left on the spot, move forward for a few centimeters and 

turn again 90° left, followed by a straight movement. An exemplary path followed by the 

robot is shown in Fig. 1B. This path was recorded with the back wheel encoders of the 

robot. For following the predefined paths autonomously, a fixed voltage was applied to 

the motors to guarantee the same control command over the three different test clas-

ses. The used motor controllers were two dual-channel SDC2130 (Roboteq, Scottsdale, 

USA). The applied current to all 4 motors was tracked simultaneously with a frequency 

of 10 Hz. The values of the current were averaged and summed up for all four motors 

for each second, to estimate the applied current to the motors. In these test drives, we 

configured the motor controllers to apply the same voltage constantly to the wheel mo-

tors. 

(A) (B) (C) 

   

Figure 2: Three test areas: (A) linoleum, (B) compacted sand and (C) concrete. 

 

Fig. 2 shows the three different test environments as seen by the robot camera. The 

surfaces just differed slightly in color and appearance. The synchronized ROS system 

allowed to compare the IMU acceleration data with the applied motor current.  

 

3 Results and Discussion 

The results of the three test runs showed high differences in the applied current to the 

motors and the resulting acceleration to the motor chassis measured by the IMU. The 

most differences could be detected while start time and while turning of the robot. The 

following Fig. 3 summarizes the resulting currents applied to the motors. Fig. 4 shows 

the corresponding linear accelerations of the robot. The applied currents to the motors 

showed always a peak when the robot system was turning, showing different peak 

heights dependent on the terrain. The highest peak with a maximum of 4.84A was ap-

plied to the motors at the concrete surface. The compacted sand resulted in a peak of 

2.23A and the linoleum affected a peak of 1.95A. While driving straight, there was al-
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most no difference visible in the motor current. When the robot was starting the move-

ment, a small current peak could be assumed at all terrains. 

(A) (B) (C) 

   

Figure 3: resulting currents at the motors (A) at linoleum (B) sand and (C) concrete 

 

(A) (B) (C) 

   

Figure 4: The resulting linear accelerations measured while driving (A) at linoleum (B) sand and 
(C) concrete. Linear acceleration X (blue), linear acceleration Y (red) and linear acceleration Z 

(black) 

 

The driving direction was defined as the x-axis, the y-axis pointing to the left and the z-

axis straight up of the robot (see Fig. 1A). The start of the driving is visible in all three 

linear acceleration axes depicted, independent on the surface. When the robot started 

moving after approximately 3 seconds, there is always a small peak at the y-axis. This 

results out of small differences of the motor friction, causing the motors not to start 

completely simultaneously. Interestingly the turning peaks of the x-axis and the z-Axis 

are almost not visible at the linoleum dataset of the accelerations. Just the y-axis shows 

small peaks when the direction changes happened. This is completely different when 

looking at the sand and the concrete dataset. Here are high peaks in the x and z accel-

eration visible. As more friction is applied to the wheels, the acceleration movement of 

the differential drive robot is not smooth, causing the wheels to slip irregular over the 

ground. This caused the peaks depicted here. The difference between the peaks is im-

mense when we compare the different terrains.  

When applying the data to hypothesis H1 it could be said that the currents at the motors 

differ highly dependent on the movement and the surface friction. Out of the datasets 

created, it is not possible to define, if the current applied to sand and linoleum always 
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differ and have to be proven in the future with more repetitions. However, there is the 

possibility to combine the information with the linear acceleration. Hypothesis H2 was 

proven for all three datasets. The highest impact of the surface roughness could be 

seen at the x-axis and the z-axis. Especially when the robot turns, there are high peaks 

at the x-axis and z-axis acceleration visible. As more friction at the surface as higher is 

the peak. Even more than 5m/s² for concrete.  

These results indicate that it might be possible for wheeled field robots to distinct con-

crete from compacted sand and linoleum by using the change of linear accelerations in 

driving direction combined with the applied motor command by just using a decision tree 

structure. Although the directed H1 is not fully proven, the results indicate that systemat-

ic differences, depending on the underground classes, may also exist in the means of 

the linear x-axis accelerations. Our specific future research investigates how to imple-

ment appropriate control of the wheel motors. Therefore, control feedback from the 

model of the robot is required. A further question is, whether the acceleration data are 

more conclusive for higher velocities. Further research with respect to the implementa-

tion of an effective context-aware control pertains to the minimum duration of the evalu-

ated time frames for reliable underground detection. The duration of the required time 

frames depends on the characteristics of the data. The aim is to keep the time frames 

as short as possible. Therefore, intelligent data preprocessing may be necessary.  

 

4 Conclusion 

The objective of this research was to improve accurate navigation of autonomous field 

robots. The fundamental idea is to incorporate models on causal dependencies where 

the internal sensors are used to correct the environmental model of the robot. For the 

case at hand, the causal dependencies are as follows: The robot applies electric energy 

to the wheel motor controllers. The wheel driving leads to a change in spatial position of 

the robot. The actual acceleration depends also on the grip of the underground. Model 

on the relationship between wheel driving and acceleration is represented in a static 

environmental model because it contains non-changing factors. The robot associates 

inertial measurements with this static environmental model. This enhances the self-

control of the system, by retrieving environmental knowledge. The first hypothesis, the 

variance of motor current differs for each surface with different friction, is supported only 

under reserve. The second hypotheses that variance of linear acceleration varies for 

each surface with different friction was supported. Hence the deviation of the linear ac-

celerations may be an indicator for the underground type. Future research is needed to 

further investigate the question how the magnitude of the linear accelerations relates to 

the underground type and motor torque. 
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Abstract: In the research project "soil2data", a mobile field laboratory will be developed. While 

driving/moving over a field, it collects representative mixed soil samples, conducts a soil nutrient 

analysis and leaves the excavated soil on the field after measurement. The results with the cor-

responding GPS-position are stored or sent to a data platform. Innovative ion-sensitive field-

effect transistors (ISFETs) are the key component of the mobile field laboratory. A custom-

specific ISFET multi-sensor module – a "lab on chip" – was specified und produced to measure 

the nutrients (N, P, K), pH and electrical conductivity of the soil extraction solution. 

The mobile field laboratory can be used with various vehicles. Mounted on a carrier and coupled 

on a tractor but also on an autonomous field-robot platform. The combination of the on-the-go 

soil nutrient analysis method with an autonomous field robot offers considerable advantages 

with respect to economic and environmental requirements. The soil nutrient analysis is done 

fully automated directly on the field, the result is promptly available real-time and can be con-

sidered for other ongoing or shortly following processes (e.g. planned fertilization measures). 

Key words: field robot, ion-sensitive field effect transistors (ISFET), mobile field lab, soil nutri-

ent analysis, soil test 

 

1 Introduction 

Knowledge of the spatial distribution of soil nutrient status is important information for a 

sustainable fertilization in crop production. Up to now the process of soil sampling and 

analysis is time consuming and cost-intensive. The current practice of soil nutrient anal-

ysis comprises the following steps: a) creation of a sampling plan, b) soil sampling in the 

field, c) transportation of the soil samples to a laboratory, d) physical and chemical pre-

paring of the soil samples, e) analysis of the sample f) creation of a documentation and 

sending the analysis result to the farmer as well as g) disposing soil material from the 

laboratory. The entire process, from soil sampling until the farmer receives the analysis 

results takes in general several a long time (up to 8 weeks). This means that the analy-
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sis results cannot be integrated into current fertilizing processes in a timely manner, 

which is very critical, especially in the spring. 

The development of an on-the-go soil nutrient analysis method – a mobile field laborato-

ry – that delivers soil parameters immediately will open ups new options. The analysis 

results are available in a very short time. It will be take only a short moment after finish 

soil sampling and analysis at the field. 

By combining a mobile field-laboratory (field-lab) with an autonomous carrier platform 

(e.g. field robotic “BoniRob”) will proved new opportunities in soil sampling and map-

ping. An on-the-go verification of the actual measurement results on the field with a da-

tabase is one of the options. The dynamic adaptation of the sampling line during the soil 

sampling will be another innovative option. If the currently processed series of meas-

urements on a sampling line or within a sub field show a high fluctuation in the meas-

urements, it will be possible to subdividing this sampling line (HINCK et al., 2018).   

Transportation of soil probe material from field to laboratory is not necessary. Further-

more, it will greatly enhance infield variability characterization by dividing the field in 

smaller sub fields than it would be possible with traditional soil sampling and mapping. 

With this new technique, the knowledge of the spatial distribution of soil nutrients status 

will be improved. Also, the repetition of the measurement, e.g. annually, weekly or even 

daily (at a sub field or for specific area within a field) would be possible. Also, the avail-

ability of the analysis result will be improved and the real-time linking between the actual 

result and an existing database will be possible.  

This new approach will contribute to a sustainable and demand-driven fertilization for 

crop production at small-scale field level. 

 

2 Materials and methods 

Several researchers have been working on the implementation of an on-the-go nutrient 

analysis for field application. A soil preparation method for mobile field laboratories for 

analyzing NO3
-, K+ and P was developed by KIM et al. (2007). Mobile field laboratories 

for on-the-go measurement have been designed for analyzing NO3- in the topsoil (SI-

BLEY et al., 2010, SIBLEY, 2008), for pH (VISCARRA ROSSEL et al., 2004) and for multiple 

parameters including  NO3-, K and pH (SETHURAMASAMYRAJA et al., 2008). 

The interdisciplinary research project "soil2data" is about to develop a mobile field la-

boratory to measure the nutrients (N, P, K), pH and electrical conductivity of the soil ex-

traction solution in on-the-go mode. Three carrier platforms are planned in the project 

for the use of the mobile field lab. The lab is equipped with additional systems for an 

automatic generation of a soil sampling plan, components for chemical and physical soil 

preparation, sensors for soil analysis and systems for storing the analysis results. 

One of this carrier platforms is the autonomous field-robot BoniRob (RUCKELSHAUSEN 

et al., 2009). It includes sensor systems for autonomously navigating autonomously 

along the crop rows or by using GPS coordinates. The robot has an empty cavity within 
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the body, which serves as carrier, electricity supplier for multiple application modules – 

App’s (SCHOLZ et al., 2014). The standardized field robot interfaces (hardware/software) 

and modular construction of the App’s enable a flexible integration of these application 

modules also in other carrier platforms (e.g. a tractor) or other field-robots. 

 

Figure 1: Autonomous field-robot BoniRob with "soil2data" application module 

 

The application module for soil nutrient analysis – “soil2data” mobile field lab – contains 

the following components: 

 A soil sampler to collect the soil samples 

 A collection container to create a mixed soil sample (15-20 core samples, 250-
300 g soil material) 

 The measuring systems to determine the amount of collected soil material 

 A transport system (chain elevator) for transporting the soil material 

 A linear actuator and a mixer for homogenization / physical preparation of a 
mixed soil sample 

 Various pumps / valves to supply the extraction agents for the chemical prepara-
tion of the soil material 

 A filter station to filter the measurement solution extracted from the soil material 

 An ISFET multi-sensor module including readout circuit for measuring the con-
centration of the nutrients (N, P, K), pH and electrical conductivity of the extract-
ed solution. 

 Transport system for the removal of extracted soil material 

 Systems for cleaning of all components for preparing subsequent measurements 

 An industry PC-system with real time Ethernet bus to control the components of 
the field lab, to communicate with readout circuit of the ISFET multi-sensor mod-
ule and the carrier platform. 

As soil sampler, a commercial product from the company Bodenprobetechnik Nietfeld 

GmbH (Germany) is used. This soil sampler (boring-type, soil auger Ø 16 mm) allows 

sampling at a depth of 30 cm and has been equipped with additional components for 

the automation of the overall soil nutrient analysis process. 
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After soil sampling and complete of a representative soil mix sample, the soil sample 

processing takes place. It should be noted, however, that the quality of soil sample pro-

cessing in this on-the-go soil nutrient analysis process is fundamental and crucial for an 

autonomous, fully automated soil nutrient study. The flawed execution of the soil sam-

pling process can lead to erroneous assessment of the measurement. Therefore, the 

results of future field trials measurements within the project will be qualitatively com-

pared with the results of the state of the art laboratory analysis. In the context of the re-

search project “soil2data”, the project partner LUFA Nord-West – an accredited service 

laboratory affiliated with the Chamber of Agriculture in Lower Saxony / Germany – de-

veloped a new soil processing method for the on-the-go soil nutrient analysis on the 

field (NAJDENKO et al., 2018).   

The new soil sample processing method - referred to as the “soil2data LUFA method” - 

is based on the standard soil sample processing method for nutrient analysis in labora-

tory and includes the following steps: homogenization of a mixed soil sample, supply of 

the extraction agent to dissolve the nutrients from the soil, filtration of the soil sample 

extract. In order to reduce the soil sample processing time, a chemical and mechanical 

method for homogenizing the soil material in the pre-wet state with a mixer and simulta-

neous feed of the extraction solution is developed and tested. This method produced 

comparable results under labor conditions and will now be tested/used the “soil2data” 

mobile field lab for on-the-go soil sample preparation. 

 

Figure 2: "soil2data" nutrient extraction procedure 

 

In order to allow a flexibility during the testing of different extraction liquids and to cover 

the diversity of the extraction methods, a proposed soil sample processing method was 

extended. For a case, that only one extraction agent for a soil sample processing will be 

used, was a Stage 1 designed with the standard steps like laboratory soil sample pro-

cessing procedure: homogenization of a mixed soil sample, supply of the extraction 

agent to dissolve the nutrients from the soil, filtration of the soil sample extract. In case, 
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that more than one extraction agent or a mix of several extraction agents will be used, is 

a soil sample processing method with a Stage 2 extended.  

The description of the “soil2data” nutrient extraction procedure is as follows (Fig. 2): 

 Stage 1 – after determining the amount of soil material in a collection container, 
an extraction fluid (Extractant 1) is added and stirred vigorously with a mixer for a 
fixed time. Afterwards, a defined quantity of the measurement solution is pumped 
out and passed to a filter station. 

 Stage 2 – a various extraction fluid (Extractant 2) is added to the residual amount 
of soil material in the collection container is stirred again with a mixer. There after 
the measurement solution is pumped off and passed to same filter station. 

These two stages were realized in the hardware of the "soil2data" mobile field lab with a 

chain elevator with a hydraulic drive. It contains the storage containers for mixed soil 

sample and has fixed reference points during operation – the so-called workstations 

(WS): 

 Workstation 1 – transfer soil samples from soil sampler, collecting the mixed soil 
sample, pre-wetting with Extractant 1, determination of the quantity of the mixed 
soil sample  

 Workstation 2 – “soil2data” soil nutrient extraction procedure (Stage 1 / Stage 2) 

 Workstation 3 – removal of measured soil material from a collection container 

 Workstation 4 – cleaning of collection container 

Figure 3: "soil2data" soil nutrient extraction procedure – hardware 

 

The four workstations allow to perform the whole soil nutrient analysis process continu-

ously without stopping – because work steps can be carried out simultaneously. 

To enable the on-the-go soil nutrient analysis process directly on the field, a customer 

specific multi-sensor module for research project "soil2data" was produced by the com-

pany MICROSENS SA (Switzerland). This module is a key component of the mobile 

field laboratory. It consists of a closed LTCC (Low Temperature Cofired Ceramics) 

housing with an inlet / outlet tube for the influx / efflux  of the prepared soil samples in 

liquid state (measurement solution) and contains four single ion-sensitive field-effect 
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transistors (ISFET) to measure the nutrients (N, P, K), pH and electrical conductivity of 

the soil (Fig. 4). 

The conventional ISFET readout circuits cannot be used to read out the electrical output 

signals from all four ISFET chips build into a multi-sensor module simultaneously. Such 

readout circuits do not provide amplification to the electrical output, and simultaneous 

interrogation of multiple ISFET’s provides an unstable, oscillating output signal. There-

fore, a new readout circuit for the ISFET multi-sensor module has been developed by 

the University of Applied Sciences Osnabrück and ANEDO Ltd. It eliminates the above 

described problem and generates a stable output signal for the multi-sensor ISFET 

module. 

 

Figure 4: Multi-sensor module with four ISFET chips 

 

3 Results 

The multi-sensor ISFET module with the newly developed readout circuit was tested 

under laboratory conditions to check the stability of the readout circuit output signal and 

the reproducibility and quality of the measurement data output from each individual 

ISFET chip (Fig. 5). 

 

Figure 5: Results from multi-sensor ISFET measurements results of calibration solutions with 
different concentrations 
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The time required to stabilize the measurement signal was experimentally determined to 

200 seconds.  

The “soil2data” soil nutrient extraction procedure was tested in single steps with the use 

of different extraction agents. The optimum time required for liquidate/getting the nutri-

ent extraction from a soil sample was also experimentally determined. It takes approxi-

mately 15 minutes when using a two-stage soil sample preparation procedure. 

 

4 Conclusion 

The first functional measurements with the newly developed readout circuit were carried 

out with the aid of calibration solutions and showed good results. The newly developed 

two-stage soil sample preparation method allows simultaneous parallel execution of the 

necessary work steps so that the entire process sequence can be realized in non-stop 

mode.  

The individual work steps for soil sample preparation (such as handover of a soil mix 

sample for preparation, extraction of the nutrients with different extraction agents, filter-

ing procedure, etc.) were created and tested in individual work steps. The times re-

quired for the preparation processes have been determined. 

Transfer, adaption and optimization of the laboratory soil sample preparation method for 

field conditions and also first experiment results show that the determination of the nu-

trient content of soil is possible by using ISFET sensors. 

The next step will be integrating all required components for on-the-go nutrient analysis 

into a functional application module (App). Subsequently numerous field trials will be 

made in order to validate the entire mobile field laboratory system and compare nutrient 

analysis results from mobile soil laboratory to traditional laboratory results. 
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Abstract: The leaf area is an important plant parameter for plant status and crop yield. 

In this experiment, a low-cost time-of-flight camera, the Kinect v2, was mounted on a 

robotic platform to acquire 3-D data of maize plants in a greenhouse. The robotic plat-

form drove through the maize rows and acquired 3-D images that were later registered 

and stitched. Three different maize row reconstruction approaches were compared: re-

construct a crop row by merging point clouds generated from both sides of the row in 

both directions, merging point clouds scanned just from one side and merging point 

clouds scanned from opposite directions of the row. The resulted point cloud was sub-

sampled and rasterized, the normals were computed and re-oriented with a Fast March-

ing algorithm. The Poisson surface reconstruction was applied to the point cloud and 

new vertices and faces generated by the algorithm were removed. The results showed 

that the approach of aligning and merging four point clouds per row and two point 

clouds scanned from the same side generated very similar average mean absolute per-

centage error of 8.8% and 7.8%, respectively. The worst error resulted from the two 

point clouds scanned from both sides in opposite direction with 32.3%. 

Key words: 3-D sensors; crop characterization; agricultural robotics; precision farming; 

plant phenotyping 

 

1 Introduction 
Information such as stem diameter, plant height, leaf angle, leaf area (LA), number of 

leaves and biomass are of particular interest for high-end agricultural applications such 

as precision farming, agricultural robotics and automatic phenotyping for plant breeding 

purposes. A very important plant parameter is the LA, because it provides important 

information about the plant status and is closely related with the crop yield. However, LA 

is one of the most difficult parameters to measure (HOSOI et al., 2011) since manual 

methods are time consuming and the 2-D image-based ones are not very accurate due 

to leaf occlusion. A commonly used index describing the LA is the leaf area index (LAI), 

which is the total one-sided area of leaf tissue per unit ground surface area (BRÉDA, 

2003). 
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3-D imaging could be a good method for a fast and more accurate LA measurement, 

compared to the 2-D approach, since it does not depend on the position of the leaves 

(of the plant) in space relative to the image acquisition system. However, 3-D scanning 

systems are normally very expensive for sensing or monitoring applications. Therefore, 

economically affordable 3-D sensors are a key factor for the successful implementation 

of 3-D imaging systems in agriculture. A low-cost time-of-flight (TOF) camera, like the 

Kinect v2 (Microsoft, Redmond, WA, USA), has proven to have enough technical capa-

bilities for 3-D plant reconstruction (VÁZQUEZ-ARELLANO et al., 2018). 

Research has been done using the Kinect v2 for weed volume estimation (ANDÚJAR 

et al., 2016) as well as high throughput phenotyping of cotton in open field; the former 

did not rely on a shadowing device while the latter did. HÄMMERLE & HÖFLE (2017) 

measured the maize crop height in open field under real conditions including wind and 

sunlight, the measurements were slightly below the results presented in other studies 

due to the challenging field conditions and the complex architecture of the maize plant 

at late stage. HU et al. (2018) measured the LA and the projected LA, among other pa-

rameters, of 63 pots of lettuce by subsampling the generated point cloud and using a 

triangular mesh to reconstruct the surface. The LA measurement was calculated by 

adding the area of all triangles in the mesh, and the projected LA was the area project-

ed onto the x-y plane along the z axis. The total LA measurement had a R2 determina-

tion coefficient of 0.94 and the projected LA 0.94. However, while the projected LA fol-

lowed a linear distribution, the total LA measurements followed a power law distribution 

due to occlusion when the plant had more leaves. PAULUS et al. (2014) measured the 

LA of sugar beet leaves, relying on the structured light based Kinect v1. They men-

tioned the importance of acquiring 3-D data of above ground plant organs, such as plant 

leaves and stems, in order to extract 3-D plant parameters. The R2 determination coeffi-

cient were 0.43 and 0.93 for LA and projected LA measurement, respectively. They 

mentioned that the high error in the LA estimation was due to strong smoothing effects 

that produced overestimated measurements. However, the projected LA measure-

ments, defined as ground cover, reduced those effects. They stated that the projected 

LA can be used as a proxy for agricultural productivity since the photosynthetic activity 

is linked to the LA directed to sunlight. NAKARMI & TANG (2012) developed an automatic 

inter-plant spacing sensing system for early stage maize plants. They placed the TOF 

camera in a side-view position, since the purpose was to measure the distance between 

maize stems, that camera position was the optimal. 

The aim of this research was to estimate the LA of maize plants by merging point clouds 

obtained from different 3-D perspective views. Three approaches were evaluated: align-

ing and merging point clouds from two paths and two directions, aligning point clouds 

scanned from the same side of the crop row and aligning point clouds scanned from 

opposite directions and different paths. In order to estimate the LA, a methodology was 

proposed for reconstructing the surface of a rasterized point cloud after the alignment 

and merge. The main contribution of this research was to reconstruct the surface and 

the estimate of the LA of entire maize crop rows. Previous researches focused only on 
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reconstructing single plants. Therefore, this research sets a new milestone for high 

throughput plant reconstruction. 

 

2 Material and methods 
2.1 Experiment setup 
The 3-D data acquisition was done in a greenhouse from the University of Hohenheim 

(see Fig. 1a). The seeding was performed in 5 rows with different standard deviations in 

order to emulate different realistic performances of agricultural seeding implements (see 

Figure 1b). The row spacing (inter-row) was 0.75 m and the plant spacing (intra-row) 

was 0.13 m. Every row had 41 plants in a length of 5.2 m, and the plant growth stage 

was between V1 and V4. The LA was measured by hand using measurement tape. The 

robotic platform was driven, using a joystick, at a maximum driving speed of 0.8 m·s-1 

through every path in the go and return direction to obtain 2.5-D images that were later 

transformed to 3-D images. At every headland, the robot was turning 180 degrees, 

therefore, the 3-D perspective view was different in the go and return directions of every 

path. A viewpoint was stablished (camera plot in Fig. 1b), to avoid confusion between 

the left and right side of the crop row. Every single plant was manually measured and 

parameters such as plant height, number of leaves, stem diameter and LA were regis-

tered. The hardware and sensors used during the experiment are explained in detail by 

VÁZQUEZ-ARELLANO et al. (2018). 

(a) (b) 

 
 

Figure 1: Robotic platform used for 3-D data acquisition (a) and maize seeding positions (+) 
and viewpoint represented by the camera plot. The left and right side of the crop row, as well as 

the go and return drive were set up relative to the viewpoint of the camera plot (b). 

 

2.2 Data processing 
The point clouds were processed using the Computer Vision System ToolboxTM of 

MATLAB R2016b (MathWorks, Natick, MA, USA). Additionally, CloudCompare (EDF 

R&D, 2011) was used for point cloud rasterization and surface reconstruction. In this 

research three different maize row point clouds alignments were done to investigate the 
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trade-off of merging all four point clouds (Path 1 go, Path 1 return, Path 2 go and Path 2 

return), two point clouds from the same side of the crop row, such as Row 2 from the 

left side (i.e. Path 1 go and Path 1 return) and from both sides scanned from opposite 

directions (i.e. Path 1 go and Path 2 return). 

 

2.3 Leaf area estimation 
The methodology for LA estimation in this investigation (depicted in Fig. 2) was based 

on the generated maize row point clouds generated in a previous research by VÁZQUEZ-

ARELLANO et al. (2018). These point clouds were initially imported pairwise, each of the 

point clouds were filtered using a radius outlier removal (ROR) and statistical outlier 

(SOS) filter. The ROR filter was set to a radius of 5 cm with a minimum required neigh-

bours of 800. The SOS filter was set to 20 points for the mean distance estimation with 

a standard deviation multiplier threshold nSigma equal 1. Then, the Random Sample 

Consensus (RANSAC) algorithm was applied for each point cloud pair in order the 

segment the plant points from the soil points. The maximum distance from an inlier to 

the RANSAC based plane fitting was set to half the theoretical intra-row distance be-

tween plants of 17 cm, resulting 6.5 cm. 

 

 

Figure 2: Methodology for plan point cloud alignment and merge for LA estimation. 

 

The point cloud pair was aligned with a manual rough registration process by picking at 

least three equivalent point pairs in both point clouds. After that, the Iterative Closes 

Point (ICP) was used for fine registration and alignment. This process was performed 

one time for two point cloud alignments and three times for four point cloud alignments. 
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After all the point clouds of every dataset were aligned, the next step was to merge 

them together. The merging process could produce duplicate points, therefore, a sub-

sampling was applied using a voxel grid (3 mm × 3 mm × 3mm) filter. The next step was 

to rasterize the point cloud in order to obtain a point cloud generated with a projection in 

the z axis with a grid step (cell) of 1 cm. Every point inside the rasterized point cloud 

was the one with the maximum height; in the case that more than one point was falling 

in each cell. 

After the rasterized point cloud was generated, the next step was to compute the nor-

mals, this computations were done by using a triangulation local surface model for sur-

face approximation with a preferred orientation in the z axis. Then, the normals were re-

oriented in a fast and consistent way by using the Fast Marching algorithm (DEWEZ 

et al., 2016) with 11 octrees. Finally, in order to estimate the LA a mesh was generated 

by using the Poisson reconstruction method (KAZHDAN et al., 2006). 

For the Poisson reconstruction the main input parameter was the octree depth, where 

the deeper the value the finer the result. In this research, the octree depth value was set 

to 11. A characteristic of the Poisson reconstruction is that it produces a watertight sur-

face, which is not suitable for our dataset where leaves are separated (LI et al., 2015). 

In order to trim the reconstructed surface to fit the point cloud, a surface trimming algo-

rithm was applied (KAZHDAN & HOPPE, 2013).  The disadvantage of this algorithm is that, 

for non-watertight surfaces such as the leaves in this dataset, it is difficult to find the 

right parameters to trim the mesh. This problem was approached by identifying the big-

gest leaves in this point cloud and manually trimming them until the reconstructed sur-

face fits the silhouette of the biggest leaves of the row point cloud, this parameter value 

was interactively found by removing the triangles with vertices having the lowest density 

values, and they corresponded to the triangles that were the farthest from the input 

point cloud. If the trimming was done beyond the point cloud limits, the reconstructed 

surface started to shift the leaf border beyond the real one, thus producing overestimat-

ed values as reported by PAULUS et al. (2014). Also, the density value was reduced if a 

mesh membrane was generated between close leaves, because this effect would gen-

erate an overestimated LA value. The LA reference measurements were obtained by 

measuring the length and the width of every leaf in the plants, if the leaf was touching 

the ground it was not considered. In order to correct the LA measurements a factor was 

used as in MONTGOMERY (1911) 

𝐿𝐴 = 0.75 ∗ 𝐿 ∗ 𝑊 (1) 

Where L and W are the length and width of the maize leaf, respectively. In order to 

evaluate the error in the estimated measurements, the root mean square error (RMSE) 

was calculated with the following formula: 

𝑅𝑀𝑆𝐸 =  √𝑚𝑒𝑎𝑛(𝑡 − 𝑎)2 (2) 

 



6th International Conference on Machine Control and Guidance 

Bornimer Agrartechnische Berichte  I  Heft 101  I  ISSN 0947-7314 
 

115 

Where t represents the target measurement and a the actual measurement. Additional-

ly, the mean absolute percentage error (MAPE) was also considered. The MAPE was 

calculated using the following formula: 

𝑀𝐴𝑃𝐸 =  𝑚𝑒𝑎𝑛(|
𝑡 − 𝑎

𝑡
× 100|) (3) 

 
 
3 Results and discussion 
In Fig. 3a it is depicted the result of the Poisson surface reconstruction generated from 

the rasterized point cloud projected on the z direction. Since the Poisson algorithm gen-

erated new meshes, it was required to trim them by adjusting the density value, which 

removed low-density meshes until they fit inside the boundaries of the point cloud that 

generated it (see Fig. 3b). 

 

 

 

Figure 3: (a) Rasterized point cloud used to generate the Poisson surface reconstruction (black 
mesh), and (b) the same point cloud with the manually trimmed surface (black mesh). 

 

Table 1 shows that the RMSE and MAPE were 231 cm2 and 8.8%, respectively for the 

four point cloud merge approach. This error was relatively small since the rasterized 

point clouds were well defined and they also had a relative continuity without duplicate 

points in the z axis. In Fig. 4 it can be seen that the plants are thicker than they are in 

reality due to the error accumulated during the reconstruction of the maize row and the 

alignment and merging of the four point clouds. 
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Table 1: Align and merge four point clouds scanned from both sides and directions 

Direction 
Crop 
row 

Rasterized crop 
height (10 mm) 

[cm2] 

Poisson sur-
face recon-
struction 

[cm2] 

Ground 
truth LA 

[cm2] 

RMSE 
[cm2] 

MAPE 

Go left side, return 
left side, go right 

side and return right 
side 

2 4,713 4,580 4,191 389 9.2% 

Go left side, return 
left side, go right 

side and return right 
side 

3 1,781 1,895 1,634 263 16% 

Go left side, return 
left side, go right 

side and return right 
side 

4 2,179 2,777 2,819 42 1,4% 

Average  2,891 3,084 2,881 231 8.8% 

 

 

 

Figure 4: All four point clouds merge per maize row. 

 

By merging two point clouds reconstructed from scans taken from the same side (see 

Fig. 5a), meaning that the robotic platform drove in the same path going and then re-

turning, the advantage was that the maize plants were well defined in their 3-D mor-

phology, as seen in Fig. 5b, but leaves from the other side were theoretically incom-

plete. However, the results of Table 2 showed that the RMSE and MAPE were 203 and 

7.8%, respectively. These errors in the estimation of the LA were not very different from 

the ones obtained by merging four point clouds. One explanation could be related with 

the optimal position of the TOF camera and its inherent light volume technique that ac-

quires dense information in a single shot. 
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Table 2: Align and merge two point clouds scanned from the same side of the crop row 

Direction 
Crop 
row 

Rasterized 
crop height 

(10 mm) 

[cm2] 

Poisson surface 
reconstruction 

[cm2] 

Ground 
truth LA 

[cm2] 

RMSE 
[cm2] 

MAPE 

Go right side 
and return right 

side 

1 2,685 2,611 2,824 213 7.5% 

Go left side and 
return left side 

2 2,680 4,091 4,191 100 2.3% 

Go left side and 
return left side 

3 1,077 1,733 1,634 99 6% 

Go left side and 
return left side 

4 1,611 2,332 2,819 487 17.2% 

Go left side and 
return left side 

5 1,433 1,762 1,879 
 

117 6.2% 

Average  1,897 2,505 2,669 203 7.8% 

 

 

 

Figure 5: Same side scanned point cloud (a) while going and returning and (b) after merging. 

 

The other reconstruction was done by merging two maize row point clouds reconstruct-

ed when the robotic platform scanned the left side of the row while going, and the right 

side of the row while returning (see Fig. 6). In this case the robotic platform turned to 

the adjacent path in the headland. The theoretical advantage of this approach is that 

there are less hidden leaves that are not hit by the active sensing system of the TOF 

camera, compared to the previous one scanned from the same side. However, the av-

erage RMSE and MAPE were 1,059 cm2 and 32.3%, respectively. These high errors 

could be explained by the poor continuity on the leaf point clouds due to the different 3-

D perspective views of the opposing scans. 
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Table 3: Align and merge two point clouds scanned from both sides with opposite directions 

Direction 
Crop 
row 

Rasterized 
crop height 

(10 mm) 
[cm2] 

Poisson sur-
face recon-
struction 

[cm2] 

Ground 
truth LA 

[cm2] 

RMSE 
[cm2] 

MAPE 

Go left side 
and return right 

side 

2 3,047 3,156 4,750 1594 33.5% 

Go left side 
and return right 

side 

3 1,191 2,479 1,852 627 33.8% 

Go left side 
and return right 

side 

4 1,560 4,150 3,195 955 29.8% 

Average  1,932 3,261 3,265 1059 32.3% 

 

 

 

Figure 6: Opposite direction scanned point clouds depicting the difference between the ones 
acquired while going from the left side of every maize row, and while returning from the right 

side. 

 

4 Conclusions 

A low-cost 3-D TOF camera was used to acquire 3-D data with the use of sensor fusion 

that tracked the pose of the camera with high precision. The results demonstrated that it 

was possible to estimate the LA based on the reconstructed surface (meshes) of maize 

rows by merging point clouds generated from different perspectives. The difference be-

tween generating the point clouds by scanning the crop row from the same side and 

from opposite sides were very apparent in the resulting average MAPE of 7.8% and 

29.8%, respectively. Therefore, even if two point clouds were aligned and merged, the 

continuity of the point cloud made a considerable difference in the LA estimation. The 

alignment of four point clouds resulted in an average MAPE of 8.8% which is not very 

different from the one scanned from one side of the crop row. 
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Abstract: Methods of machine learning are used to recognize the soil type during soil 

compaction with attachment compactors. Acceleration records are measured on the 

vibratory plate. They are influenced by the Plate-soil-interaction and show characteristic 

patterns for different soil types and their humidities. The signal is processed in the fre-

quency domain. 24 Dimensions are used for the feature extraction. Three soil classes 

with three relative humidities each can be detected. Together with the positioning of an 

excavator control system (GNSS-Position) a full 3D – protocol of the compacted soil 

and its densitiy ist provided. The novelty is that no calibration of the compaction control 

value to the proctor density is necessary. 

Key words: Machine learning, construction equipment, intelligent compaction control, 

Attachment compactors 

 

1 Summary 

Three constructionally relevant main soil types (gravel, sand, clay) in three water con-

tent ranges (too dry, optimal, wet) can be detected. The number of different main soil 

types to be classified will be determined in the coming practical tests. The fundamental 

suitability of the chosen method (neural networks connected in series) has been con-

firmed, so that the further development to an application-ready practical solution is 

planned. First experiments with untrained data from unusual soils, such as very wet clay 

and crushed wet marl, showed that more physical properties than just stiffness are 

characteristic and are used by pattern recognition. 

Beyond the application for soil type detection in compaction control, the methods of ma-

chine learning provide a toolbox that is well applicable to acceleration signals. The anal-

ysis in the frequency domain corresponds to common methods in acoustics: pattern 

recognition is also used very successfully in speech recognition. Perhaps our work can 

also provide the impetus to classify and evaluate other types of shocks and vibrations 

with the methods of artificial intelligence. 
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2 Introduction 
Attachment compactors are compactors mounted on the boom of an excavator. They 

are widely used for the backfill of trenches and compaction of embankments. Due to the 

centrifugal force of the imbalance, the freely vibrating plate oscillates in a sinusoidal mo-

tion. When in contact with the ground, the sinusoidal shape changes depending on the 

properties of the soil and the device.  

 

  

Figure 1: Attachment compactor compacting trench filling, with display screen 

 

A characteristic feature of attachment compactors is the variable static load, which dis-

tinguishes them from other compactors such as rollers or vibratory plates. To determine 

the soil contact force, the static load must be measured. A display (Fig. 1) shows the 

operator of the excavator whether he presses too much or too little, whether the operat-

ing frequency is correct and when the compaction process is completed. So far, no in-

formation on the quality of the achieved compaction has been provided. 

In Continuos Compaction Control (CCC) two main methods for determining soil stiffness 

are widely used: 1. Using the harmonic content of the acceleration signal: The total 

Harmonic Distortion (THD) corresponds with soil stiffness. 2. Use of the force equilibri-

um to calculate soil reaction force, corresponding with soil stiffness. Both methods have 

severe drawbacks: Especially for cohesive and mixed soils, soil stiffness corresponds 

rather with water content then with compaction degree. Therefore, both methods need 

calibration. As attachment compactors are used on small sites with locally widely vary-

ing different soil types and the static load is not a constant but a variable, both tradition-

al methods are not sufficient. 

To avoid the need of calibration and to eliminate the influence of the water content, we 

use machine learning methods to determine the soil type and the relative water content 

(wet, optimum, dry). With known machine parameters as static load, plate width etc… 

we can then calculate the stress distribution in the soil. The use of soil-type depending 

material models leads directly to the compaction degree. Together with a satellite exca-

vator control system a full 3D-protocol is possible. 
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3 Methods 

3.1 Prerequisitions 

Attachment compactors show complex and chaotic motion patterns (NOHLEN & BERQUIN, 

2015). The different translatory and rotatory modes are changed spontaneously, e.g. by 

a slight change in the direction of static load application by the excavator. Thus, the 

measured acceleration or displacement amplitudes are strongly dependent on the posi-

tion of the sensor on the plate. The determination of the ground contact force is never-

theless possible and provides good values, as could be shown by a comparison with the 

force emission spectra measured in the ground (Fig. 2) (JAHNKE et al., 2018). 

 

 

Figure 2: Normalized force emission spectra of various attachment compactors. The excitation 
frequency and the first harmonic are dominant (JAHNKE et al., 2018). 

 

For pattern recognition in plate-soil interaction a stable vibration without changes in the 

vibration mode is useful. 

 

Figure 3: The compactor plate oscillates in various modes, including rocking modes (NOHLEN & 

BERQUIN, 2015). 
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Figure 4: Typical recording of a suite of compaction processes. Recorded with two different 

sensor types as spectrogram. 

 

Fig. 4 shows the increase of the harmonic content on ground contact in two data sets 

recorded simultaneously but with different sensors, while the excitation frequency is al-

most exclusively visible between the individual compactions. The absolute amplitudes 

and the noise, on the other hand, depend on the sensor. 

 

3.2 Feature extraction 

The amount and quality of training data are essential. Because the movement patterns 

depend on the Compactor type, each type must be trained separately. Changes in the 

vibrating mass, as they occur with model changes, can disturb the result. Therefore, we 

used always the same compactor (type MTS V8 WA with load sensor) to record the 

training data. Considering that a large number of data sets are required for each soil 

type and water content, and that an excavator is also required for each measurement, it 

is clear that the collection of training data is the bottleneck when using artificial intelli-

gence for compaction control. The signal processing itself corresponds approximately to 

the usual methods of CCC (analysis in the time and frequency domain). The character-

istics for soil type detection are mainly extracted at the end of the compaction process 

when purely elastic material behaviour is present. Feature extraction itself requires an 

understanding of the processes in the soil and the physical conditions of the entire 

compaction process. Feature extraction is partly deterministic and it is based on human 

expertise.  
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Figure 5: Schematic process of machine learning 

 

The plate acceleration signals are best described in their Fourier domain. The peaks in 

Fourier domain exhibit high energy about the harmonics and subharmonics of the plate 

excitation frequency. The features are derived from the Fourier transform coefficients 

amplitude and combined Fourier transform coefficients real and imaginary part with a 

cutoff frequency up to 350 Hz. This describes mostly the relevant information in the sig-

nal for the classification without noisy information. The recorded data were labeled and 

divide into the train and test dataset. 

 

3.3 Classifiers 

The machine learning methods used in this study are based on supervised learning al-

gorithms which make use of labeled training data. There were applied numerous popu-

lar methods such as k-NN, Support Vector Machine with linear kernel, Random Forrest, 

Bayesian with a Gaussian kernel and last but not least the Neural Network. Accuracy 

performance of all classifiers is quite similar and depends highly on the dataset. To get 

relevant classifiers performance there were computed the confusion matrices regarding 

soil materials. The misclassification occurs often with soils having closest stiffness pa-

rameters.  

The neural network classifier provides decently classification results with respect to the 

stiffness parameters. There was experimentally designed feed forward neural network 

with four hidden layers, ReLu activation function for each of them and Adam optimizer. 

The Keras library (backend Tensorflow) was chosen for implementation this classifier in 

Python. There were also designed next three neural networks for the material humidity 

classification. The output from the first neural network determines the material and 

these features are used as input for the humidity neural network classifier. 
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Figure 6: The procedure of machine learning with help of connected neural networks 

 

3.4 Results 

Initially, Bayesian probability density functions (Gaussian Process) were used because 

this approach was expected to best reflect the real conditions of mixed soil types and 

the continuous change in mechanical behaviour due to changes in water content. In the 

end, however, the neural networks proved to be the most suitable. In order to take into 

account the water content relative to the optimum (labelled “humid”), the soil type was 

first determined using a first neural network. With this result, the relative water content 

was then determined in a soil type-specific second neural network. This approach has 

proved to be advantageous, while the attempt to immediately classify the soil type and 

water content in a neural network, i.e. to use nine classes for three soils in three water 

contents, has given less good results. 

 

 

Figure 7: Confusion matrix for soil types which are relevant for construction purposes and their 
humidity 
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Fig. 7 shows the results for clay, sand and gravel in a "Confusion Matrix". If the predic-

tion and the actual class always match, the result is a clearly separated diagonal in the 

matrix. Thus, dry and moist clay could be distinguished to 100 %. However, this (too) 

good result is due to an insufficient amount of training data for clay. The matrix for grav-

el, for example, shows realistically achievable good results. When looking at the soil 

type alone (not shown), gravel is occasionally confused with sand. Because in many 

cases our "gravel" was actually a "gravel sand" (high proportion of sand), this corre-

sponds perfectly to the soil-mechanical reality. 

 

4 Discussion 

What the neural network actually does with the data is completely hidden from the user 

("black box") - an unusual situation for engineers. Our concern was that the classifica-

tion can ultimately only be traced back to the soil stiffness as with CCC (ADAM & KOPF, 

2004). A surprising result showed that this is not the case. At first we had no training 

data for very wet clay. Since AI knows no limits of its own - there is no class "I don't 

know" - the data collected later were classified as gravel for very wet clay. The analysis 

of the data suggests that the saturation of the impermeable material could have led to a 

certain change in the harmonic content of the acceleration signals, independent of the 

very low stiffness. Other unknown, mixed soils, e.g. broken and slightly softened marl, 

are allocated to gravel and clay in a physically meaningful way. 

The neural network also proved to be robust against poorly adjusted excavator hydrau-

lics and the resulting deviations from the desired operating frequency. Further work has 

to show that the method is robust with regard to other influences, e.g. different types of 

compactors. The chosen material models have to be proved with respect to the com-

paction degree. 
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Abstract: Using Structure from motion technology based on aerial imagery to monitor 

crop growth has become very popular in recent years. 3D data, captured during a full 

growing season, can provide useful multi-temporal information to plant breeders. A 

georeferenced geometrical parameter extraction workflow from eight flight epochs, us-

ing RGB camera images is presented. Here we especially consider important steps, like 

the reference surface generation and representation and different methods for calculat-

ing the differences between the crop and the reference surface. The plant heights were 

calculated based on two different approaches for a winter wheat test field. One goal is 

to have a better insight into the single step of each method and clarify what is really 

happening with the data and what are the possible influences and consequences to our 

final calculation of plant height from UAV based images. 

Key words: UAV imagery, structure from motion, georeferencing, 3D crop structure, 

heights raster data, plant height, growth rate 

 

1 Introduction 

Field-based phenotyping has become a very interesting component within the crop pro-

duction process. It is capable to take into account genetical and environmental related 

factors, as well as their interaction in real-world cropping system (YANG et al., 2017). So 

far, most of the field based phenotyping methods have been destructive, subjective and 

labor intensive. In recent years, the use of semi-automated or fully automated wheeled 

platforms deploying multiple sensors have become very popular but they still require a 

lot of time to cover the whole area of interest (ZHANG & KOVACS, 2012).  Some of the 

limitations can be solved using satellite-based remote sensing technologies (GEVAERT 

et al., 2015), which have become a very useful tool for agricultural applications. Howev-

er, the possibilities of clouds within the satellites view, and the lack of spatial and tem-

poral resolution are some limitations that require alternatives. Low-altitude, flexible, and 

affordable Unmanned Aerial Vehicles (UAV) have become a reasonable alternative, 

which allows collecting data with high spatial, spectral, and temporal resolution. They 

are frequently used within crop related research activities in order to access the preci-

sion and efficiency of field-based crop phenotyping.  A real time monitoring of the fields 

from above and near real time extraction of the parameters which supports decision-

making, has become a hot topic for many plant breeders worldwide. Using UAVs for a 
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simple visual inspection (crop scouting) is not satisfying anymore; breeders want to 

have more indicators to optimize their agronomic practices. Georeferenced spatial and 

temporal highly resolved data from the field are able to support these needs. Geomet-

rical traits, such as plant height and growth rate, ground cover, leaf area index, emer-

gence or lodging have the potential to be rapidly and non-destructively obtained using 

UAV imagery.   

In this paper, we focus on plant height as the parameter of interest in the field. Plant 

height is recognized as a good indicator for biomass, expected yield, logging, crop 

stress or water stress (MEDAC et al., 2017). When multi-temporal data are used, crop 

height time series and growth rate curves can be calculated. Currently, the most com-

mon method for measuring plant height is the manual measurement with a ruler, which 

is time consuming, labor-intensive as well as subjective, regarding the actual measuring 

procedure. An alternative way of plant height determination is to derive 3D models from 

overlapping aerial images. In order to extract the plant heights from 3D data (e.g. point 

clouds), it is necessary to calculate the difference between the crop surface and the ref-

erence surface, which is usually the bare soil without any plants. Probably the most 

common and efficient approach (e.g. BENDIG et al., 2014) is to generate digital surface 

models (DSM) using structure from motion software (e.g. Agisoft Photoscan or Pix4D) 

(URL-1, URL-2) and subtract the digital elevation model (DEM) of a field at a time, be-

fore the plants have been emerged. However, it is not clear, if this is the best option. In 

the following, we will compare and discuss several methods for plant height extraction 

and compare them. A more detailed view at the reconstructed 3D data and a better in-

sight at the single step of each method can clarify what is really happening with the data 

and what are the possible influences and consequences to our final calculation. In this 

way, we can define a reliable workflow for future projects. Finally, we will present a plant 

height time series of a multifactorial experiment with different winter wheat genotypes 

and different seeding systems.   

 

2 Materials and Methods 

2.1 Generating 3D models 

Automated aerial and close-range digital photogrammetry has become a powerful and 

widely used tool for three-dimensional modelling. ‘Structure-from-Motion’ (SfM) photo-

grammetry is often described as revolutionary, low-cost, user-friendly photogrammetric 

technique for obtaining high-resolution data sets (WESTOBY et al., 2012).  SfM uses mul-

tiple overlapped images of an object or feature to create a three-dimensional set of 

points corresponding to the surface of the feature. Images are taken from numerous 

positions focusing on the same object. The overlapping ensures finding matching points 

in multiple images that belong to the same spot on the ground but from a different per-

spective. Then these matched features in multiple images are used to estimate relative 

camera position, which is then extrapolated to create a 3D point cloud of the scene. Fur-
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thermore, the points can be processed to represent the 3D structure in the form of a 

DEM or some sort of surface representation, such as a triangulated mesh.  

In order to compare the generated 3D data at different epochs (Fig. 1), it is necessary 

to georeference them. This is usually realized by the usage of ground control points 

(GCPs). GCPs are previously deployed in the area of interest and measured with GNSS 

or some other surveying technique. There is also an alternative georeferencing method 

without GCPs, but using on-board RTK (Real-Time Kinematic) GNSS observations to 

geotag the images with an accuracy of several centimeters.  

  

Figure 1: Point clouds of eight flights, shown together as a cross section to visualize the differ-
ent heights 

 

2.2 Generation of the reference surface 

For measuring the plant height using 3D crop surface data, it is necessary to know the 

structure and position of the ground without any plants. The most accurate method to 

create this reference surface is to generate a 3D model (point cloud, DEM or mesh) of 

the surface, shortly before the plants emerge, and then assume, that the surface does 

not significantly change during the growing season. However, it may be the case, that a 

flight at that point in time is not possible. An alternative option is to use an early season 

flight with sufficiently visible ground segments between the plants. Then the plant points 

can be removed from the resulting point cloud, while the remaining ground points are 

used to create a 3D representation of the reference surface, e.g. by interpolation. We do 

not go into details here, but Fig. 2 shows (a) a point cloud of an early season flight of 

winter wheat, and (b,c) points separated into ground and plant points. The classification 

into the two classes was realized by applying a threshold to the Excess Green Index 

(ExG, MEYER & NETO, 2008), which can be calculated from standard RGB images.   

  

 

Figure 2: Segmentation between soil and vegetation data  
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For the sake of completeness, we also want to mention a third option to generate a ref-

erence surface, especially if no ground is visible anymore in the aerial images. Then, 

RTK-GNSS surveying equipment can be used to measure samples of the ground sur-

face with a sufficient density and interpolate these sampled points. Obviously, the accu-

racy of this method depends on the GNSS accuracy and the structure of the surface.    

 

2.3 Distance calculation using point clouds 

The next processing step is the calculation of the distance between the crop surface 

and the reference surface, in order to get the plant height. In this section, we briefly de-

scribe three possibilities of calculating this distance directly using the point clouds. The 

Cloud to cloud distance (C2C) is based on the distance between two point cloud using a 

'nearest neighborhood’ approach. For each point of the compared cloud, the algorithm 

searches the nearest point in the reference cloud and computes their Euclidean dis-

tance. If the reference point cloud is dense enough, approximating the distance from the 

compared cloud to the underlying surface represented by the reference cloud is ac-

ceptable. If the reference cloud is not dense enough, the nearest neighbor distance is 

sometimes not precise enough (Fig. 3a, left). Often, a local model is fitted to the refer-

ence surface close to the point of interest, in order to reduce this error (Fig. 3a, right). 

The Cloud to mesh distance (C2M) calculates the distance between the point cloud and 

a reference surface represented as a mesh. If the reference point cloud is triangulated 

to a mesh, then the C2M algorithm calculated the distance of a point to the closest tri-

angle of the mesh. In Multiscale model to model cloud (M3C2) comparisons, the num-

ber of points of one epoch is reduced by building core points that should represent the 

geometry of their neighborhood of size D. These core points are gained by filtering. The 

difference to the other point cloud is then calculated along each core point’s normal vec-

tor regarding its neighborhood d. Hence, two neighborhoods of size D and d need to be 

specified for this point cloud comparison. For a more detailed explanation, see BARN-

HART & CROSBY (2013).                                                                                                        

  

Figure 3: a) Cloud to cloud distance concept and b) M3C2 distance concept 
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The three algorithms described above are implemented in the software Cloud Compare 

(URL-3). 

 

2.4 Distance calculation based on rasterized data 

Since crop surfaces are mainly horizontal structures, and since the parameter of interest 

is the vertical distance between these surfaces, the rasterization of the surfaces and a 

simple distance calculation between the raster data may be the most effective way to 

calculate plant height values. The processing steps are (1) calculate heights raster from 

reference surface point cloud, (2) calculate heights raster from crop surface point cloud, 

(3) subtract the reference surface raster from the crop surface raster. There are several 

questions, which need to be considered during the process: (a) what is the most suita-

ble cell size, (b) how is the cell height calculated from the point heights within one cell 

(e.g. max, mean or median), (c) what to do with empty cells? The answers to these 

questions may be different for the ground and the crop surface raster. Although SfM 

software packages provide these raster data (in the form of a DEM) very easily, it is un-

known, what their answers to the questions are.  

  

 

Figure 4: Rasterization of reference surface. Cross section 

 

Fig. 4 shows the effect of rasterization using different methods for cell calculation in the 

example of the reference surface. The plot shows the cross section of a point cloud, cut 

along the North-South direction. We see here one line of cells with their points and their 

rasterization values for the different methods. Here, a 5cm cell size was chosen as it is 

assumed, that changes with a smaller scale are likely to happen during the season due 

to rain, erosion and field management. The median appears to be the preferred method 

as it is more robust to outliers, than the mean or the max value.  
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Figure 5: Rasterization of crop surface. Cross section 

 

Fig. 5 shows the same plot, but now based on a crop surface point cloud. It can be as-

sumed, that the maximum values within a cell are the best representation of the actual 

plant height. The reconstruction algorithms of the SfM software tend to smooth the sur-

face and the building of a mean of heights within one cell would even increase this ef-

fect, leading to an underestimation of the plant height. In the plot this can be seen in 

some places, where the mean and the max cell values differ. Obviously, it is necessary 

to remove outliers in the point cloud, as they appear directly in the cell, if they show 

higher height values. The figure also shows the rasterization result (DEM) from Airsoft. 

We assume, that here a mean or median was used, and that a strong outlier reduction, 

sacrificing some crop surface points, has been performed. The cell size is chosen to be 

small, as long as there still enough points within one cell. Here we used a cell size of 2 

cm. In order get the plant height, the crop surface raster and the reference raster are 

simply subtracted.  

 

2.5 Field experiment 

Multi-temporal plant height measurements in a winter wheat experimental field are pre-

sented. It consisted of 96 plots with 12 different genotypes and two different seeding 

treatments: an intensive treatment with 330 seeds per square meter and 200 kg/ha N 

fertilization, and an extensive treatment with 165 seeds per square meter and 100 kg/ha 

N fertilization. Eight UAV flights have been performed between March and July in 2017 

at the Uni Bonn Campus in Klein Altendorf. The reference flight was performed before 

plant emergence in early December 2016. The UAV was a DJI Matrice 100, equipped 

with and DJI Zenmuse X5 camera with 3-Axis Gimbal and 15mm f/1.7 lens. Each mis-

sion was programmed as a cross flight pattern at two heights (25m and 30m, side and 

forward overlap ~70%), to achieve a better 3D data quality. For data georeferencing, 

nine GCPs have been previously deployed and measured with a Leica GNSS receiver.  
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Figure 6: Field experiment. Test area in green 

 

3 Results and Discussion 

3.1 Height calculation methods 

From each UAV mission a point cloud has been calculated using Agisoft Photoscan 

(medium resolution, moderate filtering). Based on these point clouds we calculated the 

crop heights using the methods described in 2.3 and 2.4.  In order to compare the re-

sults, we show the histogram of heights (Fig. 7) for each of the methods, but limited to 

the test area shown at Fig. 6 as a green square. It can be seen, that all methods have 

almost the same behavior and crop heights have same distribution with three peaks. 

The Agisoft DEM based results seem to have a tendency towards lower values, which 

confirms our conclusion about smoothing the surface and building of a mean of heights 

sacrificing some crop surface points. However, it can be concluded, that the distribution 

of measured heights using the different methods do not differ more than a few centime-

ters.  

 

Figure 7: Crop height of test area calculated from different methods 
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3.2 Field experiment 

Fig. 8 shows the height (left) and growth rate (right) time series for the different geno-

types in the extensive seeding system. The heights have been calculated using the ras-

ter method, described in 2.3 using median cell value for reference raster and maximum 

cell value for crop surface. The values in the curves show the mean value of all raster 

cells of a particular genotype. The plot dimensions were 10 m by 1.50 m and four plots 

have the same genotype and management system. A buffer zone of 24 cm around each 

plot was excluded from the calculation to avoid border effects. Although we do not dis-

cuss these results from an agricultural perspective, it is obvious, that this information is 

potentially useful for breeders.  

 

     

Figure 8: Mean crop height (left) and growth rate (right) for the extensive seeding system 

 

4 Summary 

We presented a workflow for generating growth rate curves and crop height time series 

from aerial images, which have been recorded using a UAV equipped with a RGB cam-

era. The images were processed to derive 3D information about the crop surface, which 

is then compared to a 3D model of the bare soil in order to derive the crop height. We 

discussed and compared different methods for representing the measured surfaces and 

for calculating differences between them. The height distributions of a sample area dif-

fer only in the range of a few cm for the different differencing methods. Therefore, the 

most efficient method, which is based on a rasterization of the point cloud is suggest to 

be used in the future. However, we also suggest to use the maximum height value with-

in the rasterization routine, as it represents a more realistic estimation of the plant 

height than the standard mean operation.  
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BiogasPOTENZIALE Erkennen, Erforschen, Erwirtschaften 2012 

Heft 80 Mechanisms of Bacillus spore germination and inactivation 
during high pressure processing 2013 

Heft 81 19. Workshop Computer-Bildanalyse in der Landwirtschaft  
2. Workshop Unbemannte autonom fliegende Systeme in der 
Landwirtschaft 
06. – 07. Mai 2013 Berlin 2013 

Heft 82 3rd Global Workshop on Proximal Soil Sensing 2013 

Heft 83 19. Arbeitswissenschaftliches Kolloquium des VDI-MEG  
Arbeitskreises Arbeitswissenschaften im Landbau 
11. – 12. März 2014 Dresden 2014 

Heft 84 Prozessmikrobiologie in landwirtschaftlichen Biogasanlagen 
Schlussbericht zum Forschungsverbund 
BIOGAS-BIOCOENOSIS 2014 

Heft 85 Sensoren.Modelle.Erntetechnik 
Kolloquium zur Verabschiedung von Dr. Ehlert 
27. Mai 2014, Potsdam-Bornim 2014 

Heft 86 Phosphor für die Landwirtschaft – Strategien für eine  
endliche Ressource 
11. Juni 2014, Potsdam-Bornim 2014 

Heft 87 Biofilme in Biogasanlagen - Struktur, Einfluss auf die Bio-
gasausbeute und Optimierung technischer Systeme zur Rück-
haltung der mikrobiellen Biomasse 
BIOGAS-BIOFILM 2015 

Heft 88 20. und 21. Workshop Computer-Bildanalyse in der Landwirt-
schaft 
3. Workshop Unbemannte autonom fliegende Systeme (UAS) 
in der Landwirtschaft 
26. Mai 2014, Osnabrück und 06. und 07. Mai 2015, Braun-
schweig 2015 

Heft 89 International Biochar Symposium: Biochar Contibution to Sus-
tainable Agriculture 
28th – 29th May 2015, Potsdam 2015 

Heft 90 ISHS Symposium 2016 “Sensing Plant Water Status” 
Methods and Applications in Horticultural Science 
05th – 07th October 2016 Potsdam 

 
 

2016 

Heft 91 10Th International FRUTIC Symposium 
Quality and Safety of Fresh Horticultural Commodities 
February 07, 2017 

 
 

2017 

Heft 92 Etablierung eines core-Mikrobioms für Biogasanlagen  
Genom-Sequenzierung von Isolaten aus Biogasanlagen und 
Mapping von Metagenom-Datensätzen 
BIOGAS-CORE 
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Heft 93 22. Workshop Computer-Bildanalyse und Unbemannte auto-
nom fliegende Systeme in der Landwirtschaft 
23. Workshop Computer-Bildanalyse 
in der Landwirtschaft 
21. April 2016, Wernigerode und 27. April 2017, Potsdam-
Marquardt 2017 

Heft 94 Leitfaden für die Trocknung von Arznei- und Gewürzpflanzen 2017 

Heft 95 Entwicklung von molekularen Markern und Nachweisverfahren 
auf Basis der quantitativen (realtime) PCR zum Monitoring von 
prozessrelevanten Mikroorganismen als Frühwarnsysteme für 
Prozessstörungen 2017 

Heft 96 Cold atmospheric pressure plasma treatment of food matrices: 
Tailored modification of product properties along value-added 
chains of plant and animal related products 2017 

Heft 97 INSECTA  
Conference 2017 
07th – 08th September 2017, Berlin, Germany 2017 

Heft 98 Storability of broccoli – investigations of optical monitoring, 
chlorophyll degradation and predetermination in the field 2018 

Heft 99 24. Workshop Computerbildanalyse in der Landwirtschaft 
25. April 2018, Zürich 2018 

Heft 100 INSECTAS 2018 
05th – 07th September 2018, Giessen, Germany 2018 

Heft 101 6th International Conference on Machine Control and  
Guidance 
1st – 2nd October 2018, Berlin, Germany 2018 
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