The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 233
Back to Result List

Vibro-Acoustic Sources in Lightweight Buildings

  • The work reported in this thesis addresses the problem of structure-borne sound transmission in buildings. Vibrating sources, such as services plant and domestic appliances, transmit vibro-acoustic power, causing noise complaints by occupants in rooms removed from the source room. There is not yet an accepted practical method of predicting the installed power into floors or supporting walls, and thence the resultant sound pressure in rooms. This study concentrates on the prediction of the installed power from mechanical installations in lightweight buildings composed of framed and ribbed plates. To identify the characteristics of such receiver elements, a field survey has been undertaken, which involved measurement of the point and transfer mobilities of common wall and floor structures. It is shown that the range of measured values of receiver point mobility is surprisingly small and that the constructions investigated often displayed thin plate-like characteristics, with relatively small spatial variations in point mobility. These field measurements give support to the notion of averaging over contacts. This single equivalent receiver mobility has been assembled both from measured data and from the approximate method and then used in combination with single equivalent source data, to yield an approximate prediction of the installed power. The agreement obtained between the exact and approximate values allowed consideration of a practical implementation of the approximate prediction method, based on a reception plate method which yields the activity and mobility of the tested machine as single equivalent values.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Andreas R. Mayr
Publisher:Logos Verlag Berlin GmbH
Document Type:Doctoral Thesis
Language:English
Publication Year:2010
Granting Institution:University of Liverpool
Date of final exam:2009/06/15
Tag:Lightweight buildings; Vibro-acoustic sources
Page Number:320
faculties / departments:Fakultät für Angewandte Natur- und Geisteswissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik