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Abstract 
When monitoring the energy performance of 

buildings, it may be of interest to identify the 

occupation periods of people in the room due to their 

possible impact on the energy balance. In order to be 

able to carry out a comprehensive energy assessment 

of the system and building, it is necessary to be able to 

classify user influence during the evaluation. This 

thesis investigates how the presence of people in a 

room can be determined cost-effectively and with little 

additional effort. The aim is to determine which 

sensors of a room control system provide sufficiently 

reliable data. The presence of 1-2 persons was 

examined on a test facility of the Technical University 

Rosenheim. The air-, mean radiation- and surface-

temperatures, the air humidity as well as the CO2 and 

VOC concentrations were measured. For the analysis, 

a method of supervised machine and statistical 

learning, random forest, is used. The smallest model 

error detected in predicting the presence of 1 or 2 

persons from CO2 sensor data is 1.43%. The error 

rates are low for all tested models if time-dynamic 

effects are used as predictors and the data is processed 

in a so-called time period form. Additionally, the ways 

in which this data should ideally be made available for 

future measurements and processed to facilitate 

analysis with machine and statistical learning 

techniques have been investigated. A further goal is to 

apply the models developed on measurement series in 

laboratory environments to real rooms and to assess 

the transferability of these models. 

1. Introduction 

1.1 Background 
Calculated energy demands are used to compare buildings 

with each other. Depending on user behavior and the 

quality of construction work, actual energy consumption 

may vary to a greater or lesser extent from the calculated 

energy demand. The true energy demand of a building can 

therefore only be determined by a measurement of the 

building itself. During monitoring, user behavior has a 

strong influence on the result of calculations, so it is 

therefore of interest to know about the user behavior in 

the buildings when making energetic evaluations. 

Multiple methods for presence detection are in discussion 

or under investigation. These include: movement and 

presence detectors, user interfaces in the room (light 

switches, climate control, beamer control, displays, 

blinds, etc.), video surveillance, or even the use of near-

field communication to detect the presence of 

smartphones [1]. In addition, sound pressure level 

measurements [6] or chair sensors that detect a person 

sitting [7] are examined. Not all methods are suitable for 

obtaining information about the number of people in a 

room. Some of the sensors may deliver very accurate 

results, however data and privacy protection may create 

problems with user acceptance. In terms of cost 

efficiency, it would be advantageous to know if and which 

sensors of a room control system provide reliable data on 

the presence of people, as these systems are generally 

already installed in many rooms. 

International research projects such as the IEA Annex 71 

[2] have set themselves the goal of improving the 

prediction, characterization and quality assurance of the 

actual energy performance of buildings. Depending on the 

type of building and the intensity of building automation, 

the user is one of the biggest influencing factors on the 

energy demand. Therefore, there is an increasing focus on 

how to measure user behavior in situ[1]. Some studies aim 

to improve building simulation models for predicting 

energy demand by using more realistic user profiles[3]. 

Other studies focus on predicting the presence of people 

to improve the control of heating, ventilation and lighting 

systems [3][5][6][7][8]. Further studies see potential to 

improve facility management, e.g. in room occupancy [3]. 

Estimation of the presence of people in "real time" should 

influence the control of the building technology in such a 

way that energy can be saved optimally[5]. 

The presence of people has been examined in offices [3], 

open-plan offices [3][4], student apartments [5] and 

theatres[6]. 

A frequently used measurement parameter to identify the 

number of people present is the CO2 concentration 

[1][3][5][6], because it increases with the number of 

people. However, the increase is also influenced by the air 

change, air tightness, wind speed and room volume. Also, 

air humidity, volatile organic compounds (VOC) and PIR 

sensors have been investigated with respect to presence 

predictions and provide results with good model 

accuracy[5]. 

In the literature studied here, the presence of people is 

detected using various statistical analysis methods. Kim 

et al. [3] use three different machine learning methods, 

which are: classification and regression tree (CART), 



 

 

 

 

artificial neural network (ANN) and support vector 

machine (SVM). Jiang et al. [4] work with the Scaled 

Extreme Learning Machine (FS-ELM) algorithm feature. 

In Pedersen et al. [5], they apply a series of decision rules 

(binary) to the curve of sensor data. Zuraimi et al. [6] 

chose three standard machine learning methods: 1) 

Artificial Neural Networks (ANN); 2) Prediction Error 

Minimization (PEM); and 3) Support Vector Machines 

(SVM), as these are widely used and easy to implement. 

Ryu et al. [8] apply a decision tree algorithm in the first 

step, and in the second step, a model for predicting 

presence is selected using a hidden markov model 

(HMM). 

1.2 Contributions 
This thesis considers the identification of the presence of 

people from the experimental design through to the 

statistical analysis, and accounts for the interaction 

between and the effectiveness of the methods employed. 

The aim is to continuously improve the test design for 

further investigations and to prepare it for application in 

the field. 

Ways of using random forest to determine the presence of 

people and the number of persons present is being 

investigated specifically. The method of analysis used is 

a random forest method of supervised machine and 

statistical learning [9]. This is an ensemble method in 

which bootstrapping is used to create multiple, 

uncorrelated decision trees. This nonparametric and 

nonlinear method offers high flexibility, e.g. it does not 

require a distribution assumption or a detailed physical 

model. The method can deal with classification and 

regression tasks. In this thesis, the classification task of 

random forest was chosen. The method is very well suited 

for parallelizing calculation steps, which makes it possible 

to evaluate even large amounts of data quickly. 

Furthermore, it is investigated which and how many 

sensors of a room control system are needed for the 

presence prediction. A range of different room sensors are 

included in the analysis, so that it is possible to investigate 

which parameters are decisive and whether the prediction 

accuracy increases with observations of different sensors. 

With the help of the so-called importance measures, the 

random forest offers the possibility of creating a ranking 

list of features (i.e. influencing variables based on the 

sensor values or measurement parameters) with regard to 

their prediction quality. In addition, on the basis of the 

importance measures, faulty sensors can be detected by 

the unimportance assigned to them. 

The aim is to investigate how the data must be collected 

with a focus on optimal modelling (measurement interval, 

data storage in the database, data transfer to the analysis 

program). 

2. Methods 

2.1 Experimental design 
The presence of people was estimated using a method of 

machine learning. The data required for the development 

of the models was generated in a series of experiments. 

The tests were carried out on a facility at the Technical 

University Applied Sciences Rosenheim. For more details 

on the test facility see Janssens[10]. The experimental 

facility consists of a container with three test boxes. The 

test boxes each have a 2/3 opaque external facade, which 

constitutes the only wall bordering the external air. The 

remaining walls border the service room of the container. 

The walls are thermally decoupled. Two of the test boxes 

(A & B) have the dimensions 2.9*2.9*2.9m³ (B*L*H). 

The third test box (C) is slightly bigger at 2.9*3.2*2.9m³ 

(B*L*H). Measurements were carried out in rooms A and 

C. Figure 1 shows the ground plan of the test bench. 

Measuring sensors already installed in the facility were 

used in both test boxes. These were sensors for air 

temperature, radiation temperature, surface temperature, 

humidity, CO2 concentration and VOC concentration. Air 

pressure and solar radiation were also measured. A total 

Figure 1 Layout of the test facility 



 

 

 

 

of 34 sensors recorded data, most of which were air and 

surface temperatures. 

The number of people present for the training set data was 

determined with a switch. In addition, a PIR sensor was 

installed in the entrance area of the test box. During the 

experiment, one or two people were in room A or C for a 

period of 20 minutes. After the persons had left the room, 

the room was ventilated by opening the test box door. 

Forty experiments were carried out in each room (A and 

C) with both one and two people present, so that 160 

experiments were carried out in total. 

2.2 Results from experimental study 
Figure 2 shows an example of the profile of the CO2 

concentration during a measurement day. The height of 

the bars indicates the number of people present. The CO2 

concentration increases after entering the test box, and 

decreases after leaving the test box and opening the test 

box door. In addition, the change in the CO2 concentration 

during the presence phases is displayed. 

 
Figure 3 Humidity change in the room during the 20 minute 

occupancy period, from all experiments 

Figure 3 shows the change in humidity due to the release 

of moisture from people during occupancy, of 20 minutes 

of all measurements. The values are subdivided into the 

humidity increase from one person and two persons. The 

increase in humidity for one person is in the range of 10g. 

For two people, the increase in humidity is usually greater 

than 10g and can reach over 50g. The two different 

numbers of people present form two distinct frequency 

distributions with little overlap. 

 
Figure 4 Temperature increase during the 20 minute occupancy 

period, from all experiments 

Figure 4 shows the increase in temperature during 

occupancy, of 20 min, of all measurements. For one 

person, the maximum temperature difference of all tests 

is between 0.4 K and 0.6 K. For two people, the maximum 

is between 0.8 K and 1.0 K. There is a high overlap 

between 0.4 K and 1.0 K. 

Figure 2 Exemplary CO2 concentration curve and number of persons in room C on a measurement day. Additionally, recorded is the 

increase of the CO2 concentration in the presence phases 



 

 

 

 

 
Figure 5 Increase of the CO2 concentration during the 20 

minute occupancy period, from all experiments  

The increase in CO2 concentration during occupancy from 

all experiments is shown in Figure 5. The increase in CO2 

concentration for one person ranges from between 70ppm 

and 170ppm. For two people, the range extends from 100 

ppm to 430ppm. 

2.3 Data preprocessing 
In general, monitoring-measurement data is often 

available in a multivariate time series structure that may 

not be synchronized. For the application of the random 

forest algorithm, a data structure centered on the event 

response variable must be created. With regard to realistic 

applications, only simultaneous or possible influencing 

variables (features) of the past should be assigned to the 

response.  

Successful and efficient data analysis using methods of 

machine and statistical learning starts with the adequate 

recording of the measuring sensors. 

For the analyses, a data structure is required in which the 

observations of all variables and the values of the potential 

influence variables (with as few missing values as 

possible) are assigned in an event-oriented manner to each 

point in time or time interval. A time-synchronized, 

multivariate time series structure of the sensor-measured 

values (with a low missing component) is suitable as a 

basis for this.  

In the following, two different table structures are 

explained and evaluated with random forest. These are the 

table structures we call ‘time point form’ and ‘time period 

form’. Figure 6 displays those table forms. A data 

structure that contains one observation per point in time is 

the time point form, and is characterized by the fact that 

each row represents a specific point in time, and the 

columns, in addition to the response, are formed by the 

sensors used. In the case where there is one observation 

per time interval or period, a table is available in time 

period form. In addition to the response, there are then 

several sensor values at different times within the time 

period form for each time period. For example, if the time 

period of 5 minutes is specified and the sensors measure 

every minute, then the table in the time period form 

contains for each sensor the columns with the measured 

value after one, two, three, four and five minutes.  

 
Figure 6 Example of a transformation from time point form to 

time period form.  

2.4 Results from time form 
After data preparation, the tables containing the sensors 

that measure every 10 seconds will be considered. This 

means that there are two tables in the same form with the 

same columns, one with the data from room A and the 

other with the data from room C. Models developed in 

room C are validated with the data from room A and vice 

versa. If this procedure is carried out, the following 

confusion matrices are obtained on the validation data, for 

the comparison of the estimated values with the actual 

occupancy values (observed values): 

 
Figure 7 Illustration of two confusion matrices. The upper table 

shows the results of the model from the data of room A and the 

verification by the data of room C. In the lower table, the 

learning and validation samples are reversed. 

These matrices represent contingency tables of actual 

presence values and occupancy values predicted by the 

random forest. In an initial modelling, only features 

belonging to the time of observation of the response were 

used. The results are shown in Figure 7. The table reads 

as follows: if 0 persons were present, this is recognized 

correctly 15655 times, one person is incorrectly estimated 

414 times and two people are incorrectly estimated 1335 

times. This results in an error rate of 0.1. The total error 

rate of the upper table at Figure 7 is 36.25% and of the 



 

 

 

 

lower table 71.5%. Both cases show very high error rates 

and both models are classified as unusable. In order to 

improve the model quality for a second round of 

modelling, the differences between the sensor values at 

the observation time and at past measurement times are 

therefore included as possible features. By adding these 

features, which are formed over a time-lag with historical 

values, one progresses from a time-static model to a time-

dynamic model. The difference between the time before 

one minute, before two minutes and every minute up to 

five minutes is used for each sensor. The resulting random 

forest models result in the following confusion matrices: 

 
Figure 8 Confusion matrices after adding temporal 

measurement differences. The upper table shows the results of 

the model from the data of room A and the verification by the 

data of room C. In the lower table, the learning and validation 

samples are swapped again. 

Figure 8 shows that the overall error rate is significantly 

better than in the previous models without features based 

on temporal measurement differences, cf. Figure 7. The 

prediction accuracy of the model for the presence of one 

or two people for room A is rather low. The model of 

room C can hardly distinguish between one and two 

people in the presence of one person. However, these 

miscalculations can be explained by the fact that the 

presence of a person is checked with an accuracy of 10 

seconds and the sensors require a certain reaction time 

until they can detect a change of a measuring parameter. 

Nevertheless, the overall error rates of the models are very 

low, especially since a lack of presence is largely detected. 

In addition to the previous total error rate, the table in 

figure 8 also contains the "Total error rate: Present 

yes/no". To calculate these values, a third model is formed 

with temporal measurement differences and binary 

responses, "present yes or no", and the total error rate is 

calculated. This changes the question of "How many 

people are present? " to "is there at least one person 

present?" (0=no, 1=yes). This procedure leads to a lower 

error rate, but also to a less detailed statement.  

The random forest method offers, with the help of the 

importance function (see [12]), the possibility of 

displaying the features sorted by their importance 

regarding the prediction power. A distinction is made for 

categorical response between the mean decrease in 

accuracy and the mean decrease in gini. For an exact 

definition and calculation of these Importance measures, 

see L. Breiman[9] or G. James et al.[11], In the following 

we focus only on the mean decrease in accuracy. The most 

important features for the prediction of presence in 

random forest were the absolute humidity, the difference 

between the instantaneous CO2 concentration and the 

concentration 3 minutes ago, the instantaneous CO2 

concentration and the air pressure. 

This ranking list can be used, for example, if you only 

want to restrict yourself to the most important sensors for 

prediction in the random forest and if you want to carry 

out a variable selection for modelling. A reduction of the 

used feature number usually leads to model stabilization 

and can reduce a possible overfitting of the models. For 

future measurement arrangements one could then also 

limit oneself to the most important sensors. Another 

application of these models is the detection of faulty 

sensors by including in the modelling, in addition to the 

sensor values, a (random) feature that consists only of 

pseudo-random numbers. This random feature is then 

assigned an "importance" in the random forest algorithm 

and all sensors whose "importance" is not greater than the 

importance of the random feature can be removed from 

the model building. This can also be an indication of 

defective sensors. 

2.5 Results from period form 
In the time form, the presence is estimated at a certain 

point in time. In comparison, the time period form 

estimates whether one or two persons are present in a 

certain time window (here 20 min). The data is 

transformed as shown in Figure 6 and referred to as the 

time period form.  

In the time-form, the second model with measurement 

differences has produced significantly better results, so 

measurement differences are also taken into account when 

modelling with the time-form. If one forms random forest 

with these time period tables, one obtains the following 

results with a first model, cf. Figure 9. 

The overall error rates are below 5%, which is a very 

satisfactory result. 

The application of the importance function shows that the 

changes in the CO2 value at different points in time are 

most important in modelling with the time period form. If 

only the features based on the CO2 sensor are used, total 

error rates of less than 5% result. The model with 

measurement differences in the period form, developed on 

the learning sample from room A, has a total error rate of 



 

 

 

 

approx. 4.5% and the model from the learning sample 

from room C of 1.43%.  

 
Figure 9 Confusion matrices in the period form with temporal 

measurement differences.  

3. Summary 
This thesis has studied the possibility of estimating the 

presence of people using the machine learning method 

random forest and data from indoor climate sensors. First, 

a test was carried out on a test bench and the data was then 

evaluated descriptively and graphically. Taken on its own, 

the graphic evaluation of the measurements shows 

tendencies of the values for the presence of one and two 

people, but no clear statements can be made. During the 

statistical evaluation, two different table structures were 

presented as data bases for the models. It turned out that 

the time point form is better suited for practical 

application. Only in the time point form can one infer a 

certain point in time after the analysis with random forest. 

This is important if you want to determine the exact time 

point of occupation. 

Data processing for statistical modelling is very time-

consuming. Different start times from three different data 

loggers and different measurement intervals from 10 

seconds up to 5 minutes result in the data tables having to 

be converted, shifted and rows removed to enable 

evaluation. In part, so much information was lost that 

modelling was no longer possible with sufficient model 

quality. A successful and efficient data analysis with 

methods of machine and statistical learning starts with 

well formulated objectives with respect to recording the 

data. 

The models are good in predicting whether a room is 

occupied or not, but the results of predicting the exact 

number of people are not yet satisfying. The smallest 

model error detected in predicting the presence of one or 

two people from the data of CO2 sensors comes from the 

model with the time period form and measurement 

differences, and is 1.43%. In all models tested, the error 

rates are low if time-dynamic effects are used as 

predictors and the data is processed in a so-called time 

period form. With the time period form, one receives 

better results, however it is rather unsuitable in practice. 

In this experiment, there were only fixed periods of 

occupancy of 20 minutes, but in practice one stays in a 

room for different lengths of time. For this reason, the 

time point form should be used for future studies. 

With the help of an importance measurement, the sensors 

can be evaluated with regard to their prediction weight. 

The importance measurement can be used to reduce 

measuring systems to important sensors and thus also 

detect faulty sensors. 

4. Conclusion 
For future measurement series and with regard to field 

measurements, a number of requirements for the test 

design can be clarified by the present work.  

The test facility should be upgraded in such a way that 

more general conditions can be set. This is for example a 

constant air exchange rate in the test rooms. With this 

measure the point in time when people leave a room could 

be better predicted. 

Another important precondition is, that the measuring 

system should be exchanged and be set up in a way that 

all data have a uniform time stamp. This should also be 

observed for field measurements. 

In future experiments, more information about the people 

that enter the room could be obtain. Among these could 

be documented: gender, their place of stay in the room, 

activity level, physical condition and state of mind, in 

order to integrate these effects into the statistical models. 

The influence of spatial geometry on the statistical model 

could be investigated by measuring in all three test rooms, 

so that test room A and B can be compared with room C. 

In addition, the number of people should be varied more 

strongly, and larger numbers of people and different time 

intervals for their occupation periods should be included 

in the tests.  

The importance measure should be used in the future for 

feature selection and model optimation to reduce 

overfitting effects. 
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