TY - CHAP A1 - Wohlschläger, Maximilian A1 - Khan, Yamna A1 - Leiter, Nina A1 - Versen, Martin A1 - Löder, Martin A1 - Laforsch, Christian T1 - Combining BLOB-Detection and MLP to Detect and Identify Plastics in an Environmental Matrix T2 - 2023 IEEE Sensors Applications Symposium (SAS) N2 - Environmental pollution by plastics is an increasing problem. However, state-of-the-art methods have significant disadvantages in detecting and identifying plastics directly in an environmental matrix. In this study, we propose a blob detection algorithm in combination with a neural network for fast and automated identification of plastics and non-plastics in a single fluorescence lifetime image. Therefore an artificial environmental matrix is prepared that contains soil, grass, spruce and HDPE (high density polyethylene) particles. Several FD-FLIM (frequency domain fluorescence lifetime imaging microscopy) images are taken, and the detection algorithm and the neural network are applied. We successfully demonstrated the suitability of the thresholding algorithm and the binary classification of the HDPE particles directly in the environmental matrix. KW - Fluorescence KW - Plastics KW - FD-FLIM KW - Neural networks KW - MLP KW - blob detection KW - Classification algorithms KW - Dogs KW - fluorescence lifetime KW - plastics identification KW - Soil KW - Thresholding (Imaging) Y1 - 2023 U6 - https://doi.org/10.1109/SAS58821.2023.10254171 SP - 1 EP - 5 ER - TY - CHAP A1 - Wohlschläger, Maximilian A1 - Khan, Yamna A1 - Leiter, Nina A1 - Versen, Martin A1 - Löder, Martin A1 - Laforsch, Christian T1 - Development of a BLOB-detection algorithm based on DoG to detect Plastic in an environmental matrix using FD-FLIM T2 - Optica Sensing Congress 2023 (AIS, FTS, HISE, Sensors, ES) N2 - The direct identification of plastics in an environmental matrix is heavily researched. We successfully developed a BLOB-detection algorithm based on differences of Gaussians to identify HDPE particles in an artificial environmental matrix using FD-FLIM. KW - Diode lasers KW - Fluorescence lifetime imaging KW - Phase shift KW - Neural networks KW - Optical filters KW - Spatial resolution Y1 - 2023 U6 - https://doi.org/10.1364/ES.2023.EW4E.4 ER -