TY - CHAP A1 - Rabold, Andreas A1 - Düster, A. T1 - FEM based prediction model for the impact sound level of floors T2 - EURONOISE 2008- Conference Proceedings N2 - Up to now the research and developmen t in the field of building acoustics is based mainly on measurements. The consequence is that the development and optimization of a new building component is a very tedious and expensive task. A considerably reduction of these costs could be achieved, if the optimization relying on measurements would be replaced – at least to some extent – by a computational prediction model. Motivated by these aspects a method is presented for using finite element techniques to estimate the impact sound level from lightweight floors. The overall approach consists of the three-dimensional modeling of the structure and the excitation source (tapping machine), the subsequent moda l- and spectral analyses an d the computation of the radiated sound from the ceiling. KW - Building acustics KW - Lightweight floors Y1 - 2018 ER - TY - CHAP A1 - Rabold, Andreas A1 - Düster, A. A1 - Hessinger, J. A1 - Rank, E. T1 - Optimization of lightweight floors in the low frequency range with a FEM based prediction model T2 - DAGA Tagungsband N2 - The impact noise transmission at low frequencies is a well known problem of lightweight floors, which is treated in many publications. A satisfying solution, considering the different construction principles of lightweight floors, could not be found so far. To overcome this problem a FEM based prediction model for the optimization of the floor construction and the improvement of the impact sound insulation has been developed and applied in a current research project at th e TU München. The details of the prediction model were published in [1]-[3]. This contribution gives an overview of the prediction model and shows the results of the computations and the construction rules developed for optimized lightweight floors. KW - Building acustics KW - Lightweight floors Y1 - 2018 ER - TY - JOUR A1 - Rabold, Andreas A1 - Buchschmied, M. A1 - Duster, A. A1 - Müller, G. A1 - Rank, E. T1 - Modelling the excitation force of a standard tapping machine on lightweight floor structures JF - Journal of building acustics N2 - Up to now the research and development in the field of building acoustics is based mainly on measurements. In consequence the development and optimization of a new building component is a very tedious and expensive task. A considerable reduction of these costs could be achieved, if the optimization relying on measurements would be replaced – at least to some extent – by a computational prediction model. For these models it is necessary to represent not only the component and the adjacent rooms but also the excitation in a suitable way. This paper gives an overview of models for the excitation generated by a standard tapping machine taking into account the interaction between the impacting steel cylinders of the tapping machine and the vibrating surface of the floor. KW - Tapping Machine KW - Lightweight floors Y1 - 2018 ER -