TY - RPRT A1 - Auer, Veronika A1 - Beneken, Gerd A1 - Brummer, Benjamin A1 - Châteauvieux-Hellwig, Camille A1 - Engler, Benjamin A1 - Gilly, Alexander A1 - Hagl, Rainer A1 - Hummel, Felix A1 - Hummel, Sabine A1 - Karlinger, Peter A1 - Knorr, Ludwig A1 - Köster, Heinrich A1 - Kucich, Martin A1 - Mecking, Simon A1 - Rabold, Andreas A1 - Sandor, Viktor A1 - Schalk, Daniel A1 - Schanda, Ulrich A1 - Schemme, Michael A1 - Schiffner, Ivonne A1 - Schmidt, Jochen A1 - Schugmann, Reinhard A1 - Seidlmeier, Heinrich A1 - Sigg, Ferdinand A1 - Stauss, Kilian A1 - Sussmann, Monika A1 - Wellisch, Ulrich A1 - Wenninger, Marc A1 - Wittmann, Josef A1 - Zscheile, Matthias T1 - Jahresbericht 2016, Forschung - Entwicklung - Innovation N2 - Mit dem jährlich erscheinenden Forschungsbericht möchte die Hochschule Rosenheim einen Einblick in ihre vielfältigen Projekte und Aktivitäten der angewandten Forschung und Entwicklung geben. Im Jahresbericht 2016 wird über Vorhaben im Jahr 2016 berichtet. T3 - Schriftenreihen - Forschungsbericht - 5 KW - Forschung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:861-opus4-12282 ER - TY - JOUR A1 - Dupas, R. A1 - Musolff, A. A1 - Jawitz, J. W. A1 - Rao, P. S. C. A1 - Jäger, Christoph G. A1 - Fleckenstein, J. H. A1 - Rode, M. A1 - Borchardt, D. T1 - Carbon and nutrient export regimes from headwater catchments to downstream reaches JF - Biogeosciences N2 - Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3−), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke (Germany) river continuum from three headwaters draining 1–3 km2 catchments to two downstream reaches representing spatially integrated signals from 184–456 km2 catchments. Three headwater catchments were selected as archetypes of the main landscape units (land use  ×  lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3−, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contributions from point sources. The seasonal dynamics for NO3− were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3− contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3− was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal (high SRP during summer low flow), which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to jointly investigate land-to-stream and in-stream transport, and transformation processes. KW - Running water systems Y1 - 2017 UR - https://doi.org/10.5194/bg-14-4391-2017 VL - 14 IS - 18 SP - 4391 EP - 4407 ER - TY - JOUR A1 - Jäger, Christoph G. A1 - Hagemann, J. A1 - Borchardt, D. T1 - Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment JF - Water Research N2 - Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication phenomena in riverine ecosystems. As a consequence, ecologically effective eutrophication management of running water systems has to go beyond the control of nutrient emissions or the achievement of limiting threshold values in the receiving waters, but requires the consideration of the nutrient pathways (surface water versus groundwater) and the shifting biological controls from lower to higher order stream ecosystems. KW - Light KW - Sinking KW - Detachment KW - Depth KW - Resource competition KW - Ecological management Y1 - 2017 UR - https://doi.org/10.1016/j.watres.2017.02.062 VL - 115 SP - 162 EP - 171 ER - TY - RPRT A1 - Karlinger, Peter A1 - Schemme, Michael A1 - Knorr, Ludwig A1 - Hummel, Sabine T1 - Verbund zwischen Organoblech und angespritzten Strukturen T2 - Forschungsbericht 2016 der Hochschule Rosenheim N2 - Seit über zehn Jahren erforschen Wissenschaftler und Wissenschaftlerinnen der Fachrichtung Kunststofftechnik an der Hochschule Rosenheim Verbindungstechnologien und -mechanismen zwischen endlosverstärkten Thermoplasten und angespritzten Funktionsstrukturen. Besonders die Automobilindustrie hat an den neuen Möglichkeiten im Leichtbau großes Interesse. Im Projekt "OrganoRipp" untersuchte die Hochschule in Kooperation mit zwei Unternehmenspartnern neue Verbundmöglichkeiten. KW - Oranoblech KW - Faserverbundkunststoffe KW - Kunststofftechnik KW - Hybridtechnologie KW - Spritzguss Y1 - 2017 SP - 32 EP - 33 ER -