@article{LeiterWohlschlaegerVersenetal.2022, author = {Leiter, Nina and Wohlschl{\"a}ger, Maximilian and Versen, Martin and Laforsch, Christian}, title = {An algorithmic method for the identification of wood species and the classification of post-consumer wood using fluorescence lifetime imaging microscopy}, series = {Journal of Sensors and Sensor Systems}, volume = {11}, journal = {Journal of Sensors and Sensor Systems}, number = {1}, doi = {10.5194/jsss-11-129-2022}, pages = {129 -- 136}, year = {2022}, abstract = {In this contribution the frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) technique is evaluated for post-consumer wood sorting. The fluorescence characteristics of several wood samples were determined, whereby two excitation wavelengths (405 and 488 nm) were used. The measured data were processed using algorithmic methods to identify the wood species and post-consumer wood category. With the excitation wavelength of 405 nm, 16 out of 19 samples could be correctly assigned to the corresponding post-consumer wood category by means of the fluorescence lifetimes. Thus, the experimental results revealed the high potential of the FD-FLIM technique for automated post-consumer wood sorting.}, language = {en} } @inproceedings{WohlschlaegerVersenLaforsch2022, author = {Wohlschl{\"a}ger, Maximilian and Versen, Martin and Laforsch, Christian}, title = {Investigation of the Impact of CaCO3 Concentrations on the Fluorescence Lifetime of Polypropylene}, series = {2022 Conference on Lasers and Electro-Optics (CLEO)}, booktitle = {2022 Conference on Lasers and Electro-Optics (CLEO)}, pages = {1 -- 2}, year = {2022}, abstract = {The impact of fillers on the fluorescence lifetime of polymers is still unknown. Investigating polypropylene containing different CaCO 3 concentrations using FD-FLIM show an exponential increase in fluorescence lifetime proportional to the CaCO 3 density in polypropylene.}, language = {en} } @inproceedings{LeiterWohlschlaegerVersen2022, author = {Leiter, Nina and Wohlschl{\"a}ger, Maximilian and Versen, Martin}, title = {Frequency-domain fluorescence lifetime imaging as method to analyze wood structures}, series = {Conference on Lasers and Electro-Optics}, booktitle = {Conference on Lasers and Electro-Optics}, organization = {Technical Digest Series (Optica Publishing Group, 2022)}, doi = {10.1364/CLEO_AT.2022.JW3A.19}, pages = {JW3A.19}, year = {2022}, abstract = {The analysis of wood structures using FD-FLIM seems promising for the identification of wood at 488 nm, as lignin has a high impact on the fluorescence lifetime.}, language = {en} } @inproceedings{ManiyattuGeegyLeiteretal.2022, author = {Maniyattu, Georgekutty Jose and Geegy, Eldho and Leiter, Nina and Wohlschl{\"a}ger, Maximilian and Versen, Martin and Laforsch, Christian}, title = {Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy}, series = {2022 IEEE Sensors Applications Symposium (SAS)}, booktitle = {2022 IEEE Sensors Applications Symposium (SAS)}, doi = {10.1109/SAS54819.2022.9881372}, pages = {1 -- 6}, year = {2022}, abstract = {Plastics have become a major part of human's daily life. An uncontrolled usage of plastic leads to an accumulation in the environment posing a threat to flora and fauna, if not recycled correctly. The correct sorting and recycling of the most commonly available plastic types and an identification of plastic in the environment are important. Fluorescence lifetime imaging microscopy shows a high potential in sorting and identifying plastic types. A data-based and an image-based classification are investigated using python programming language to demonstrate the potential of a neural network based on fluorescence lifetime images to identify plastic types. The results indicate that the data-based classification has a higher identification accuracy compared to the image-based classification.}, language = {en} } @inproceedings{BernoeckerLeiterWohlschlaegeretal.2022, author = {Bern{\"o}cker, Anton and Leiter, Nina and Wohlschl{\"a}ger, Maximilian and Versen, Martin}, title = {Entwicklung eines neuronalen Netzwerks als Basis zur automatisierten Holzartenerkennung}, series = {18. AALE-Konferenz. Pforzheim, 09.03.-11.03.2022}, booktitle = {18. AALE-Konferenz. Pforzheim, 09.03.-11.03.2022}, organization = {Hochschule f{\"u}r Technik, Wirtschaft und Kultur Leipzig}, doi = {10.33968/2022.11}, year = {2022}, abstract = {Holz ist ein vielseitig einsetzbarer nachwachsender Rohstoff. Neben seinem wirtschaftlichen Nutzen ist er f{\"u}r den Erhalt des Klimas unersetzlich. Eine sortenreine Sortierung f{\"u}r die Weiterverarbeitung von Altholz spielt f{\"u}r einen ressourcenschonenden Umgang eine wichtige Rolle. Um das Potenzial eines neuronalen Netzwerks basierend auf Messdaten der bildgebenden Fluoreszenzabklingzeitmessung f{\"u}r die Altholzsortierung aufzuzeigen, wurden zwei unterschiedliche Klassifikationsans{\"a}tze auf Basis der Programmiersprache Python gew{\"a}hlt. Die Ergebnisse zeigen, dass die bildbasierte Klassifizierung der Holzart mit einer Genauigkeit von 47,36 \% noch ausbauf{\"a}hig ist. Eine datenbasierte Klassifizierung der Holzart mit einer Identifikationsgenauigkeit von 98,28 \% ist dagegen vielversprechend.}, language = {de} } @inproceedings{WohlschlaegerVersenLaforsch2022, author = {Wohlschl{\"a}ger, Maximilian and Versen, Martin and Laforsch, Christian}, title = {Investigation of the Impact of CaCO3 Concentrations on the Fluorescence Lifetime of Polypropylene}, series = {Conference on Lasers and Electro-Optics}, booktitle = {Conference on Lasers and Electro-Optics}, organization = {Technical Digest Series (Optica Publishing Group, 2022)}, doi = {10.1364/CLEO_AT.2022.AM2M.2}, pages = {AM2M.2}, year = {2022}, abstract = {The impact of fillers on the fluorescence lifetime of polymers is still unknown. Investigating polypropylene containing different CaCO3 concentrations using FD-FLIM show an exponential increase in fluorescence lifetime proportional to the CaCO3 density in polypropylene.}, language = {en} } @inproceedings{WohlschlaegerHolstVersenetal.2021, author = {Wohlschl{\"a}ger, Maximilian and Holst, Gerhard and Versen, Martin and Laforsch, Christian}, title = {An optical method to differentiate wood from polymers using fluorescence lifetime imaging microscopy}, series = {OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES) (2021), paper EW4G.6}, booktitle = {OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES) (2021), paper EW4G.6}, doi = {10.1364/ES.2021.EW4G.6}, pages = {EW4G.6}, year = {2021}, abstract = {In this contribution investigations with fluorescence lifetime imaging microscopy (FLIM) are made to optically distinguish polymers and wood. The results show that the distinction and identification is possible in a graphical and calculative way.}, language = {en} } @inproceedings{LeiterWohlschlaegerAueretal.2021, author = {Leiter, Nina and Wohlschl{\"a}ger, Maximilian and Auer, Veronika and Versen, Martin and Laforsch, Christian}, title = {An algorithmic method to identify multiple wood species in a single image by their specific fluorescence lifetimes}, series = {OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP) (2021), paper CF2B.3}, booktitle = {OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP) (2021), paper CF2B.3}, doi = {10.1364/COSI.2021.CF2B.3}, pages = {CF2B.3}, year = {2021}, abstract = {Fluorescence lifetime imaging microscopy (FLIM) combined with an image processing algorithm is successfully used for the optical identification and areal separation of three wood species of maple, larch and nut in a single taken image.}, language = {en} } @article{LeiterWohlschlaegerVersen2023, author = {Leiter, Nina and Wohlschl{\"a}ger, Maximilian and Versen, Martin}, title = {Analysis of the phase-dependent fluorescence decay time of treated wood using FD-FLIM}, series = {tm - Technisches Messen}, volume = {90}, journal = {tm - Technisches Messen}, number = {6}, doi = {10.1515/teme-2022-0114}, pages = {401 -- 406}, year = {2023}, abstract = {For sustainable handling of wood and high material utilization, post-consumer wood has to be sorted by post-consumer wood categories in Germany. The non-destructive FD-FLIM method could improve the wood recycling process by automatic classification of waste wood into post-consumer wood classes. Thus, the phase-dependent fluorescence decay time of treated wood is analysed in this study to obtain the impact of the treatment on the fluorescence decay time. It is shown that treated and untreated wood can be differentiated using the fluorescence decay time, although the state-of-the-art theoretical fluorescence decay time differs from the experimentally determined fluorescence decay time.}, language = {en} } @inproceedings{WohlschlaegerKhanLeiteretal.2023, author = {Wohlschl{\"a}ger, Maximilian and Khan, Yamna and Leiter, Nina and Versen, Martin and L{\"o}der, Martin and Laforsch, Christian}, title = {Combining BLOB-Detection and MLP to Detect and Identify Plastics in an Environmental Matrix}, series = {2023 IEEE Sensors Applications Symposium (SAS)}, booktitle = {2023 IEEE Sensors Applications Symposium (SAS)}, doi = {10.1109/SAS58821.2023.10254171}, pages = {1 -- 5}, year = {2023}, abstract = {Environmental pollution by plastics is an increasing problem. However, state-of-the-art methods have significant disadvantages in detecting and identifying plastics directly in an environmental matrix. In this study, we propose a blob detection algorithm in combination with a neural network for fast and automated identification of plastics and non-plastics in a single fluorescence lifetime image. Therefore an artificial environmental matrix is prepared that contains soil, grass, spruce and HDPE (high density polyethylene) particles. Several FD-FLIM (frequency domain fluorescence lifetime imaging microscopy) images are taken, and the detection algorithm and the neural network are applied. We successfully demonstrated the suitability of the thresholding algorithm and the binary classification of the HDPE particles directly in the environmental matrix.}, language = {en} }