@techreport{BarthBeneckenBetzetal.2016, author = {Barth, Simon and Benecken, Gerd and Betz, Andreas and Binninger, Karsten and Graule, Verena and Hack, Andreas and Haegele, Rainer and Hartmann, Markus and Hauck-Bauer, Eva and Haut, Sandra and J{\"a}ger, Johannes and Kagerl, Andreas and Karlinger, Peter and Konle, Elke and K{\"o}ster, Heinrich and Krause, Harald and Krommes, Sandra and Meissner, Thomas and Michanickl, Andreas and Sandor, Viktor and Schanda, Ulrich and Schemme, Michael and Sebald, Daniela and Spindler, Uli and Stauss, Kilian and Strobl, Thomas and Sussmann, Monika and Versen, Martin and Voit, Johann and Wambsganß, Mathias and Wellisch, Ulrich and Zauner, Johannes}, title = {Forschungsbericht 2015}, organization = {Hochschule Rosenheim}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:861-opus4-12304}, pages = {76}, year = {2016}, abstract = {Mit dem j{\"a}hrlich erscheinenden Forschungsbericht m{\"o}chte die Hochschule Rosenheim einen Einblick in ihre vielf{\"a}ltigen Projekte und Aktivit{\"a}ten der angewandten Forschung und Entwicklung geben. Im Forschungsbericht 2015 wird {\"u}ber Vorhaben im Jahr 2015 berichtet.}, language = {de} } @inproceedings{BinningerKortuemScholz2023, author = {Binninger, Karsten and Kort{\"u}m, Christian and Scholz, Frieder}, title = {Investigation of tool wear of the trimming unit and resulting quality in the edgebanding process}, series = {Proceedings of the 25th International Wood Machining Seminar}, booktitle = {Proceedings of the 25th International Wood Machining Seminar}, editor = {Schajer, Gary}, pages = {9}, year = {2023}, abstract = {The edgebanding process, i.e. the covering of the raw edge of the laminated particleboard by means of decorative plastic or real wood veneer bands, is an important process step in the manufacture of furniture components. The quality of the final product is significantly influenced by this production step. The manufacturing process step within the edgebanding machine begins with the milling of the raw edge. The quality of the edgebanding process is determined by a large number of process input variables, such as the tool used and the cutting geometry, the type of laminate used for the wood-based material, adhesives, etc. The quality of the edgebanding process is also determined by the type of material processed. Particularly with regard to the materials, the increased use of recycled wood in the particleboard sector and different types of adhesives (with reduced formaldehyde emissions) results in increased demands on the milling process. Due to this developments, most of the earlier investigations (in the years 1990 - 2000) are not comparable with today's general conditions. The mechanical and optical properties of the edge applied to the end product are decisively influenced by the quality of this joint. The milling technology used, as well as the tool used for this purpose and its condition, is a decisive influencing factor in the formation of quality. Tests on the indication of various influencing variables in the edgebanding process at the Rosenheim Technical University of Applied Sciences showed that in the case of chipboard milling, a decrease in the electrical power required for the cutting process can take place with increasing tool wear. It was also demonstrated that previous process steps in furniture production, such as panel dividing by means of sawing or milling/nesting, generally have a significantly different influence on the subsequent joining process during edge banding process. Furthermore, a direct correlation was determined between the mechanical properties of the end product and the condition of the tool used, which can be used as a measurable indicator. In addition to the effect of the tool condition on the mechanical properties of the edge banding, this also has an impact on the optical quality characteristics. Accordingly, it could be demonstrated here that an increase in the size and number of chippings takes place in the laminate of the board material to be processed.}, language = {en} }