@article{KamjunkeBuettnerJaegeretal.2013, author = {Kamjunke, N. and B{\"u}ttner, O. and J{\"a}ger, Christoph G. and Marcus, H. and von T{\"u}mpling, W. and Halbedel, S. and Norf, H. and Brauns, M. and Baborowski, M. and Wild, R. and Borchardt, D. and Weitere, M.}, title = {Biogeochemical patterns in a river network along a land use gradient}, series = {Environmental Monitoring and Assessment}, volume = {185}, journal = {Environmental Monitoring and Assessment}, number = {11}, pages = {9221 -- 9236}, year = {2013}, abstract = {The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23 \% of total land cover) to agricultural (70 \%) and urbanised areas (7 \%). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44 \%) and season (15 \%), demonstrating the strong effect of land use on biogeochemical parameters.}, language = {en} } @article{JaegerHagemannBorchardt2017, author = {J{\"a}ger, Christoph G. and Hagemann, J. and Borchardt, D.}, title = {Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment}, series = {Water Research}, volume = {115}, journal = {Water Research}, pages = {162 -- 171}, year = {2017}, abstract = {Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication phenomena in riverine ecosystems. As a consequence, ecologically effective eutrophication management of running water systems has to go beyond the control of nutrient emissions or the achievement of limiting threshold values in the receiving waters, but requires the consideration of the nutrient pathways (surface water versus groundwater) and the shifting biological controls from lower to higher order stream ecosystems.}, language = {en} } @article{DupasMusolffJawitzetal.2017, author = {Dupas, R. and Musolff, A. and Jawitz, J. W. and Rao, P. S. C. and J{\"a}ger, Christoph G. and Fleckenstein, J. H. and Rode, M. and Borchardt, D.}, title = {Carbon and nutrient export regimes from headwater catchments to downstream reaches}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {18}, pages = {4391 -- 4407}, year = {2017}, abstract = {Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3-), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke (Germany) river continuum from three headwaters draining 1-3 km2 catchments to two downstream reaches representing spatially integrated signals from 184-456 km2 catchments. Three headwater catchments were selected as archetypes of the main landscape units (land use  ×  lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3-, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contributions from point sources. The seasonal dynamics for NO3- were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3- contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3- was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal (high SRP during summer low flow), which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to jointly investigate land-to-stream and in-stream transport, and transformation processes.}, language = {en} } @article{JaegerBorchardt2018, author = {J{\"a}ger, Christoph G. and Borchardt, D.}, title = {Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions}, series = {Journal of Theoretical Biology}, volume = {442}, journal = {Journal of Theoretical Biology}, pages = {66 -- 78}, year = {2018}, abstract = {In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our results imply that shallow systems recover within significantly shorter distances from spatially distinct disturbances when compared to deep systems, independent of the type of disturbance.}, language = {en} }