@inproceedings{RaboldDuester2008, author = {Rabold, Andreas and D{\"u}ster, A.}, title = {FEM based prediction model for the impact sound level of floors}, series = {EURONOISE 2008- Conference Proceedings}, booktitle = {EURONOISE 2008- Conference Proceedings}, year = {2008}, abstract = {Up to now the research and developmen t in the field of building acoustics is based mainly on measurements. The consequence is that the development and optimization of a new building component is a very tedious and expensive task. A considerably reduction of these costs could be achieved, if the optimization relying on measurements would be replaced - at least to some extent - by a computational prediction model. Motivated by these aspects a method is presented for using finite element techniques to estimate the impact sound level from lightweight floors. The overall approach consists of the three-dimensional modeling of the structure and the excitation source (tapping machine), the subsequent moda l- and spectral analyses an d the computation of the radiated sound from the ceiling.}, language = {en} } @inproceedings{RaboldDuesterHessingeretal.2009, author = {Rabold, Andreas and D{\"u}ster, A. and Hessinger, J. and Rank, E.}, title = {Optimization of lightweight floors in the low frequency range with a FEM based prediction model}, series = {DAGA Tagungsband}, booktitle = {DAGA Tagungsband}, year = {2009}, abstract = {The impact noise transmission at low frequencies is a well known problem of lightweight floors, which is treated in many publications. A satisfying solution, considering the different construction principles of lightweight floors, could not be found so far. To overcome this problem a FEM based prediction model for the optimization of the floor construction and the improvement of the impact sound insulation has been developed and applied in a current research project at th e TU M{\"u}nchen. The details of the prediction model were published in [1]-[3]. This contribution gives an overview of the prediction model and shows the results of the computations and the construction rules developed for optimized lightweight floors.}, language = {en} } @article{RaboldBuchschmiedDusteretal.2010, author = {Rabold, Andreas and Buchschmied, M. and Duster, A. and M{\"u}ller, G. and Rank, E.}, title = {Modelling the excitation force of a standard tapping machine on lightweight floor structures}, series = {Journal of building acustics}, journal = {Journal of building acustics}, year = {2010}, abstract = {Up to now the research and development in the field of building acoustics is based mainly on measurements. In consequence the development and optimization of a new building component is a very tedious and expensive task. A considerable reduction of these costs could be achieved, if the optimization relying on measurements would be replaced - at least to some extent - by a computational prediction model. For these models it is necessary to represent not only the component and the adjacent rooms but also the excitation in a suitable way. This paper gives an overview of models for the excitation generated by a standard tapping machine taking into account the interaction between the impacting steel cylinders of the tapping machine and the vibrating surface of the floor.}, language = {en} }