@inproceedings{HoellthalerHaglKennel2019, author = {H{\"o}llthaler, Julia and Hagl, Rainer and Kennel, Ralph}, title = {Bandwidth Improvements of Linear Direct Drives with a 100 kHz PWM-Frequency}, series = {2019 12th International Symposium on Linear Drives for Industry Applications (LDIA), Neuchatel, Switzerland}, booktitle = {2019 12th International Symposium on Linear Drives for Industry Applications (LDIA), Neuchatel, Switzerland}, year = {2019}, abstract = {A calculation method for a robust servo controller design depending on the sampling time and the processing dead time was developed for mechanically stiff drives. With a test stand for high dynamic and high positioning accuracy, the theoretical calculations for the high bandwidth improvements are verified. The test stand includes a voice coil motor and a power electronic with Gallium Nitride (GaN) power semiconductors for switching frequencies of more than 100kHz.}, language = {en} } @inproceedings{HoellthalerHaglKennel2019, author = {H{\"o}llthaler, Julia and Hagl, Rainer and Kennel, Ralph}, title = {Bandwidth Improvements for Current Control Loops with a 100 kHz PWM Frequency and GaN Power Semiconductors}, series = {2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan}, booktitle = {2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan}, year = {2019}, abstract = {A discrete-time design method for a robust current controller of a servo drive has been developed. It takes the sampling time, the processing dead time and the dynamic behavior of the A/D converter into account. The theoretical calculations are verified using a test stand for high dynamics. The test stand includes a voice coil motor and power electronics with Gallium Nitride (GaN) power semiconductors for switching frequencies of more than 100 kHz. The bandwidth of the current control loop can be improved from typically 1 kHz to 1.5 kHz with insulated-gate bipolar transistor (IGBT) power semiconductors in state-of-the-art motion control systems to 10 kHz and more.}, language = {en} } @inproceedings{HoellthalerHaglKennel2020, author = {H{\"o}llthaler, Julia and Hagl, Rainer and Kennel, Ralph}, title = {Influence of the PWM Frequency on Dynamic and Position Stability of Servo Drives}, series = {25th International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Virtual Meeting}, booktitle = {25th International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Virtual Meeting}, year = {2020}, abstract = {The dynamic behavior and position stability of servo drives are influenced by many parameters. One major influencing parameter is the pulse width modulation (PWM) frequency. With inverters based on wide bandgap semiconductors, the PWM frequency can be increased. This enables a substantial increase in the current control bandwidth. The paper focuses on the influence of the PWM frequency on the dynamics of control loops and position stability, which are derived from theoretical correlations. The theory is verified using a test bench for high dynamic and position stability. The test bench is equipped with a voice coil motor and power electronic with gallium nitride (GaN) power semiconductors for switching frequencies of 100kHz and over. The achieved position stability, measured with a laser-based comparator at the tool center point, is lower than "+-1nm" with a standard deviation of "0.16nm" at a PWM frequency of "f_PWM=100kHz".}, language = {en} } @inproceedings{HoellthalerHagl2017, author = {H{\"o}llthaler, Julia and Hagl, Rainer}, title = {Plattformunabh{\"a}ngige modellbasierte Entwicklung von hochdynamischen Antriebsregelungen}, series = {MATLAB EXPO 2017 Deutschland, M{\"u}nchen, 27. Juni 2017}, booktitle = {MATLAB EXPO 2017 Deutschland, M{\"u}nchen, 27. Juni 2017}, year = {2017}, language = {de} } @phdthesis{Hoellthaler2022, author = {H{\"o}llthaler, Julia}, title = {Hochdynamische Miniaturantriebe mit hoher Positionsgenauigkeit}, year = {2022}, abstract = {In der vorliegenden Arbeit werden die Grenzen eines Miniaturantriebs bez{\"u}glich hoher Dynamik bei gleichzeitig hoher Positionsgenauigkeit untersucht. Dabei wird das Gesamtsystem betrachtet und optimiert. Es wird ein vollst{\"a}ndig zeitdiskretes Modell erarbeitet und die maximal m{\"o}gliche Bandbreite bestimmt. Außerdem werden Einflussfaktoren wie Positionsauswertung, Digitalisierung der R{\"u}ckf{\"u}hrgr{\"o}ßen und digitale Pulsweitenmodulation untersucht. Es wird ein Miniaturantrieb aufgebaut, mit dem die hohe Dynamik und eine Positionsstabilit{\"a}t im Subnanometer Bereich nachgewiesen werden kann.}, language = {de} }